Molecular Interpretation of $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$

Martin Cleven

Institute of High Energy Physics

Strange Nuclear Physics 2014 Changsha 长沙

13 December 2014

In Collaboration with F.-K. Guo, H. Grießhammer, C. Hanhart, U.-G. Meißner

Formation of Matter: Theory of Strong Interaction

Quantum Chromodynamics (QCD):

- High Energies:
 - Asymptotic Freedom, perturbation theory
- Low Energies:

Lattice, Effective Field Theories

Heavy Meson Chiral Perturbation Theory

- No quarks and gluons
- Mesons as effective d.o.f.: π , K, $D^{(*)}$, $B^{(*)}$, ...
- Incorporates Chiral & Heavy Quark Symmetry

Confinement:

can be observed

Only color-neutral objects

Classic Examples

- Mesons: qq
- Baryons: qqq

Theory of Strong Interaction: Hadronic Molecules

- Formed from interactions of
- two or more hadrons
- Classic example: Deuteron as Proton-Neutron bound state
- Large number of new candidates in the previous decade

Weinberg's Formula:

Probability λ to find the physical state in the two-hadron state related to coupling to constituents g

$$g^2 = 16 \pi \lambda^2 \frac{(m_1 + m_2)^2}{\mu} \sqrt{-2\mu (M - m_1 - m_2)}$$

$D_{s0}^{*}(2317)$ and $D_{s1}(2460)$: Experimental Facts

E. Swanson: Physics Reports 429 (2006) 243 - 305}

But: These features can be incorporated in Quark Model

- \rightarrow Find Quantities that are sensitive to the (molecular) nature!
- Light Quark Mass Dependence of Binding Energy → Lattice
- Radiative & Hadronic Decay Widths

 $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$: Dynamical Generation MC, F.-K. Guo, H. Grießhammer, C. Hanhart and U.-G. Meißner, Eur. Phys. J. A50 (2014) 9, 149 Lippmann Schwinger Eq.: $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ +...

V + VGV + VGVGV +...

$$\Rightarrow T = V [1 - GV]^{-1}$$

 $P(D^*K, Ds1) = (63 \pm 16)$

Coupled Channels with I=0 and S=1:

 $V(s) = \begin{pmatrix} V_{DK \to DK}(s) & V_{DK \to D_s \eta}(s) \\ V_{D_s \eta K \to DK}(s) & V_{D_s \eta \to D_s \eta}(s) \end{pmatrix} \qquad G(s) = \begin{pmatrix} G_{DK}(s) & 0 \\ 0 & G_{D_s \eta}(s) \end{pmatrix}$

- Full LO and NLO Lagrangian for Heavy-Light scattering, LECs from Lattice
- Fix Subtraction Constant $m_{D_{s0}^*} = 2317 \text{ MeV}$ $m_{D_{s1}} = (2457.8 \pm 6.7) \text{ MeV}$ to mass of $D_{s0}^*(2317)$ $m_{D_{s0}^*}^{Exp} = (2317.8 \pm 0.6) \text{ MeV}$ $m_{D_{s1}}^{Exp} = (2459.5 \pm 0.6) \text{ MeV}$
- Extract Coupling Weinberg: Molecular Component $g_{DK} = (9.0 \pm 0.5) \text{ GeV}$ $P(DK, D_{s0}) = (77.8 \pm 4.3) \quad P(D^*, Ds1) = (81.0 \pm 3.6)$ $g_{D^*K} = (10.0 \pm 0.3) \text{ GeV}$ $P(DK, D_{s0}) = (72 \pm 12)$ Backed by Lattice Calculation, See Yesterday's Talk by Eulogio Oset!

A. M. Torres, E. Oset, S. Prelovsek and A. Ramos, arXiv:1412.1706 [hep-lat]

M. Cleven Ds0(2317) & Ds1(2460)

$D_{s0}^{*}(2317)$ and $D_{s1}(2460)$: Pion Mass Dependence

MC, F.-K. Guo, C. Hanhart and U.-G. Meißner, Eur. Phys. J. A 47 (2011) 19

- Pion Mass Dependence enters via DK Loops in both cases, but Weinberg's Formula:
 - Pure $c\bar{s}$ state: g_{DK} small \leftrightarrow weak pion mass dependence
 - Molecule $(c\bar{q})(q\bar{s})$: g_{DK} maximal \leftrightarrow strong pion mass dependence

Interpretation backed by Lattice Calculation

D. Mohler, C. B. Lang, L. Leskovec, S. Prelovsek and R. M. Woloshyn, Phys. Rev. Lett. 111, 222001 (2013)

$D_{s0}^{*}(2317)$ and $D_{s1}(2460)$: Kaon Mass Dependence

MC, F.-K. Guo, C. Hanhart and U.-G. Meißner, Eur. Phys. J. A 47 (2011) 19

• Bound State of D and K: $M = M_D + M_K - \varepsilon$

→ Kaon mass dependence linear, slope unity

• Compact State $(c\bar{s})$: Compare Kaon $(q\bar{s})$

→ Kaon mass dependence quadratic

$D_{s0}^{*}(2317)$ and $D_{s1}(2460)$: Hadronic Decays

L. Liu, K. Orginos, F.-K. Guo, C. Hanhart and U.-G. Meißner, Phys. Rev. D 87 (2013) 014508

Two contributions shift the stable poles on the complex planes to the second Riemann sheet: $s = M + i\Gamma/2$

$$\Gamma(\to D_s^*\pi^0) = (133 \pm 22) \qquad \Gamma(\to D_s^*\pi^0) = (66 \pm 22)$$

1-2 Orders of magnitude larger than for $c \bar{s}$ mesons!

13 December 2014

M. Cleven Ds0(2317) & Ds1(2460)

$D_{s0}^{*}(2317)$ and $D_{s1}(2460)$: Radiative Decays

MC, F.-K. Guo, H. Grießhammer, C. Hanhart and U.-G. Meißner, Eur. Phys. J. A50 (2014) 9, 149

- Coupling from Residues
- Sum of all Loops is finite
- Contact Term fixed in $\ D_{s1} o D_s \gamma$
- Power Counting: Contact Term and Loop at same order
 Not dominated by loops

$$\Gamma(D_{s0}^* \to D_s^* \gamma) = (10.1 \pm 4.5) \text{ keV} \qquad \Gamma(D_{s1} \to D_s \gamma) = (26.2 \pm 12.4) \text{ keV}$$

$$\Gamma(D_{s1} \to D_s^* \gamma) = (26.5 \pm 11.0) \text{ keV} \qquad \Gamma(D_{s1} \to D_{s0}^* \gamma) = (1.3 \pm 0.5) \text{ keV}$$

- Results for ratios Radiative/Hadronic Decays compatible with experiment
- Equal contributions for contact term and loops
 - \rightarrow only loops sensitive to molecular nature
- Values too small even for FAIR

Open Bottom Sector

MC, F.-K. Guo, H. Grießhammer, C. Hanhart and U.-G. Meißner, Eur. Phys. J. A50 (2014) 9, 149 MC, F.-K. Guo, C. Hanhart and U.-G. Meißner, Eur. Phys. J. A 47 (2011) 19

Heavy Quark Flavor Symmetry relates charm and bottom sector!

Predictions for
$$BK$$
 and B^*K possible

 ${
m V}$

$$m_{B_{s0}} = (5663 \pm 48) \text{ MeV} \qquad m_{B_{s1}} = (5712 \pm 48) \text{ MeV}$$

Smaller Degeneracy between charged and neutral bottom mesons → small hadronic width expected:

$$B_{s0} \to B_s \pi^0 = (0.8 \pm 0.8) \text{ keV}$$

 $B_{s1} \to B_s^* \pi^0 = (1.8 \pm 1.8) \text{ keV}$

Radiative Decays more promising discovery channel:

$$B_{s0} \to B_s^* \gamma = (32.6 \pm 20.8) \text{ keV}$$
 $B_{s1} \to B_s \gamma = (4.1 \pm 10.9) \text{ keV}$
 $B_{s1} \to B_s^* \gamma = (46.9 \pm 33.6) \text{ keV}$ $B_{s1} \to B_{s0} \gamma = (0.02 \pm 0.02) \text{ keV}$

Summary

- Interpretation of $D_{s0}(2317)$ and $D_{s1}(2460)$ as $D^{(*)}K$ molecules
 - \rightarrow Explains features that Quark model cannot
- Light Meson Mass Dependence of Binding Energy: Linear in m_{μ} , Quadradic in $m_{\pi} \rightarrow$ Lattice
- Two-Body Decays:
 - Hadronic Decays ~ O(100 keV)
 - Radiative Decays ~ O(10 keV)
 - Hadronic Decay Widths distinctive in mol. Picture
- Prediction: Partner States in Open Bottom Sector Best chance for Discovery: Radiative Decays $B_s^{(*)} \gamma$

Thank you!

谢谢!