$_{\Lambda\Lambda}{}^{6}$ He in Cluster EFT

Shung-Ichi Ando

Sunmoon University, Asan, Korea

with Y. Oh (KNU)

PRC90, 037301(2014).

- Introduction: Light double Λ hypernuclei and $a_{\Lambda\Lambda}$
- ${}_{\Lambda\Lambda}^{6}$ He in Cluster EFT: ${}_{\Lambda\Lambda}^{6}$ He as $\Lambda\Lambda\alpha$ system
- Discussion

- Light double Λ hyper nuclei, ${}^{6}_{\Lambda\Lambda}$ He, ${}^{10}_{\Lambda\Lambda}$ Be, ${}^{11}_{\Lambda\Lambda}$ Be, ...
- Λ - Λ interactions, H-dibaryon, Lattice QCD simulations
- Scattering length $a_{\Lambda\Lambda}$: from ${}^{12}C(K^-, K^+\Lambda\Lambda X)$ data,

 $a_{\Lambda\Lambda} = -1.2 \pm 0.6 \, \mathrm{fm} \, ,$

[Gasparyan et al. PRC85(2012)], and from heavy ion collisions,

$$a_{\Lambda\Lambda} \leq -1.25 \, \mathrm{fm} \, ,$$

[Ohnishi et al. NPA914(2013)377], the $\Lambda\Lambda$ model potentials

$$a_{\Lambda\Lambda} \simeq -0.27 \sim -3.8 \,\mathrm{fm}\,, \quad r_{\Lambda\Lambda} \simeq 0.34 \sim 15.0 \,\mathrm{fm}\,.$$

$_{\Lambda\Lambda}{}^{6}$ He: References

Experiment:

• Nagara event, $B_{\Lambda\Lambda} = 6.93 \pm 0.16$ MeV. [PRL87(2001)212502,NPA835(2010)207,PRC88(2013)014003]

Theory:

- Old works: e.g., Dalitz, Rajasekaran, NP50(1964)450, Tang, Herndon, Schmid, PL10(1964)450, and so on.
- $\Lambda\Lambda$ - $N\Sigma$ mixing due to $\Delta_M \sim 20$ MeV.
- Three-body ΛNN force, Bodmer *et al.*, PRC29(1984)684.
- Input for the exotic hyper-nuclear search

Cluster EFT

Effective Field Theories

- Model independent approach
- Separation scale
- Counting rules
- Parameters should be fixed by experiments

RG analysis in EFTs

The effective Lagrangian are expanded in terms of the number of derivatives in EFTs. However, the interaction can become singular, and thus RG analysis is a useful tool to determine the counting rules of the singular interactions.

- Limit cycle
 - "Limit cycle" suggested by Wilson
 - "Efimov states" in the unitary limit
 - "Determination equation" of the limit cycle obtained by Danilov

${}_{\Lambda\Lambda}{}^{6}\mbox{He}$ in Cluster EFT

$^{6}_{\Lambda\Lambda}$ He in Cluster EFT

- We choose the energy of breakup channel (p^3 H or n^3 He) of ⁴He as a large energy scale, $B_H \simeq 20$ MeV
- Thus the ΛΛ-NΣ mixing becomes irrelevant because of B_H ≃ Δ_M.
- The typical energy scale is $B_{\Lambda} \simeq 3$ MeV from ${}_{\Lambda}^{5}$ He.
- ${}_{\Lambda\Lambda}^{6}$ He as $\Lambda\Lambda\alpha$ cluster system in Cluster EFT at LO.

- The large momentum scale, $\Lambda_H = \sqrt{2\mu B_H} \sim 170 \text{MeV}$, whereas the typical scale, $\gamma_{\Lambda\alpha} = \sqrt{2\mu_{\Lambda\alpha}B_{\Lambda}} \simeq 73 \text{MeV}$. The expansion parameter $\gamma_{\Lambda\alpha}/\Lambda_H \sim 0.43$.
- We consider *S*-waves, spin singlet channel, and leading order terms only.
- We find a result sensitive to the momentum cutoff Λ_c , three-body interaction $g_1(\Lambda_c)$ is introduced, and it is described by four parameters, $\gamma_{\Lambda\alpha}$, $a_{\Lambda\Lambda}$, $g_1(\Lambda_c)$, Λ_c , at LO.

Calculation

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\Lambda} + \mathcal{L}_{lpha} + \mathcal{L}_s + \mathcal{L}_t + \mathcal{L}_{\Lambda t},$$

$$\mathcal{L}_{\Lambda} = \mathcal{B}_{\Lambda}^{\dagger} \left[iv \cdot \partial + \frac{(v \cdot \partial)^2 - \partial^2}{2m_{\Lambda}} \right] \mathcal{B}_{\Lambda} + \cdots,$$

$$\mathcal{L}_{\alpha} = \phi_{\alpha}^{\dagger} \left[iv \cdot \partial + \frac{(v \cdot \partial)^2 - \partial^2}{2m_{\alpha}} \right] \phi_{\alpha} + \cdots,$$

$$\mathcal{L}_{s} = \sigma_{s} s^{\dagger} \left[i v \cdot \partial + \frac{(v \cdot \partial)^{2} - \partial^{2}}{4m_{\Lambda}} + \Delta_{s} \right] s - y_{s} \left[s^{\dagger} \left(\mathcal{B}_{\Lambda}^{T} P^{(^{1}S_{0})} \mathcal{B}_{\Lambda} \right) + \text{H.c.} \right] + \cdots,$$

$$\mathcal{L}_{t} = \sigma_{t} t^{\dagger} \left[i v \cdot \partial + \frac{(v \cdot \partial)^{2} - \partial^{2}}{2(m_{\alpha} + m_{\Lambda})} + \Delta_{t} \right] t - y_{t} \left[t^{\dagger} \mathcal{B}_{\Lambda} \phi_{\alpha} + \text{H.c.} \right] + \cdots,$$

$$\mathcal{L}_{\Lambda t} = -2m_{\alpha}y_t^2 \frac{g_1(\Lambda_c)}{\Lambda_c^2} \left(\mathcal{B}_{\Lambda}^T P^{(^1S_0)}t\right)^{\dagger} \left(\mathcal{B}_{\Lambda}^T P^{(^1S_0)}t\right) + \cdots,$$

Two-body part: $\Lambda\Lambda$ in ${}^{1}S_{0}$ state

Dressed dibaryon propagator

Renormalized dressed dibaryon propagator

$$D_s(p_0, \vec{p}) = \frac{4\pi}{m_\Lambda y_s^2} \frac{1}{\frac{1}{a_{\Lambda\Lambda}} - \sqrt{-m_\Lambda p_0 + \frac{1}{4}\vec{p}^2 - i\epsilon}},$$

and

 $a_{\Lambda\Lambda} = -1.2 \pm 0.6$ fm.

Two-body part: $\Lambda \alpha$ *in* ${}^{5}_{\Lambda}$ *He channel*

Renormalized dressed ${}^{5}_{\Lambda}$ He propagator

$$D_t(p_0, \vec{p}) = \frac{2\pi}{\mu_{\Lambda\alpha} y_t^2} \frac{1}{\gamma_{\Lambda\alpha} - \sqrt{-2\mu_{\Lambda\alpha} \left(p_0 - \frac{1}{2(m_\Lambda + m_\alpha)}\vec{p}^2\right)}},$$

with

$$\gamma_{\gamma lpha} = \sqrt{2 \mu_{\Lambda lpha} B_\Lambda} \simeq 73 \; {\rm MeV} \, .$$

Three-body part:

• Scale invariant of integral equations in asymptotic limit, where $a(p) \propto p^{-1-s}$.

$$1 = \frac{1}{2\pi} \frac{m_{\alpha}}{\mu_{\Lambda\alpha}} \sqrt{\frac{\mu_{\Lambda(\Lambda\alpha)}}{\mu_{\Lambda\alpha}}} \int_{0}^{\infty} dx \ln\left(\frac{x^{2}+1+ax}{x^{2}+1-ax}\right) x^{s-1} + \frac{\sqrt{2}}{\pi^{2}} \frac{\sqrt{m_{\Lambda}\mu_{\Lambda(\Lambda\alpha)}\mu_{\alpha(\Lambda\Lambda)}}}{\mu_{\Lambda\alpha}^{3/2}} \int_{0}^{\infty} dx \ln\left(\frac{1+bx^{2}+x}{1+bx^{2}-x}\right) x^{s-1} \times \int_{0}^{\infty} dy \ln\left(\frac{b+y^{2}+y}{b+y^{2}-y}\right) y^{s-1},$$

where $a = 2\mu_{\Lambda\alpha}/m_{\alpha}$ and $b = m_{\Lambda}/(2\mu_{\Lambda\alpha})$. The integrals above are known as Mellin transformation.

• We have an imaginary solution of s as $s = \pm i s_0$ where

$$s_0 = 1.04968 \cdots$$
.

Numerical results:

SNP2014, Changsha, China, December 12-14, 2014 – p. 16

 $- m - \Lambda^{-1} \sim 0.25$ to 0.5 fm

- ${}^{6}_{\Lambda\Lambda}$ He, as $\Lambda\Lambda\alpha$ system, in Cluster EFT at LO is studied.
- Our result shows the limit cycle, sensitive to the cutoff, and the three-body contact interaction should be introduced at LO.
- The determination equation works well. Its imaginary solution implies present of a bound state. Thus it could be a useful tool to search for an exotic state in other three-body systems.
- The results of the $B_{\Lambda\Lambda}$ - $a_{\Lambda\Lambda}$ correlation from the model potentials are well reproduced in this work.