

Cornell University Laboratory for Elementary-Particle Physics

Injection with Pretzels at CESR

Working Group 6 – Injectors & Injection

David Rice Center for Accelerator-based ScienceS and Education, Cornell University, Ithaca, NY

 CESR injector is a fullenergy synchrotron with e+/e- linac providing a programmable pattern of bunches each 60 Hz cycle.

CESR Complex

Injector Parameters

CESR	Injector	
	Parameter & Units	Value
	Injector repetition rate [/s]	60
	Linac Energy (e+/e-) [MeV]	160/300
	Linac max bunch number	24
	Linac charge/bunch (e+/e-) [nc]	0.01/0.1
	Linac RF frequency [MHz]	2855.77
	Synchrotron Circumference [m]	755.84
	Synchrotron RF frequency [MHz]	713.943
	Highest common frequency [MHz]	71.394
	Smallest common bunch spacing [ns]	14.007

Cornell University Laboratory for Elementary-Particle Physics

Ring Parameters

(Circa. 2000)

	Parameter & Units	Value
CESR Ring		
	Circumference [m]	768.44
	Operating beam energy [GeV]	1.8-6
	Transverse damping time [ms]	24 (@5.3GeV)
	Current per beam (mA)	375
	Number of bunches	45
	RF Frequency [MHz]	499.7594

Injection Process

- A grid-modulated cathode produces a series of precisely spaced bunches (~24 max beam loading limit)
- Accelerate in synchrotron ~8 ms (sinusoidal B field)
- Timing system waits variable # turns for alignment with CESR buckets being filled (61/60 circumference ratio)
- Single turn extraction to transfer line through thin (3 mm) septum in CESR chamber in horizontal plane.
- Pulsed, half-sine ~ 3 turn base width, bump magnets bring stored beam next to septum.
- Injected particles damp, sometimes with help of short trim kicker ("pinger")

- Transfer lines from synchrotron to CESR
- Recent upgrade with 3 bpm's each to record bunchby-bunch positions.

Cornell University Laboratory for Elementary-Partice Provident Control Control

• Spreadsheet example:

Septum wall thickness	3mm	
Synch beam radius:	3mm	(19)
CESR beam H emit	5.10E-08m	
CESR sigE/E	6.20E-04	
CESR 34W betaH	32.13 m	e e
CESR 34W etaH	1.62 m	
CESR 34W sigH	1.63 mm	Contraction -0.1" Beam Pipe (See Note #1)
Min wall clearance	4 sigH	
Inj-Stored beam displace.	12.51 mm	STRAP CLAMP
Betatron amplitude	9.77 sigma	(4 PLACES) 50 49 6044-118
Betatron amplitude	2.21 mm/vβ	SECTION B-B SCALE 1 : 1

Injection efficiency 60-80% with single beam – but ...

Horizontal Pretzel

- This ~10 sigma horizontal oscillation amplitude of injected particles brings them into core of counter-rotating beam.
- Injection efficiency now 10-30%, requiring frequent maintenance.

Separattion at PC's

• Clearance to counter-rotating bunches for injected bunch(s) calculation (9 trains x 5 bunches, 2.1 GeV):

Cornell University Laboratory for Elementary-Flatfice Physics Discussion of Injection Losses

- Several steps in design and operation have been taken to minimize injection losses.
 - Optics design maximize minimum separation at crossings
 - Use sextupoles to split e+ / e- tunes, minimize coherent effects ($\Delta Q \approx 0.025$) –two more knobs beyond $Q_{x'}$, Q_y
 - Move close to coupling resonance to increase σ_y of strong beam (not good for luminosity)
 - Use a one-turn kicker ("pinger") within a few turns of injection to reduce oscillation amplitude of injected bunches - small increase in stored beam oscillations.
 - Energy mismatch tuned for best filling efficiency
 - Filling one beam \approx halfway, then the second and return to the first can keep bunch population more even.
 - Usual tuning of steering, closed orbit bumps, chromaticity...

- Turn-by-turn measurements* of beam position suggest an amplitude of ~8 mm of the injected bunch.
- Translated to σ_x , smaller amplitude than calculated, likely reflects the agressive bumping of stored beam (3-4 σ_x rather than 5) and similar positioning of the injected beam w.r.t. the septum.

• The fast decay reflects decoherence, 0 200 400 600 800 000 turns

* Billing et al., PAC 2005, p. 1229

Energy dependence

• When CESR HEP began Charm studies (1.8-2.2 GeV vs. 5.3 GeV beam energy) the PC effects became more severe as expected.

(note – damping time increased only x2 due to 1.8 T wigglers)

 Filling current limits dropped from 375 ma/beam to 75 mA. Injecting against counter-rotating beam adds challenges and (at least at CESR) is the most difficult aspect of multi-bunch operation, usually determining current limits.

Summary

- Once bunch populations become very uneven it can be difficult to recover "good" injection conditions.
- Several tuning tactics have been presented.
- For a ground-up design, careful simulation of the injection process, parasitic crossings, lattice nonlinearities and errors will be essential to a robust design.

Cornell University Laboratory for Elementary-Particle Physics

Thank you for your attention.