PRODUCTION MECHANISMS OF

三 BARYON IN K KAR－NYongseok Oh
（Kyungpook National University）
吴勇锡 （庆北大学校）

Strangeness Nuclear Physics 2014 2014．12．12－12．14，Changsha，China
K. Nakayama (Univ. of Georgia) B. Jackson (Univ. of Georgia) H. Haberzettl (George Washington Univ.)

Nakayama, YO, Haberzettl, PRC 74 (2006) 035205
YO, PRD 75 (2007) 074002
Man, YO, Nakayama, PRC 83 (2011) 055201
Nakayama, YO, Haberzettl, PRC 85 (2012) 042201(R)
Jackson, YO, Haberzettl, Nakayama, PRC 89 (2014) 025206
Jackson, YO, Haberzettl, Nakayama, in preparation

CONTENTS

- Motivation
- spectrum \& quantum numbers
- Photoproduction $\gamma p \rightarrow K^{+} K^{+} \Xi^{-}$
- Model-independent aspects of $\bar{K} N \rightarrow K \Xi$
- Model-dependent study on the reaction mechanisms of $\bar{K} N \rightarrow K \Xi$
- Summary \& Outlook

QUARK MODEL

$I_{z=} z$ component of Isospin
M. Gell-Mann (1929-)

> Y=hypercharge (=Baryon\# + Strangeness)
quarks have Baryon\#=1/3

G. Zweig (1937-)
mesons = quark-antiquark baryons = quark-quark-quark

(qqq)

$\Lambda=(u d s)$

MESONS

Ground state mesons

$\left(\pi^{+}, \pi^{0}, \pi^{-}\right)=$lightest no s-quarks

($\rho^{+}, \rho^{0}, \rho^{-}$)=lightest no s-quarks

BARYONS

Ground state Baryons

THE DISCOVERY OF Ω^{-}

 spin-3/2 Ω^{-} crucial prediction of the QM
OBSERVATION OF A HYPERON WITH STRANGENESS MINUS THREE*

V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culwick, W. C. Delaney, W. B. Fowler, P. E. Hagerty, \dagger E. L. Hart, N. Horwitz, \dagger P. V. C. Hough, J. E. Jensen, J. K. Kopp, K. W. Lai, J. Leitner, \dagger J. L. Lloyd, G. W. London, \ddagger T. W. Morris, Y. Oren,

R. B. Palmer, A. G. Prodell, D. Radojičić, D. C. Rahm, C. R. Richardson, N. P. Samios,
J. R. Sanford, R. P. Shutt, J. R. Smith, D. L. Stonehill, R. C. Strand, A. M. Thorndike,
M. S. Webster, W. J. Willis, and S. S. Yamamoto

Brookhaven National Laboratory, Upton, New York
(Received 11 February 1964)

It has been pointed out ${ }^{1}$ that among the multitude of resonances which have been discovered recently, the $N_{3 / 2} *(1238), Y_{1} *(1385)$, and $\Xi_{1 / 2} *(1532)$ can be arranged as a decuplet with one member still missing. Figure 1 illustrates the position
length of $\sim 10^{6}$ feet. These pictures have been partially analyzed to search for the more characteristic decay modes of the Ω^{-}.
The event in question is shown in Fig. 2, and the pertinent measured quantities are given in

In view of the properties of cha strangeness $(S=-3)$, and mass $(M=1686 \pm 12$ MeV / c^{2}) established for particle 3, we IECI justified in identifying it with the sought-for Ω^{-}. Of course, it is expected that the Ω^{-}will have other observable decay modes, and we are continuing to search for them. We defer a detailed discussion of the mass of the Ω^{-}until we have analyzed further examples and have a better understanding of the systematic errors.

1964: the discovery of Ω

1969: Nobel prize to Gell-Mann "for his contributions and discoveries concerning the classification of elementary particles and their interactions"

BARYON SPECTRUM

orbital excitations, radial excitations

$$
\boldsymbol{J}=\boldsymbol{S}+\boldsymbol{L}
$$

Excitation Spectrum of the nucleon

QUANTUM NUMBERS OF HYPERONS

FIG. 3. The efficiency-corrected $\cos \theta_{h}(\Lambda)$ distribution for $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}$data. The dashed curve shows the $J_{\Omega}=3 / 2$ fit using Eq. (4), in which β allows for possible asymmetry. The solid curve represents the corresponding fit with $\beta=0$.

FIG. 4. The efficiency-corrected $\cos \theta_{h}(\Lambda)$ distribution for $\Xi_{c}^{0} \rightarrow \Omega^{-} K^{+}$data. The dotted line represents the expected distribution for $J_{\Omega}=1 / 2$, while the dashed curve corresponds to $J_{\Omega}=5 / 2$. In each case, $\beta=0$.

E HYPERONS

2014

Citation：K．A．Olive et al．（Particle Data Group），Chin．Phys．C38， 090001 （2014）（URL：http：／／pdg．Ibl．gov）

二 0

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right) \text {Status: } * * * *
$$

The parity has not actually been measured，but + is of course ex－ pected

1952 The discovery of 三（cosmic ray） 1959 The discovery of \equiv（LBNL） The parity of $\overline{\text { E }}$
\equiv（1530） $3 / 2^{+}$

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{3}{2}^{+}\right) \text {Status: } * * * *
$$

This is the only 三 resonance whose properties are all reasonably well known．Assuming that the Λ_{c}^{+}has $J=1 / 2^{+}$，AUBERT 08AK， in a study of $\Lambda_{c}^{+} \rightarrow \Xi^{-} \pi^{+} K^{+}$，finds conclusively that the spin of the $\equiv(1530)^{0}$ is $3 / 2$ ．In conjunction with SCHLEIN $63 B$ and BUTTON－SHAFER 66，this proves also that the parity is + ．

Particle Data Group 2014

E HYPERONS (CONT'D)

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)

三(1620)
 $I\left(J^{P}\right)=\frac{1}{2}(? ?)$ Status: *
 J, P need confirmation.

OMITTED FROM SUMMARY TABLE
What little evidence there is consists of weak signals in the $\equiv \pi$ channel. A number of other experiments (e.g., BORENSTEIN 72 and HASSALL 81) have looked for but not seen any effect.

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)
E(1690)

$$
I\left(J^{P}\right)=\frac{1}{2}\left(?^{?}\right) \quad \text { Status: } \quad * * *
$$

AUBERT 08AK, in a study of $\Lambda_{c}^{+} \rightarrow \bar{E}^{-} \pi^{+} K^{+}$, finds some evi-
dence that the $\equiv(1690)$ has $J^{P}=1 / 2^{-}$

SUMMARY TABLE

9 PDG List

Particle	J^{P}	Overall status	Status as seen in -					Parity is not
			$\Xi \pi$	ΛK	ΣK	$\Xi(1530) \pi$	Other channels	
$\Xi(1318)$	$1 / 2+$	****					Decays weakly	
$\Xi(1530)$	$3 / 2+$	****	****					but assigned by the
$\Xi(1620)$		*	*					quark model
$\Xi(1690)$		***		***	**			
$\Xi(1820)$	$3 / 2-$	***	**	***	**	**		
$\Xi(1950)$		***	**	**		*		
$\Xi(2030)$		***		**	***			
$\Xi(2120)$		*		*				
$\Xi(2250)$		**					3-body decays	
$\Xi(2370)$		**					3 -body decays	
$\Xi(2500)$		*		*	*		3 -body decays	

AND NOW...

- Only $\Xi(1318)$ and $\Xi(1530)$ are four-star rated.
- Only three states with known spin-parity: those of other states should be explored.

PDG 2012

Advantages

- small decay widths : identifiable in missing mass plots
- isospin $=1 / 2$ only
- no flavor singlet like Λ

Difficulties

non-strangeness initial state in most cases

- 3-body final states at least
- small cross sections $\sim \mathrm{nb}$

Ξ RESONANCES

The accompanying table gives our evaluation of the present status of the Ξ resonances. Not much is known about Ξ resonances. This is because (1) they can only be produced as a part of a final state, and so the analysis is more complicated than if direct formation were possible, (2) the production cross sections are small (typically a few $\mu \mathrm{b}$), and (3) the final states are topologically complicated and difficult to study with electronic techniques. Thus early information about Ξ resonances came entirely from bubble chamber experiments, where the numbers of events are small, and only in the 1980's did electronic experiments make any significant contributions. However, nothing of significance on Ξ resonances has been added since our 1988 edition.

For the case of Ω, it is even worse!

QUESTIONS

Particle	J^{P}	Overall status	Status as seen in -				
			$\Xi \pi$	ΛK	ΣK	$\Xi(1530) \pi$	Other channels
$\Xi(1318)$	$1 / 2+$	****					Decays weakly
$\Xi(1530)$	$3 / 2+$	****	****				
$\Xi(1620)$ $\Xi(1690)$		*	*				
$\Xi(1690)$		***		***	**		
$\Xi(1820)$	$3 / 2-$	***	**	***	**	**	
$\Xi(1950)$		***	**	**		*	
$\Xi(2030)$		***		**	***		
$\Xi(2120)$		*		*			
$\Xi(2250)$		**					3 -body decays
$\Xi(2370)$		**					3 -body decays
$\Xi(2500)$		*		*	*		3 -body decays

The 3rd lowest state

1. Does $\Xi(1620)$ really exist?

Most recent report on $\Xi(1620)$: NPB 189 (1981)
2. The 3rd lowest state: $\Xi(1620)$ vs. $\Xi(1690)$

QUANTUM NUMBERS

CLAS12 proposal

Photoproduction of the Very Strangest Baryons on a Proton

Target in CLAS12

(The Very Strange Collaboration)

A. Afanasev, W.J. Briscoe, H. Haberzettl, I.I. Strakovsky*, R.L. Workman, M.J. Amaryan, G. Gavalian, M.C. Kunkel, Ya.I. Azimov, N. Baltzell, M. Battaglieri, A. Celentano, R. De Vita, M. Osipenko, M. Ripani, M. Taiuti, V.N. Baturin, S. Boyarinov, D.S. Carman, V. Kubarovsky, V. Mokeev, E. Pasyuk*, S. Stepanyan, D.P. Weygand, V. Ziegler*, W. Boeglin, J. Bono, L. Guo*,**, P. Khetarpel, P. Markowitz, B. Raue, S. Capstick, V. Crede, W. Roberts, M. Dugger, B.G. Ritchie, G. Fedotov, J. Goetz*, B.M.K. Nefkens, D.I. Glazier, D.P. Watts*, S. Hasegawa, H. Sako, S. Sato, K. Shirotori, K. Hicks, D.G. Ireland, K. Livingston, B. McKinnon, F.J. Klein, N. Walford, A. Kubarovsky, H. Lu, P. Mattione, K. Nakayama, Y. Oh, M. Paolone, J.W. Price, F. Sabatie, C. Salgado, V. Shklyar
** Contact person, * Spokesperson

The George Washington Univ., Old Dominion Univ., Petersburg Nuclear Physics Inst., Argonne Nat'l Lab., INFN Genova, TJNAF, Florida International Univ., Florida State Univ., Arizona State Univ., Univ. of South Carolina, UCLA, Edinburgh Univ., JAEA, Ohio Univ., Univ. of Glasgow, The Catholic Univ. of America, Rensselaer Poly. Inst., Carnegie Mellon Univ.,

Univ. of Georgia, Kyungpook Nat'l Univ., Temple Univ., California State Univ., Saclay, Norfolk State Univ., Giessen Univ.

What can we learn about Ξ resonances at K1.8

Summary

- The new hyperon spectrometer (HypTPC) is under construction at JAEA in collaboration with Korea and New Mexico U.
- Following H search experiment (E42) and E45, Ξ^{*} spectroscopy should be carried out as well as Ξ-p scattering experiment at J-PARC.

HYPERON SPECTRUM (MODEL DEPENDENCE)

Q Baryon structure and Ξ / Ω spectra

Table 1. Low-lying Ξ and Ω baryon spectrum of spin $1 / 2$ and $3 / 2$ predicted by the non-relativistic quark model of Chao et al. (CIK), relativized quark model of Capstick and Isgur (CI), Glozman-Riska model (GR), large N_{c} analysis, algebraic model (BIL), and QCD sum rules (SR). The recent quark model prediction (QM) and the Skyrme model results (SK) are given as well. The mass is given in the unit of MeV .

State	CIK [4]	CI [5]	GR [6]	Large- N_{c} [7-11]	BIL [12]	SR [13,14]	QM [15]	SK [1]
$\Xi\left(\frac{1}{2}^{+}\right)$	1325	1305	1320		1334	1320 (1320)	1325	1318
	1695	1840	1798	1825	1727		1891	1932
	1950	2040	1947	1839	1932		2014	
$\Xi\left(\frac{3}{2}^{+}\right)$	1530	1505	1516		1524		1520	1539
	1930	2045	1886	1854	1878		1934	2120
	1965	2065	1947	1859	1979		2020	
$\Xi\left(\frac{1}{2}^{-}\right)$	1785	1755	1758	1780	1869	1550 (1630)	1725	1614
	1890	1810	1849	1922	1932		1811	1660
	1925	1835	1889	1927	2076			
$\Xi\left(\frac{3}{2}^{-}\right)$	1800	1785	1758	1815	1828	1840	1759	1820
	1910	1880	1849	1973	1869		1826	
	1970	1895	1889	1980	1932			
$\Omega\left(\frac{1}{2}^{+}\right)$	2190	2220	2068	2408	2085		2175	2140
	2210	2255	2166		2219		2191	
$\Omega\left(\frac{3}{2}^{+}\right)$	1675	1635	1651		1670		1656	1694
	2065	2165	2020	1922	1998		2170	2282
	2215	2280	2068	2120	2219		2182	
$\Omega\left(\frac{1^{-}}{}{ }^{-}\right)$	2020	1950	1991	2061	1989		1923	1837
$\Omega\left(\frac{3}{2}^{-}\right)$	2020	2000	1991	2100	1989		1953	1978

Exp.
Particle J^{P}

$\Xi(1318)$	$1 / 2+$
$\Xi(1530)$	$3 / 2+$
$\Xi(1620)$	$1 / 2-?$
$\Xi(1690)$	
$\Xi(1820)$	$3 / 2-$
$\Xi(1950)$	
$\Xi(2030)$	
$\Xi(2120)$	
$\Xi(2250)$	
$\Xi(2370)$	
$\Xi(2500)$	

The $3^{\text {rd }}$ lowest state

SKYRME MODEL (BOUND STATE MODEL)

- Best-fitted results based on the derived mass formula

Particle	Prediction (MeV)	Expt
N	939^{*}	$\mathrm{~N}(939)$
Δ	1232^{*}	$\Delta(1232)$
$\Lambda\left(1 / 2^{+}\right)$	1116^{*}	$\Lambda(1116)$
$\Lambda\left(1 / 2^{-}\right)$	1405^{*}	$\Lambda(1405)$
$\Sigma\left(1 / 2^{+}\right)$	1164	$\Sigma(1193)$
$\Sigma\left(3 / 2^{+}\right)$	1385	$\Sigma(1385)$
$\Sigma\left(1 / 2^{-}\right)$	1475	$\Sigma(1480) ?$
$\Sigma\left(3 / 2^{-}\right)$	1663	$\Sigma(1670)$
$\Xi\left(1 / 2^{+}\right)$	1318^{*}	$\Xi(1318)$
$\Xi\left(3 / 2^{+}\right)$	1539	$\Xi(1530)$
$\Xi\left(1 / 2^{-}\right)$	$1658(1660)$	$\Xi(1690) ?$
$\Xi\left(1 / 2^{-}\right)$	$1616(1614)$	$\Xi(1620) ?$
$\Xi\left(3 / 2^{-}\right)$	1820	$\Xi(1820)$
$\Xi\left(1 / 2^{+}\right)$	1932	$\Xi(1950) ?$
$\Xi\left(3 / 2^{+}\right)$	2120^{*}	$\Xi(2120)$
$\Omega\left(3 / 2^{+}\right)$	1694	$\Omega(1672)$
$\Omega\left(1 / 2^{-}\right)$	1837	
$\Omega\left(3 / 2^{-}\right)$	1978	
$\Omega\left(1 / 2^{+}\right)$	2140	
$\Omega\left(3 / 2^{+}\right)$	2282	$\Omega(2250) ?$
$\Omega\left(3 / 2^{-}\right)$	2604	

Recently confirmed by COSY PRL 96 (2006)

BaBar: the spin-parity of $\Xi(1690)$ is $1 / 2^{-}$
PRD 78 (2008) NRQM predicts $1 / \mathbf{2}^{+}$

puzzle in QM

Unique prediction of this model.
The $\Xi(1620)$ should be there.
still one-star resonance
Q's would be discovered in future.

OTHER APPROACHES

- Unirary extension of Chiral Perturbation Theory
- Ramos, Oset, Bennhold, PRL 89 (2002)
- $1 / 2^{-}$state at 1606 MeV
- Garcia-Lecio, Lutz, Nieves, PLB 582 (2004)
- 三(1620) and Е(1690) are $1 / 2^{-}$states

PRODUCTION PROCESSES

PHOTOPRODUCTION

Λ states					Σ states				
State	J^{P}	$\Gamma(\mathrm{MeV})$	Rating	$\left\|g_{N A K}\right\|$	State	J^{P}	$\Gamma(\mathrm{MeV})$	Rating	$\underline{\mid g N \Sigma K}{ }^{\text {a }}$
$\Lambda(1116)$	$1 / 2^{+}$		****		$\Sigma(1193)$	$1 / 2^{+}$		****	
$\Lambda(1405)$	$1 / 2^{-}$	≈ 50	****		$\Sigma(1385)$	$3 / 2^{+}$	≈ 37	****	
$\Lambda(1520)$	$3 / 2^{-}$	≈ 16	****						
$\Lambda(1600)$	$1 / 2^{+}$	≈ 150	***	4.2	$\Sigma(1660)$	$1 / 2^{+}$	≈ 100	***	2.5
$\Lambda(1670)$	$1 / 2^{-}$	≈ 35	****	0.3	$\Sigma(1670)$	$3 / 2^{-}$	≈ 60	****	2.8
$\Lambda(1690)$	$3 / 2^{-}$	≈ 60	****	4.0	$\Sigma(1750)$	$1 / 2^{-}$	≈ 90	***	0.5
$\rightarrow \Lambda(1800)$	$1 / 2^{-}$	≈ 300	***	1.0	$\Sigma(1775)$	$5 / 2^{-}$	≈ 120	****	
$\Lambda(1810)$	$1 / 2^{+}$	≈ 150	***	2.8	$\Sigma(1915)$	5/2+	≈ 120	****	
$\Lambda(1820)$	$5 / 2^{+}$	≈ 80	****		$\Sigma(1940)$	$3 / 2^{-}$	≈ 220	***	<2.8
$\Lambda(1830)$	$5 / 2^{-}$	≈ 95	****		$\Sigma(2030)$	7/2 ${ }^{+}$	≈ 180	****	4
$\rightarrow \Lambda(1890)$	$3 / 2^{+}$	≈ 100	****	0.8	$\Sigma(2250)$??	≈ 100	***	
$\Lambda(2100)$	$7 / 2^{-}$	≈ 200	****						
$\Lambda(2110)$	$5 / 2^{+}$	≈ 200	***						
$\Lambda(2350)$	9/2 ${ }^{+}$	≈ 150	***						

PHOTOPRODUCTION

Nakayama, YO, Haberzettl, PRC 74 (2006) 035205
Man, YO, Nakayama, PRC 83 (2011) 055201

MODEL-INDEPENDENT ANALYSIS OF HADRONIC REACTION

$\bar{K} N \rightarrow K \Xi$

PARITY DETERMINATION

- Difficulties
- Mostly, the decay distributions are used
- Ground state: no strong decay
- Remove model-dependence
- We need a model-independent method (based on symmetries only)
- use the anti-kaon beam: larger cross sections
- define

$$
\begin{aligned}
& \hat{\mathbf{n}}_{1} \equiv\left(\mathbf{q} \times \mathbf{q}^{\prime}\right) \times \mathbf{q} /\left|\left(\mathbf{q} \times \mathbf{q}^{\prime}\right) \times \mathbf{q}\right| \\
& \hat{\mathbf{n}}_{2} \equiv\left(\mathbf{q} \times \mathbf{q}^{\prime}\right) /\left|\mathbf{q} \times \mathbf{q}^{\prime}\right| \\
& \bar{K}(q) N(p) \rightarrow K\left(q^{\prime}\right) \Xi\left(p^{\prime}\right)
\end{aligned}
$$

- choose $\hat{\mathbf{q}}=\hat{\mathbf{z}}, \quad \hat{\mathbf{n}}_{1}=\hat{\mathbf{x}}, \quad \hat{\mathbf{n}}_{2}=\hat{\mathbf{y}}$
$\hat{\mathbf{q}}$ and $\hat{\mathbf{n}}_{1}$ form the reaction plane

SPIN STRUCTURE

- The general spin-structure of the reaction amplitude

$$
\hat{M}^{+}=M_{0}+M_{2} \boldsymbol{\sigma} \cdot \hat{\mathbf{n}}_{2}, \quad \text { for positive parity } \Xi
$$

$$
\hat{M}^{-}=M_{1} \boldsymbol{\sigma} \cdot \hat{\mathbf{n}}_{1}+M_{3} \boldsymbol{\sigma} \cdot \hat{\mathbf{n}}_{3}, \quad \text { for negative parity } \Xi
$$

$$
\Rightarrow \hat{M}=\sum_{m=0}^{3} M_{m} \sigma_{m}
$$

where $M_{1}=M_{3}=0$ for positive parity Ξ and $M_{0}=M_{2}=0$ for negative parity Ξ

- The cross section

$$
\frac{d \sigma}{d \Omega}=\frac{1}{2} \operatorname{Tr}\left(\hat{M} \hat{M}^{\dagger}\right)=\sum_{m=0}^{3}\left|M_{m}\right|^{2}
$$

SPIN-TRANSFER COEFFICIENT

- (Diagonal) spin-transfer coefficient

$$
\begin{gathered}
\frac{d \sigma}{d \Omega} K_{i i}=\frac{1}{2} \operatorname{Tr}\left(\hat{M} \sigma_{i} \hat{M}^{\dagger} \sigma_{i}\right)=\left|M_{0}\right|^{2}+\left|M_{i}\right|^{2}-\sum_{k \neq i}\left|M_{k}\right|^{2} \\
\quad \Rightarrow \quad K_{i i}=\frac{d \sigma_{i}(++)-d \sigma_{i}(+-)}{d \sigma_{i}(++)+d \sigma_{i}(+-)} \quad d \sigma_{i}\left(s_{N}, s_{\Xi}\right)
\end{gathered}
$$

- Therefore, when $i=y, K_{i i}=\pi_{\Xi}(= \pm 1)$
- Double polarization observable
- The Ξ is self-analyzing, so we need polarized nucleon target only
- should be possible to measure at J-PARC
- Generalization to Ξ^{*} resonances and to Ξ photoproduction is also possible $\quad \pi_{\Xi}=\frac{K_{y y}}{\Sigma}$

SINGLE-SPIN ASYMMETRIES

- Target Nucleon asymmetry

$$
\frac{d \sigma}{d \Omega} T_{i} \equiv \frac{1}{2} \operatorname{Tr}\left(M \sigma_{i} M^{\dagger}\right)=2 \operatorname{Re}\left[M_{0} M_{i}^{*}\right]+2 \operatorname{Im}\left[M_{j} M_{k}^{*}\right]
$$

- Recoil Cascade asymmetry

$$
\frac{d \sigma}{d \Omega} P_{i} \equiv \frac{1}{2} \operatorname{Tr}\left(M M^{\dagger} \sigma_{i}\right)=2 \operatorname{Re}\left[M_{0} M_{i}^{*}\right]-2 \operatorname{Im}\left[M_{j} M_{k}^{*}\right]
$$

Positive parity Cascade

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}\left(T_{y}+P_{y}\right)=4 \operatorname{Re}\left[M_{0} M_{2}^{*}\right] \\
& \frac{d \sigma}{d \Omega}\left(T_{y}-P_{y}\right)=0
\end{aligned}
$$

Negative parity Cascade

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}\left(T_{y}+P_{y}\right)=0 \\
& \frac{d \sigma}{d \Omega}\left(T_{y}-P_{y}\right)=4 \operatorname{Im}\left[M_{3} M_{1}^{*}\right]
\end{aligned}
$$

- More details for spin-1/2 and $3 / 2 \Xi$ baryon production can be found in Jackson, YO, Haberzettl, Nakayama, PRC 89 (2014) 025206

AT J-PARC

What can we learn about Ξ resonances at K1.8

K.Imai (JAEA)

- polarized nucleon target is very expensive
- maybe we can use the decay of $\Xi(1690) \rightarrow$ ミ $\boldsymbol{\pi}$

MODEL-DEPENDENT ANALYSIS OF HADRONIC REACTION

$\bar{K} N \rightarrow K \Xi$

MODEL CALCULATIONS

Sharov, Korotkikh, Lanskoy, EPJA 47 (2011)

--=-=- best fit without high resonances
\qquad
--------- contribution from $\Sigma(2030)$ and $\Sigma(2250)$

Shyam, Scholten, Thomas, PRC 84 (2011)

the role of $\Lambda(1520)$ is stressed

RECENT CALCULATIONS

- Coupled channel models

Magas, Feijoo, Ramos, AIPCP 1606 (2014)

Kamano, Nakamura, Lee, Sato, arXiv:1407.6839

Highly model-dependent
Needs more precise data

MODEL DESCRIPTION

- Effective Lagrangian
- Tree level calculation
- No t-channel exchange (no exotics)
- Hyperon resonances $\left(\Lambda^{\star}, \Sigma^{\star}\right)$

HYPERON RESONANCES

o PDG List

TABLE I. The Λ and Σ hyperons listed by the Particle Data Group [17] as three-star or four-star states. The decay widths and branching ratios of high-mass resonances $m_{Y}>1.6 \mathrm{GeV}$ are in a broad range, and the coupling constants are determined from their central values.

	Λ states				Σ states				
State	J^{P}	$\Gamma(\mathrm{MeV})$	Rating	$\left\|g_{N \Lambda K}\right\|$	State	J^{P}	$\Gamma(\mathrm{MeV})$	Rating	$\left\|g_{N \Sigma K}\right\|$
$\Lambda(1116)$	$1 / 2^{+}$		$* * * *$		$\Sigma(1193)$	$1 / 2^{+}$		$* * * *$	
$\Lambda(1405)$	$1 / 2^{-}$	≈ 50	$* * * *$		$\Sigma(1385)$	$3 / 2^{+}$	≈ 37	$* * * *$	
$\Lambda(1520)$	$3 / 2^{-}$	≈ 16	$* * * *$						
$\Lambda(1600)$	$1 / 2^{+}$	≈ 150	$* * *$	4.2	$\Sigma(1660)$	$1 / 2^{+}$	≈ 100	$* * *$	2.5
$\Lambda(1670)$	$1 / 2^{-}$	≈ 35	$* * * *$	0.3	$\Sigma(1670)$	$3 / 2^{-}$	≈ 60	$* * * *$	2.8
$\Lambda(1690)$	$3 / 2^{-}$	≈ 60	$* * * *$	4.0	$\Sigma(1750)$	$1 / 2^{-}$	≈ 90	$* * *$	0.5
$\Lambda(1800)$	$1 / 2^{-}$	≈ 300	$* * *$	1.0	$\Sigma(1775)$	$5 / 2^{-}$	≈ 120	$* * * *$	
$\Lambda(1810)$	$1 / 2^{+}$	≈ 150	$* * *$	2.8	$\Sigma(1915)$	$5 / 2^{+}$	≈ 120	$* * * *$	
$\Lambda(1820)$	$5 / 2^{+}$	≈ 80	$* * * *$		$\Sigma(1940)$	$3 / 2^{-}$	≈ 220	$* * *$	<2.8
$\Lambda(1830)$	$5 / 2^{-}$	≈ 95	$* * * *$		$\Sigma(2030)$	$7 / 2^{+}$	≈ 180	$* * * *$	
$\Lambda(1890)$	$3 / 2^{+}$	≈ 100	$* * * *$	0.8	$\Sigma(2250)$	$?$	≈ 100	$* * *$	
$\Lambda(2100)$	$7 / 2^{-}$	≈ 200	$* * * *$						
$\Lambda(2110)$	$5 / 2^{+}$	≈ 200	$* * *$						
$\Lambda(2350)$	$9 / 2^{+}$	≈ 150	$* * *$						

EFFECTIVE LAGRANGIAN

- Interaction Lagrangian

For spin-5/2 hyperons [25, 65],

$$
\begin{align*}
& \mathcal{L}_{\Lambda N K}^{5 / 2(\pm)}=\frac{g_{\Lambda N K}}{m_{K}^{2}} \bar{\Lambda}^{\mu \nu}\left\{D_{\mu \nu}^{5 / 2(\pm)} \bar{K}\right\} N+H . c ., \\
& \mathcal{L}_{\Sigma N K}^{5 / 2(\pm)}=\frac{g_{\Sigma N K}}{m_{K}^{2}} \bar{\Sigma}^{\mu \nu} \cdot\left\{D_{\mu \nu}^{5 / 2(\pm)} \bar{K}\right\} \boldsymbol{\tau} N+H . c . \tag{A.5b}\\
& \mathcal{L}_{\Xi \Lambda K_{c}}^{5 / 2(\pm)}=\frac{g_{\Xi \Lambda K_{c}}}{m_{K}^{2}} \bar{\Xi}\left\{D_{\mu \nu}^{5 / 2(\pm)} K_{c}\right\} \Lambda^{\mu \nu}+H . c ., \\
& \mathcal{L}_{\Xi \Sigma K_{c}}^{5 / 2(\pm)}=\frac{g_{\Xi \Sigma K_{c}}}{m_{K}^{2}} \bar{\Xi} \boldsymbol{\tau}\left\{D_{\mu \nu}^{5 / 2(\pm)} K_{c}\right\} \cdot \boldsymbol{\Sigma}^{\mu \nu}+H . c . \tag{A.5d}
\end{align*}
$$

For spin- $7 / 2$ hyperons [25, 65],

$$
\begin{align*}
& \mathcal{L}_{\Lambda N K}^{7 / 2(\pm)}=\frac{g_{\Lambda N K}}{m_{K}^{3}} \bar{\Lambda}^{\mu \nu \rho}\left\{D_{\mu \nu \rho}^{7 / 2(\pm)} \bar{K}\right\} N+H . c ., \\
& \mathcal{L}_{\Sigma N K}^{7 / 2(\pm)}=\frac{g_{\Sigma N K}}{m_{K}^{3}} \overline{\boldsymbol{\Sigma}}^{\mu \nu \rho} \cdot\left\{D_{\mu \nu \rho}^{7 / 2(\pm)} \bar{K}\right\} \boldsymbol{\tau} N+H . c . \\
& \mathcal{L}_{\Xi \Lambda K_{c}}^{7 / 2(\pm)}=\frac{g_{\Xi \Lambda K_{c}}}{m_{K}^{3}} \bar{\Xi}\left\{D_{\mu \nu \rho}^{7 / 2(\pm)} K_{c}\right\} \Lambda^{\mu \nu \rho}+H . c .,(\mathrm{A} .6 \mathrm{c}) \\
& \mathcal{L}_{\Xi \Sigma K_{c}}^{7 / 2(\pm)}=\frac{g_{\Xi \Sigma K_{c}}}{m_{K}^{3}} \bar{\Xi} \boldsymbol{\tau}\left\{D_{\mu \nu \rho}^{7 / 2(\pm)} K_{c}\right\} \cdot \boldsymbol{\Sigma}^{\mu \nu \rho}+H . c . \tag{A.6c}
\end{align*}
$$

$$
\begin{aligned}
& D_{B^{\prime} B M}^{1 / 2(\pm)} \equiv-\Gamma^{(\pm)}\left[\pm i \lambda+\frac{1-\lambda}{m_{B^{\prime}} \pm m_{B}} \not \partial\right] \\
& D_{\nu}^{3 / 2(\pm)} \equiv \Gamma^{(\mp)} \partial_{\nu} \\
& D_{\mu \nu}^{5 / 2(\pm)} \equiv-i \Gamma^{(\pm)} \partial_{\mu} \partial_{\nu} \\
& D_{\mu \nu \rho}^{7 / 2(\pm)} \equiv-\Gamma^{(\mp)} \partial_{\mu} \partial_{\nu} \partial_{\rho} \\
& \hat{S}_{r}^{5 / 2}\left(p_{r}\right)=\left[\left(p_{r}-m_{r}\right) g-i \frac{\Delta}{2} \Gamma_{r}\right]^{-1} \Delta,
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta & \equiv \Delta_{\alpha_{1} \alpha_{2}}^{\beta_{1} \beta_{2}} \\
& =\frac{1}{2}\left(\bar{g}_{\alpha_{1}}^{\beta_{1}} \bar{g}_{\alpha_{2}}^{\beta_{2}}+\bar{g}_{\alpha_{1}}^{\beta_{2}} \bar{g}_{\alpha_{2}}^{\beta_{1}}\right)-\frac{1}{5} \bar{g}_{\alpha_{1} \alpha_{2}} \bar{g}_{1}^{\beta_{1} \beta_{2}} \\
& -\frac{1}{10}\left(\bar{\gamma}_{\alpha_{1}} \bar{\gamma}^{\beta_{1}} \bar{g}_{\alpha_{2}}^{\beta_{2}}+\bar{\gamma}_{\alpha_{1}} \bar{\gamma}^{\beta_{2}} \bar{g}_{\alpha_{2}}^{\beta_{1}}+\bar{\gamma}_{\alpha_{2}} \bar{\gamma}^{\beta_{1}} \bar{g}_{\alpha_{1}}^{\beta_{2}}\right. \\
& \left.+\bar{\gamma}_{\alpha_{2}} \bar{\gamma}^{\beta_{2}} \bar{g}_{\alpha_{1}}^{\beta_{1}}\right)
\end{aligned}
$$

with

$$
\bar{g}^{\mu \nu} \equiv g^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{m_{r}^{2}}, \quad \bar{\gamma}^{\mu} \equiv \gamma^{\mu}-\frac{p^{\mu} \not p}{m_{r}^{2}} .
$$

RESULTS

$K^{-} p \rightarrow K^{+} \Xi^{-}$

Y	J^{P}	$g_{\text {NAK }}$	$\lambda_{N \Lambda K}$	$g_{\text {EлK }}$	$\lambda_{\text {EAK }}$	$\Lambda(\mathrm{MeV})$	L^{\prime}	$a_{L^{\prime}}^{0}$	$a_{L^{\prime}}^{1}$	$b_{L^{\prime}}^{0}$	b_{L}^{1}
(1116)	$\frac{1}{2}^{+}$	-13.24	$\underline{1.0}$	3.52	1.0	900	0	0.1392	-0.0610		
$\Lambda(1820)$	${ }^{5}+$	-5.85		5.85		900	1	-4.9423	-0.3853	-0.4508	-0.0903
$\Sigma(1193)$	1	3.58	$\underline{1.0}$	- 13.26	1.0	900	2	5.0922	1.8164	-0.3853	0.7257
$\Sigma(1750)$	$\frac{1}{2}$	-0.66	1.0	0.66	1.0	900					
$\Sigma(2250)$	$\frac{3}{2}$	-0.24		0.24		900		$\Lambda_{S}=1$	GeV	$\alpha=$	2.75

Jackson, YO, Haberzettl, Nakayama, in preparation

CONT'D

$$
K^{-} p \rightarrow K^{0} \Xi^{0}
$$

RESULTS

- differential cross sections (with W)

RESULTS

SUMMARY \& OUTLOOK

- Multi-strangeness hyperons: a new window for studying baryon structure
- Study on the spectrum of ミ baryons
- test for existing models
- Theoretical models for \equiv spectrum
- different and even contradictory predictions
- mass and quantum numbers of the third lowest state
- Skyrme model: $\equiv(1620)$ and $\equiv(1690)$ as analogue states of $\Lambda(1405)$
- Experimental side: More precise data are needed
- existence of $\equiv(1620)$
- should confirm other poorly established ミ resonances and their quantum numbers
- almost no information about Ω baryons
- Role of Λ and Σ resonances in $\overline{\text { E production processes }}$
- offers a chance to study these resonances
- higher mass and high spin resonances
- J-PARC gives a new chance for ミ physics.
- larger yields than photoproduction
- needs various polarization measurements
- CLAS12 will give complementary information.

BACKUP

Highly model-dependent !

- The predicted masses for the third lowest state are higher than 1690 MeV (except NRQM)
- How to describe $E(1690)$?
- The presence of $E(1620)$ is puzzling, if it exits.

Cf. similar problem in QM: $\Lambda(1405)$

Skyrme Model

- 1960s, T.H.R. Skyrme
- Baryons are topological solitons within a nonlinear theory of pions.

$$
\mathcal{L}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+\frac{1}{32 e^{2}} \operatorname{Tr}\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U\right]^{2}
$$

Topological soliton winding number $=$ integer

interpret as baryon number

Bound State Model

o Starting point: flavor $\mathrm{SU}(3)$ symmetry is badly broken

O treats light flavors and strangeness on a different footing

$$
\mathrm{SU}(3) \rightarrow \mathrm{SU}(2) \times \mathrm{U}(1)
$$

- Lagrangian $\mathcal{L}=\mathcal{L}_{\mathrm{SU}(2)}+\mathcal{L}_{K / K^{*}}$
- The soliton provides a background potential that traps K/K* (or heavy) mesons.

Callan, Klebanov, NPB 262 (1985)
bound kaon

Bound State Model

- Anomalous Lagrangian
- Pushes up the $S=+1$ states to the continuum \rightarrow no bound state
- Pulls down the $S=-1$ states below the threshold \rightarrow allows bound state \rightarrow description of hyperons
- Renders two bound states with $S=-1$
after quantization
0 the lowest state: p-wave \rightarrow gives (+)-ve parity Λ (1116)

270 MeV energy difference
0 excited state: s-wave \rightarrow gives $(-)$-ve parity $\Lambda(1405)$

- Mass formula includes parameters: depends on dynamics we fix them to known masses and then predict

Experimental Data

- Experimental Data

MASS FORMULA

$$
\begin{aligned}
& \begin{array}{l}
M\left(i, j, j_{m}\right)= \\
\qquad M_{\text {sol }}+n_{1} \omega_{1}+n_{2} \omega_{2}+\frac{1}{2 I}\left\{i(i+1)+c_{1} c_{2} j_{m}\left(j_{m}+1\right)+\left(\bar{c}_{1}-c_{1} c_{2}\right) j_{1}\left(j_{1}+1\right)+\left(\bar{c}_{2}-c_{1} c_{2}\right) j_{2}\left(j_{2}+1\right)\right. \\
\left.\qquad+\frac{c_{1}+c_{2}}{2}\left[j(j+1)-j_{m}\left(j_{m}+1\right)-i(i+1)\right]+\frac{c_{1}-c_{2}}{2} \vec{R} \cdot\left(\vec{J}_{1}-\vec{J}_{2}\right)\right\}
\end{array} \\
& 8 \text { parameters: fit to the available data } \\
& \rightarrow \text { give predictions to the other resonances } \\
& \text { The last term gives a mixing between the states which have same } \\
& i, j, j_{m} \text { but different } R, J_{1}, J_{2}
\end{aligned}
$$

Fitted values

$$
\begin{array}{lll}
M_{\text {sol }}=866 \mathrm{MeV}, & \quad I=1.01 \mathrm{fm} & \\
\omega_{1}=211 \mathrm{MeV}, & c_{1}=0.754, & \bar{c}_{1}=0.532 \\
\omega_{2}=479 \mathrm{MeV}, & c_{2}=0.641, & \bar{c}_{2}=0.821
\end{array}
$$

cf. $\bar{c}_{1}=c_{1}^{2}, \bar{c}_{2}=c_{2}^{2}$ in Kaplan, Klebanov, NPB 335 (1990)

Bound State Model

- Best-fitted results based on the derived mass formula

Particle	Prediction (MeV)	Expt		
N	939*	N (939)	Recently confirmed by COSY PRL 96 (2006)	
Δ	1232*	Δ (1232)		
$\Lambda\left(1 / 2^{+}\right)$	1116*	$\Lambda(1116)$		
$\Lambda\left(1 / 2^{-}\right)$	1405*	$\Lambda(1405)$	BaBar : the spin-parity of	
$\Sigma\left(1 / 2^{+}\right)$	1164	$\Sigma(1193)$		
$\Sigma\left(3 / 2^{+}\right)$	1385	$\Sigma(1385)$	$\begin{gathered} \Xi(1690) \text { is } 1 / 2^{-} \\ P R D 7 \boldsymbol{8}(2008) \\ \text { NRQM predicts } 1 / 2^{+} \end{gathered}$	
$\Sigma\left(1 / 2^{-}\right)$	1475	$\Sigma(1480) ?$		
$\frac{\Sigma\left(3 / 2^{-}\right)}{\Xi\left(1 / 2^{+}\right)}$	1663	$\Sigma(1670)$		
$\Xi\left(1 / 2^{+}\right)$ $\Xi\left(3 / 2^{+}\right)$	1318*	$\Xi(1318)$		
$\Xi\left(3 / 2^{+}\right)$	1539	$\Xi(1530)$		
$\Xi\left(1 / 2^{-}\right)$	1658 (1660)	$\Xi(1690) ?$$\Xi(1620) ?$ puzzle in QM		
$\Xi\left(1 / 2^{-}\right)$	1616 (1614)			
$\Xi\left(3 / 2^{-}\right)$	1820	$\Xi(1820)$	Unique prediction of this model. The $\Xi(1620)$ should be there. still one-star resonance	
$\Xi\left(1 / 2^{+}\right)$	1932	$\Xi(1950)$?		
$\Xi\left(3 / 2^{+}\right)$	2120*	$\Xi(2120)$		
$\Omega\left(3 / 2^{+}\right)$	1694	$\Omega(1672)$		
$\Omega\left(1 / 2^{-}\right)$	1837	$\Omega(2250)$?		
$\Omega\left(3 / 2^{-}\right)$	1978		Q's would be discovered	
$\Omega\left(1 / 2^{+}\right)$	2140		in future.	
$\Omega\left(3 / 2^{+}\right)$	2282			
$\Omega\left(3 / 2^{-}\right)$	2604		YO, PRD 75	

More Comments

Two Ξ states

Kaons: one in p-wave and one in s-wave

$$
\Rightarrow \vec{J}=\vec{J}_{\text {sol }}+\vec{J}_{m} \quad\left(\vec{J}_{m}=\vec{J}_{1}+\vec{J}_{2}\right)
$$

$\vec{J}_{\text {sol }}$: soliton spin (=1/2), $\quad \vec{J}_{1}\left(\vec{J}_{2}\right):$ spin of the $\mathrm{p}(\mathrm{s})$-wave kaon $(=1 / 2)$
$J_{m}=0$ or 1: both of them can lead to $J^{P}=1 / 2^{-} \Xi$ states
Therefore, two $J^{P}=1 / 2^{-} \Xi$ states and one $J^{P}=3 / 2^{-} \Xi$ states
In this model, it is natural to have two $J^{P}=1 / 2^{-} \Xi$ states at $1616 \mathrm{MeV} \& 1658 \mathrm{MeV}$ Clearly, different from quark models

Other approaches

Unitary extension of chiral perturbation theory
Ramos, Oset, Bennhold, PRL 89 (2002): 1/ 2 - state at 1606 MeV
Garcia-Recio, Lutz, Nieves, PLB 582 (2004): claim tht the $\Xi(1620)$ and $\Xi(1690)$ are $1 / 2^{-}$states

