Status of the FCC-ee interaction region design

R. Martin¹ R. Tomás² L. Medina³

¹CERN, Geneva, Switzerland and Humboldt University Berlin, Germany

²CERN, Geneva, Switzerland

³Universidad de Guanajuato, Mexico

HF2014 Workshop, Beijing, China 9-12 October, 2014

Acknowledgments: Thanks to A. Bogomyagkov, B. Holzer, B. Haerer and H. Garcia

This work is supported by the Wolfgang-Gentner-Programme of the Federal Ministry of Education and Research, Germany (BMBF).

R. Martin (CERN)

Outline

1 FCC-ee General information

- 2 CERN IR design
- 3 BINP IR design
- 4 Comparison and difficulties
- Tracking Studies on the 100 km Ring
- 6 Outlook

• FCC-ee project:

- high-luminosity circular e⁺e⁻-collider
- center-of-mass energies:
 - 90 GeV (Z-Pole)
 - 160 GeV (W pair production threshold)
 - 240 GeV (Higgs resonance)
 - 350 GeV (*tt* threshold)
- predecessor of a new 100 TeV pp-collider in same tunnel (80-100 km) in Geneva area
- Interaction region:
 - constraints by use of one tunnel for FCC-ee and FCC-hh (tunnel size \rightarrow cost)
 - most challenging setups: Z (high luminosity) and $t\bar{t}$ (beamstrahlung)

Baseline parameters:

	Ζ	tt
Beam energy [GeV]	45.5	175
Crossing angle [mrad]	11	
Bunches / beam	16700	98
Bunch population [10 ¹¹]	1.8	1.4
Beta function at IP β^*		
- horizontal [m]	0.5	1
- vertical [mm]	1	1
Transverse emittance ϵ		
- horizontal [nm]	29.2	2
- vertical [pm]	60	2
Beam size at IP σ^*		
- horizontal [µm]	121	45
- vertical [µm]	0.25	0.045
Luminosity / IP $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	28.0	1.8

100 km option. Bunches / beam and bunch population determined by the design limit of 50 MW synchrotron radiation per beam.

- based on generic lattice for LINACs
- local chromaticity correction necessary due to high luminosity goals
- spacial separation of functions \rightarrow modular

CERN IR design. Currently only $t\overline{t}$ setup exists.

- L* as small as possible (chromaticity) but large enough for detector
 - \rightarrow L^{*} = 2*m* considered reasonable
- crossing angle:
 - small crossing angle preferred to keep tunnel diameter small and dipole fields small
 - shared FFS quadrupoles (6 σ_{p_x} separation):

	Z	tt
average Power from Q1 [kW]	96.8	3.5
average Power from Q2 [kW]	423.0	15.1

Values are per beam and per Quadrupole.

 \rightarrow separate quadrupoles for each beam

• magnet studies for SuperB and BINP suggest separation of \approx 22 mm \rightarrow minimum crossing angle = 11 mrad

- Different approach: crab waist scheme increases luminosity at lower energies (Z,W)
- no considerable advantage over head-on collision scheme at high energies (H, tt)
- crossing angle = 30*mrad*
- Parameters chosen to take advantage of crab waist scheme, but also allow running at all energies with one lattice

BINP IR design.

Parameters for crab waist scheme

	Ζ	tt
Beam energy [GeV]	45.5	175
Crossing angle [mrad]	30	
Bunches / beam	29791	33
Bunch population [10 ¹¹]	1	4
Beta function at IP β^*		
- horizontal [m]	0.5	
- vertical [mm]	1	
Transverse emittance ϵ		
- horizontal [nm]	0.14	2.1
- vertical [pm]	1	4.3
Beam size at IP σ^*		
- horizontal [µm]	8.4	0.3
- vertical [µm]	0.03	0.07
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	212	1.3

100 km option, crab waist scheme.

Geometry

- tunnel diameter of both FCC-ee designs $\approx 2m \rightarrow$ reasonable
- still need for matching section bending beams back together, place for RF
- CERN design far too long, even for longer FCC-hh, BINP design might work out

R. Martin (CERN)

- larger luminosity in crab waist scheme (8x at Z, 2x at W, 1.6x at H) but has stronger dipole fields
- overall synchrotron radiation in 4 IPs for BINP design: 5.6MW($\approx 10\%$ of overall synchrotron radiation budget)
- Studies needed to determine if radiation hits detector and shielding is required

	Ζ	tt
Average total power		
per IP [kW]		
- CERN	138	138
- BINP	1460	1410
Energy loss		
per particle per IP [MeV]		
- CERN	0.8	168
- BINP	2.0	440
Average power		
in last dipole [kW]		
- CERN	7.3	7.3
- BINP	8.2	8.0
Critical Energy		
in last dipoles $\hbar\omega_c$ [keV]		
- CERN	8.8	503
- BINP	20	1100

Dynamic aperture

- first tracking calculations with full 100 km arc lattice were conducted
- preliminary matching to arcs
- all simulations for on-momentum particles, 500 turns, without radiation
- CERN: calculations for different working points
- Aim is to find working lattice with acceptable dynamic aperture and momentum acceptance, refinement later
- DA for CERN: up to 12 σ_x and 25 σ_y

Dynamic aperture

 BINP: 8 σ_x but 100 σ_y (important because vertical beamsize is very small → imperfactions have large relative impact)

	ψ_x	ψ_y
CERN, 80 km	0.77	0.61
CERN, 100 km, Option 1	0.48	0.23
CERN, 100 km, Option 2	0.77	0.11
BINP, 100 km	0.54	0.57

Non-integer part of phase advance between the IPs

- recent beam-beam studies: minimum momentum acceptance at tt energy between Δp/p = 1.5% and 2.0% → beamstrahlung lifetime between 0.4min and 6min
- relaxed requirements for lower energies
- Montague W functions not yet matched

- CERN: highest Momentum acceptance from -0.6% to 0.9%
- $\bullet~$ BINP: from $-0.6\,\%$ to $1.2\,\%$
- Considering preliminary matching, results give hope that required momentum acceptance is achievable

- \bullet refinement of matching sections to properly match Montague W functions \to optimization momentum acceptance
- CERN design still at very early stage, a lot of potential for optimization (dynamic aperture, momentum acceptance)
- further tune scans of CERN design to find better relation of dynamic aperture and momentum acceptance
- rematching of both designs to lower energy arc lattice
 - Dynamic aperture
 - momentum acceptance
- Studies of dynamic aperture vs. momentum deviation

Thank you for your attention

R. Martin (CERN)

Status of the FCC-ee interaction region design

10 October, 2014