Progress on Hyperon Resonances

Bing-Song Zou Institute of Theoretical Physics, CAS

Puze Gao, Jun Shi, B. S. Zou, Phys. Rev. C86 (2012) 025201
Jun Shi, B. S. Zou, ArXiv: 1411.0486 [hep-ph]
C. S. An, B. Metsch, B. S. Zou, Phys. Rev. C87 (2013) 065207
C. S. An, B. S. Zou, Phys. Rev. C89 (2014) 055209

Outline :

- 1. Why hyperon resonances ?
- 2. New results on $\Sigma^* \& \Lambda^*$ from CB data
- **3.** Prediction on Ω* from NJL unquenched quark model
- 4. Conclusions and Prospects

1. Why hyperon resonances ? Unquenched dynamics: gluons $\rightarrow q\bar{q}$ crucial for quark confinement & hadron structure

quenched or unquenched quark models give very different predictions of hyperon spectrum

Hadron spectroscopy with strangeness SU(3) 3q-quark model for baryons 1/2 +3/2 +spin-parity \triangle^{++} S $\bigwedge 0$ \wedge^+ (uuu) (ddd) n(udd) p(uud) (udd) (uud) Σ^0 \sum^{*} Σ^{*+} (dds) (uds) (uus) Σ^{0} Σ^+ (uus) (uds) $\Sigma^{-}(dds)$ I_3 Λ^{0} $\frac{\Xi^{*0}}{(uss)}$ $(\overset{\Xi^{*-}}{\mathrm{dss}})$ $\Omega^{-}(sss)$ $\Xi^0(uss)$ Ξ -(dss) m_O.≅ 1670 MeV **Prediction Successful for spatial** ground states ! experiment $m_{\Omega} \cong 1672.45 \pm 0.29 \text{ MeV}$

1/2⁻ baryon nonet with strangeness

- Mass pattern : quenched or unquenched ?
 - uds (L=1) $1/2^- \sim \Lambda^*(1670) \sim [us][ds] s$
 - uud (L=1) $1/2^- \sim N^*(1535) \sim [ud][us] \overline{s}$
 - uds (L=1) $1/2^- \sim \Lambda^*(1405) \sim [ud][su] \overline{u}$
 - uus (L=1) $1/2^- \sim \Sigma^*(1390) \sim [us][ud] \overline{d}$

Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

• Strange decays of N*(1535) and Λ *(1670): N*(1535) large couplings $g_{N^*N\eta}$, $g_{N^*K\Lambda}$, $g_{N^*N\eta}$, $g_{N^*N\phi}$ Λ *(1670) large coupling $g_{\Lambda^*\Lambda\eta}$

Distinctive

Predictions by quenched – & unquenched – quark models

Quenched quark model: Capstick-Roberts, Prog.Part.Nucl.Phys. 45 (2000) S241-S331 Unquenched model: Helminen-Riska, Nucl. Phys. A 699 (2002) 624 A.Zhang, S.L.Zhu et al., HEPNP 29 (2005) 250 **Alternative pictures :**

Hadronic molecules

N*(1535) ~ KΣ-KΛ

 $\Lambda^*(1405) \sim \text{KN-}\Sigma\pi$

N*(1440) ~ Nσ

Penta-quark states

 $N^{*}(1440) \sim [ud][ud] q$

 $N*(1535) \sim [ud][us] \underline{s}$

 $\Lambda^*(1405) \sim [ud][sq] q$

Kaiser, Weise, Oset, Ramos, Oller, Meissner, Hyodo, Jido, Hosaka, Oh, ...

Distinguishable model predictions for Σ^* of $3/2^-$ and $1/2^+$

qqq $\overline{q}q^6$ or $\overline{K}\pi N - \pi\pi Y$ $3/2^ \Sigma^*(1650)$ $\Sigma^*(1570)$ Gal 2011 $1/2^+$ $\Sigma^*(1720)$ $\Sigma^*(1630)$ & $\Sigma^*(1656)$ Oset 2008

Experiment knowledge on hyperon states still very poor !

Ω^* in PDG:

- **** Ω(1672) 3/2⁺,
 - *** Ω (2250)
 - ** Ω (2380), Ω (2470)

Ξ^* in PDG:

- **** $\Xi(1320) 1/2^+, \Xi(1530) 3/2^+$
 - *** $\Xi(1690)$, $\Xi(1820)$ 3/2⁻, $\Xi(1950)$, $\Xi(2030)$
 - ** $\Xi(2250)$, $\Xi(2370)$
 - * $\Xi(1620)$, $\Xi(2120)$, $\Xi(2500)$

Σ* in PDG2012

****	$\begin{array}{llllllllllllllllllllllllllllllllllll$
***	$\Sigma^*(1660)1/2^+$ $\Sigma^*(1750)1/2^ \Sigma^*(1940)3/2^-$ $\Sigma^*(2250)??$
**	$\Sigma^*(1620)1/2^- \Sigma^*(1690)?? \Sigma^*(1880)1/2^+ \Sigma^*(2080)3/2^+ \Sigma^*(2455)?? \Sigma^*(2620)??$
*	$\Sigma^{*}(1480)??$ $\Sigma^{*}(1560)??$ $\Sigma^{*}(1580)3/2^{-}$ $\Sigma^{*}(1770)1/2^{+}$ $\Sigma^{*}(1840)3/2^{+}$ $\Sigma^{*}(2000)3/2^{-}$ $\Sigma^{*}(2070)5/2^{+}$ $\Sigma^{*}(2100)7/2^{-}$ $\Sigma^{*}(3000)??$ $\Sigma^{*}(3170)??$
All fro	om old experiments of 1970-1985!

No established $1/2^- \Sigma^*$, Ξ^* , Ω^* !

2. New results on Σ^* & Λ^* from CB data

Crystal Ball: Prakhov et al., PRC 80(2009) 025204 $K^- + p \rightarrow \pi^0 + \Lambda$ & $K^- + p \rightarrow \pi^0 + \Sigma^0$ p_K=514-750 MeV, $\sqrt{s} = 1569 - 1676$ MeV

The high precision new data can give valuable information on $\Sigma^* \& \Lambda^*$

 $\Sigma^*(1620)1/2^- \rightarrow$ supporting evidence for quenched qqq models ?

Problem : evidence for its existence is very shaky !

Among 4 references listed in PDG for it:

One without PWA for J^p

Two based on multi-channel analysis gave contradicted BRs Other later multi-channel analyses claim to $\Sigma^*(1660)1/2^+$

The 4-th gave two comparable solutions with and without it by fitting K⁻n $\rightarrow \pi^-\Lambda$ data W.A. Morris et al., PRD17, 55 (1978)

Is the new CB data compatible with the old K⁻n $\rightarrow \pi^-\Lambda$ data analyzed by W.A. Morris et al., claiming possible $\Sigma^*(1620)1/2^-$?

new CB data on $K^-p \rightarrow \pi^0 \Lambda$ vs old $K^-n \rightarrow \pi^-\Lambda$ data

new CB data on $K^-p \rightarrow \pi^0 \Lambda$

Adding *** $\Sigma(1660)1/2^+$, $\chi^2 = 572$ for 348 data points with 18 tunable parameters. $\Delta \chi^2 = 1008$!

	mass(MeV)(PDG estimate)	$\Gamma_{tot}(MeV)(PDG \text{ estimate})$	$\sqrt{\Gamma_{\pi\Lambda}\Gamma_{\overline{K}N}}/\Gamma_{tot}$ (PDG range)
$\Sigma(1670)\frac{3}{2}^-$	$1673 \pm 1 (1665, 1685)$	$52^{+5}_{-2}(40, 80)$	$0.081^{+0.002}_{-0.004}(0.018,0.17)$
$\Sigma(1660)\frac{1}{2}^+$	$1633 \pm 3(1630,1690)$	$121^{+4}_{-7}(40, 200)$	$-0.064^{+0.005}_{-0.003}(-0.065, 0.24)$

Replace $\Sigma(1660)1/2^+$ by $\Sigma(1/2^-)$: $\chi^2 = 899$

with M < 1360 MeV Not Σ(1620) 1/2⁻

by $\Sigma(3/2^+)$: $\chi^2 = 943$ by $\Sigma(3/2^-)$: $\chi^2 = 1392$

Add both $\Sigma(1660)1/2^+$ & $\Sigma(1/2^-)$: $\Delta \chi^2 = 24$ with M = 1432 MeV $\Gamma > 1000$ MeV

No Σ(1620) 1/2⁻ !!

CB Λ Polarization data is crucial for discriminating $\Sigma(1620)1/2^-$ from $\Sigma(1635)$ $1/2^+$.

Add $\Sigma(3/2^+)$: $\Delta \chi^2 = 85$ with M ~ 1840 MeV PDG $\Sigma(1840)3/2^+$? Add $\Sigma(3/2^-)$: $\Delta \chi^2 = 37$ with M ~ 1542 MeV PDG-GAL $\Sigma(1580) 3/2^-$? Add $\Sigma(1/2^+)$: $\Delta \chi^2 = 31$ with M ~ 1610 MeV two $\Sigma(1/2^+)$ ~1633 MeV ? as claimed by Oset et al.

For details : Puze Gao, Jun Shi, B. S. Zou, PRC86 (2012) 025201 PDG2014 downgrades Σ(1620)1/2⁻ from ** to *

3. Ω* from NJL unquenched quark model
Mechanisms for qq pair production
1) Perturbative ³S₁ failed for 1⁻ and 1⁺ decays

2) Non-perturbative ³P₀ quite successful & popular

A. Le Yaouanc et al., Phys.Rev. D8 (1973) 2223

B. Aubert et al. (BABAR Collaboration), PRD 78 (2008) 112002: $\Gamma(Y(4S) \rightarrow \eta Y(1S)) / \Gamma(Y(4S) \rightarrow \pi^+ \pi^- Y(1S)) = 2.41 \pm 0.40_{\text{stat}} \pm 0.12_{\text{syst}}$

M. Ablikim et al. (BESIII Collaboration), PRD 86 (2012) 071101 $\Gamma(\psi(4040) \rightarrow \eta J/\psi) / \Gamma(\psi(4040) \rightarrow \pi^+ \pi^- J/\psi) > 2$

PDG: $\Gamma(J/\psi \rightarrow \gamma \eta) > \Gamma(J/\psi \rightarrow \gamma \sigma)$

Gluons more favor to produce $qq({}^{1}S_{0})$ sometimes !

$e^+e^- \rightarrow J/\psi \ c \bar{c}$ only 0^- and 0^+ c observed !

BaBar Collaboration, Phys.Rev. D72 (2005) 031101

Phenomenology of instantons in QCD T. Schafer, E. Shuryak

NJL model : both 0⁻ & 0⁺ important ! $\mathcal{L} = i \bar{\psi} \partial \!\!\!/ \psi + \frac{\lambda}{4} \left[\left(\bar{\psi} \psi \right) \left(\bar{\psi} \psi \right) - \left(\bar{\psi} \gamma^5 \psi \right) \left(\bar{\psi} \gamma^5 \psi \right) \right] = i \bar{\psi}_L \partial \!\!\!/ \psi_L + i \bar{\psi}_R \partial \!\!\!/ \psi_R + \lambda \left(\bar{\psi}_L \psi_R \right) \left(\bar{\psi}_R \psi_L \right).$

Best playgrounds for unquenched quark models:for baryon $sss \rightarrow sss qq$

for meson $\overline{cc} \rightarrow \overline{c} c \overline{q} q$

for baryon sss
$$\rightarrow$$
 sss $\overline{\mathbf{q}}\mathbf{q}$ $H = \begin{pmatrix} H_3 & V_{\Omega_3 \leftrightarrow \Omega_5} \\ V_{\Omega_3 \leftrightarrow \Omega_5} & H_5 \end{pmatrix}$

'm

$$H_N = H_o + H_{hyp} + \sum_{i=1}^N m_i$$

$$H_o = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m_i} + \sum_{i < j}^{N} V_{conf}(r_{ij})$$

$$H_{qq}^{NJL} = \sum_{i < j}^{N} \sum_{a=0}^{8} \hat{g}_{ij} \lambda_i^a \lambda_j^a [1 + \frac{1}{4m_i m_j} \hat{\sigma}_i \cdot (\vec{p}'_i - \vec{p}_i) \hat{\sigma}_j \cdot (\vec{p}'_j - \vec{p}_j)]$$

from
$$\mathcal{L}_{NJL} = \frac{1}{2}g_s \sum_{a=0}^{8} \left[(\bar{q}\lambda^a q)^2 + (\bar{q}i\lambda^a\gamma_5 q)^2 \right]$$

Predictions for the lowest \Omega^* by various models:

 $\Omega^{*}(x/2^{-})$ as sss (L=1): ~ 2020 MeV Chao, Isgur, Karl, PRD38(1981)155

Ω*(1/2⁻) as KΞ bound state: ~ 1805 MeV W.L.Wang, F.Huang, Z.Y.Zhang, F.Liu, JPG35 (2008) 085003

 $\Omega^{*}(x/2^{-})$ as usss (L=0): ~ 1820 MeV Yuan-An-Wei-Zou-Xu, PRC87(2013)025205

Ω*(3/2⁻) as sss - uusss mixture : ~ 1780 MeV by instanton/NJL interaction An-Metsch-Zou, PRC87(2013) 065207; An-Zou, PRC89 (2014) 055209 Very important to find the lowest Ω* (1/2-or 3/2-)
ψ(2S) → ΩΩ BR = (5 ±2) × 10⁻⁵ M. Ablikim et al. (BESII Coll.), CPC36(2012)1040
ψ(2S) → ΩΩ* with Ω*→γΩ
→ excitation mechanism for sss states

cc decays -- a important new source for baryons

$$\psi \rightarrow \overline{BBM} \implies N^*, \Lambda^*, \Sigma^*, \Xi^*, \Omega^*$$

an ideal isospin and low spin filter from cc annihilation No contamination from t/u-channel scattering as in πN and γN high statistics extension to ψ', χ_{cJ}, η_c

3/7 new N* from PDG92 to PDG14 are from BESII & BESIII

4. Conclusions and Prospects

- New hyperons support unquenched quark picture new $\Sigma^*(1380)1/2^-$ replaces $\Sigma^*(1620)1/2^{-**}$ new $\Lambda^*(1680)3/2^+$ replaces $\Lambda^*(1690)3/2^{-***}$ new $\Lambda^*(1670)3/2^-$ with width of 1.5 MeV [us]{ds} s $\rightarrow \Lambda\eta$ Liu&Xie, PRC86(2012)055202
- Both ¹S₀ and ³P₀ are important for non-perturbtive qq pair production from gluon field
- Distinguishable prediction for hyperon spectroscopy is yelling for experimental confirmation : Very important to find the lowest Ω* (1/2⁻or 3/2⁻) at BES3 or super τ-charm

Many more interesting channels at super τ-charm :

 $\overline{\Omega} \equiv \overline{K}, \overline{\Xi} \equiv \pi, \overline{\Lambda}\Lambda\gamma, \overline{\Sigma}\Lambda\gamma, \overline{\Sigma}\Sigma\gamma, \overline{\Xi} \equiv \gamma, ...$

with $\Omega \rightarrow \Lambda K$, $\Xi \rightarrow \Lambda \pi$

S.Dulat, J.J.Wu, B.S.Zou, PRD83 (2011) 094032 "Proposal and theoretical formalism for studying baryon radiative decays from $J/\psi \rightarrow \overline{B}B^* + \overline{B}^*B \rightarrow \overline{B}B\gamma$ ".

JLAB : $N^*, \Delta^* \rightarrow \gamma N$

Super τ -c: $\Lambda^* \rightarrow \gamma \Lambda, \gamma \Sigma; \Sigma^* \rightarrow \gamma \Lambda, \gamma \Sigma; \Xi^* \rightarrow \gamma \Xi; \Omega^* \rightarrow \gamma \Omega!$

Thanks !