A New Skyrme Force for Hypernuclei

PTEP 2012, 02B012

H. Tamura

Fig. 2. A hypernuclear chart as of 2012.

PTEP **2012**, 02B012

H. Tamura

Fig. 2. A hypernuclear chart as of 2012.

H. Tamura PTEP 2012, 02B012 few-body (cluster) models <--- ? Skyrme ? --> mean-field (eff.int.) models Λ Hypernuclear Chart (2012)²⁸/₄Si ²⁰⁹лВі Ζ ²⁷ AI $^{28}_{\Lambda}AI$ $^{208}_{\Lambda}$ Pb ¹³⁹La ¹⁶ O ¹⁸ΛΟ ⁸⁹_AY ¹⁴_^N ¹⁵_AN ¹⁶_AN $^{56}_{\Lambda}$ Fe $^{12}_{\Lambda}C$ ¹³C ¹⁴_^C ⁵¹V ¹²_ΔB ¹⁰ B $^{11}_{\Lambda}B$ ⁹₿ ⁴⁰∆Ca ⁹_ABe ¹⁰_ABe ⁷_ABe ⁸_ABe ³²ΔS ⁶Li ⁸∆Li ⁹⊥i ¹⁰Li Spectroscopic studies by ⁷Li (K^{-},π^{-}) (π^{+},K^{+}) (K^{-}_{stop},π^{-}) $(e,e'K^{+})$ (K^{-}_{stop},π^{0}) (π^{-},K^{+}) ⁴_AHe ⁵_AHe ⁶_AHe ³∧H ⁶∧H ${}^{4}_{\Lambda}H$ (K_{stop},π^+) emulsion γ spectroscopy data Ν

Fig. 2. A hypernuclear chart as of 2012.

H. Tamura PTEP 2012, 02B012 few-body (cluster) models <--- ? Skyrme ? --> mean-field (eff.int.) models Λ Hypernuclear Chart (2012)²⁸/₄Si ²⁰⁹лВі Ζ ²⁷ AI $^{28}_{\Lambda}AI$ $^{208}_{\Lambda}$ Pb ¹³⁹La ¹⁶ O ¹⁸ΛΟ ⁸⁹_AY ¹⁴_^N ¹⁵_AN ¹⁶_AN $^{56}_{\Lambda}$ Fe $^{12}_{\Lambda}C$ ¹³C ¹⁴_^C ⁵¹V ¹²_ΔB ¹⁰ B $^{11}_{\Lambda}B$ ⁹₿ ⁴⁰ΛCa ⁹_ABe ¹⁰_ABe ⁷_ABe ⁸_ABe ³²ΔS ⁶Li ⁸∆Li ⁹⊥i ¹⁰Li Spectroscopic studies by ⁷Li (K^{-},π^{-}) (π^{+},K^{+}) (K^{-}_{stop},π^{-}) $(e,e'K^{+})$ (K^{-}_{stop},π^{0}) (π^{-},K^{+}) ⁴_AHe ⁵_AHe ⁶_AHe ³∧H ⁶∧H ${}^{4}_{\Lambda}H$ (K_{stop},π^+) emulsion γ spectroscopy data Ν

Hypernuclei: Typical Example: ⁴⁰Ca:

Theoretical model:

- Skyrme-Hartree-Fock (SHF) [Vautherin & Brink, PRC 5, 626 (1972)]
- Standard NN force: SIII, SGII, SkI4, SLy4, ...
- Optimize NA Skyrme force

Extended SHF+BHF Model for Hypernuclei:

• Total energy of the hypernucleus:

$$E = \int d^3 r \epsilon(r)$$

Energy density functional:

 $\boldsymbol{\epsilon} = \boldsymbol{\epsilon}_{N}[\tau_{n}, \tau_{p}, \rho_{n}, \rho_{p}, \boldsymbol{J}_{n}, \boldsymbol{J}_{p}] + \boldsymbol{\epsilon}_{\wedge}[\tau_{\wedge}, \rho_{\wedge}, \rho_{N}]$

Local densities:

$$\rho_q = \sum_{i=1}^{N_q} |\phi_q^i|^2, \quad \tau_q = \sum_{i=1}^{N_q} |\nabla \phi_q^i|^2, \quad \boldsymbol{J}_q = \sum_{i=1}^{N_q} \phi_q^{i^*} (\nabla \phi_q^i \times \boldsymbol{\sigma})/i$$

i: occupied states, N_q : number of particles $q = n, p, \Lambda$

• Nucleonic part: standard Skyrme force:

$$\epsilon_{N} = \frac{1}{2m_{N}} \tau_{N} + \left[b_{0}\rho_{N}^{2} - d_{0}(\rho_{n}^{2} + \rho_{p}^{2}) \right] / 2 + b_{1}\rho_{N}\tau_{N} - d_{1}(\rho_{n}\tau_{n} + \rho_{p}\tau_{p}) + d_{1}\left(J_{n}^{2} + J_{p}^{2} \right) / 2 - \left[b_{2}\rho_{N}\Delta\rho_{N} - d_{2}(\rho_{n}\Delta\rho_{n} + \rho_{p}\Delta\rho_{p}) \right] / 2 + \left[b_{3}\rho_{N}^{2} - d_{3}(\rho_{n}^{2} + \rho_{p}^{2}) \right] \rho_{N}^{\gamma} / 3 - b_{4}\rho_{N}\nabla \cdot J_{N} - d_{4}(\rho_{n}\nabla \cdot J_{n} + \rho_{p}\nabla \cdot J_{p}) + \epsilon_{\text{Coul.}}$$

• SHF Schrödinger equation:

$$\left[-\nabla \cdot \frac{1}{2m_q^*(r)} \nabla + V_q(r) - i \nabla W_q(r) \cdot (\nabla \times \boldsymbol{\sigma})\right] \phi_q^i(r) = -e_q^i \phi_q^i(r)$$

• SHF mean fields: $V_N = V_N^{\text{SHF}} + \frac{\partial \epsilon_{\Lambda}}{\partial \rho_N}$, $V_{\Lambda} = \frac{\partial \epsilon_{\Lambda}}{\partial \rho_{\Lambda}}$, $W_{\Lambda} = 0$

Empirical Skyrme NA Force:

M. Rayet, Ann. Phys. 102, 226 (1976); Nucl. Phys. A367, 381 (1981)

$$\epsilon_{\Lambda} = \frac{\tau_{\Lambda}}{2m_{\Lambda}} + a_{0}\rho_{\Lambda}\rho_{N} + a_{3}\rho_{\Lambda}\rho_{N}^{1+\alpha} + a_{1}(\rho_{\Lambda}\tau_{N} + \rho_{N}\tau_{\Lambda}) - a_{2}(\rho_{\Lambda}\Delta\rho_{N} + \rho_{N}\Delta\rho_{\Lambda})/2 - a_{4}(\rho_{\Lambda}\nabla \cdot \mathbf{J}_{N} + \rho_{N}\nabla \cdot \mathbf{J}_{\Lambda}) + c_{0}\rho_{\Lambda}^{2} + c_{3}\rho_{\Lambda}^{2}\rho_{N}^{\gamma} + c_{1}\rho_{\Lambda}\tau_{\Lambda} - c_{2}\rho_{\Lambda}\Delta\rho_{\Lambda} Parameters a_{0}, ..., a_{4}, \alpha, c_{0}, ..., c_{3}, \gamma (Together with SLy4 NN force) We use a_{0}, a_{1}, a_{2}, a_{3}, \alpha = \gamma = 1 Effective mass:
$$\frac{1}{2m_{\Lambda}^{*}} = \frac{1}{2m_{\Lambda}} + a_{1}\rho_{N} + c_{1}\rho_{\Lambda}$$$$

Fit to Hypernuclear Data:

- The SHF mean-field approach is not suited for light nuclei, but one can hope that for $B_{\Lambda} = E({}^{A-1}Z) - E({}^{A}Z)$ important cancellations regarding the *nuclear* core structure occur. We explore this idea pragmatically.
- Hypernuclear data set (19 + 16 data points):
 - B^(s)_Λ for ^{5,6,8}_ΛHe, ^{7,8,9}_ΛLi, ^{7,8,10}_ΛBe, ^{9,10,11,12}_ΛB, ^{12,13,14}_ΛC, ^{15,16}_ΛN Davis, NPA 754, 3 (2005)
 - $B_{\Lambda}(^{7}_{\Lambda}\text{He}) = 5.68 \pm 0.03 \pm 0.25 \text{ MeV}$

JLAB Hall C, PRL 110, 012502 (2013)

•
$$B^{(s,p,d,f,g)}_{\Lambda}$$
 for ${}^{28}_{\Lambda}$ Si, ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb
Hashimoto & Tamura, PPNP 57, 564 (2006)

• Fit parameters $a_0, a_1, a_2, a_3 \rightarrow 'SLL4' N \land$ Force

Emulsion Data:

Experimental Λ separation energies, B_{Λ} from emulsion studies										
Hypernucleus	# events	$B_{\Lambda} \pm \Delta B_{\Lambda}$	Hypernucleus	# events	$B_{\Lambda} \pm \Delta B_{\Lambda}$					
		MeV			MeV					
$^{3}_{\Lambda}{ m H}(1/2^{+})$	204	0.13 ± 0.05	$^9_{\Lambda}$ Li	8	8.50 ± 0.12					
$^4_{\Lambda}\mathrm{H}(0^+)$	155	2.04 ± 0.04	$^9_{\Lambda}{ m Be}$	222	6.71 ± 0.04					
$^4_{\Lambda}{ m He}$	279	2.39 ± 0.03	$^9_{\Lambda}{ m B}$	4	8.29 ± 0.18					
$^{5}_{\Lambda}\mathrm{He}$	1784	3.12 ± 0.02	$^{10}_{\Lambda}\mathrm{Be}$	3	9.11 ± 0.22					
$^6_\Lambda { m He}$	31	4.18 ± 0.10	$^{10}_{\Lambda}\mathrm{B}$	10	8.89 ± 0.12					
$^{7}_{\Lambda}\mathrm{He}$	16	not averaged	$^{11}_{\Lambda}{ m B}(5/2^+)$	73	10.24 ± 0.05					
$^{7}_{\Lambda}\mathrm{Li}$	226	5.58 ± 0.03	$^{12}_{\Lambda}{ m B(1^{-})}$	87	11.37 ± 0.06					
$^{7}_{\Lambda}\mathrm{Be}$	35	5.16 ± 0.08	$^{12}_{\Lambda}\mathrm{C}$	6	10.80 ± 0.18					
$^{8}_{\Lambda}\mathrm{He}$	6	7.16 ± 0.70	$^{13}_{\Lambda}\mathrm{C}$	6	11.69 ± 0.12					
$^{8}_{\Lambda}\text{Li}(1^{-})$	787	6.80 ± 0.03	$^{14}_{\Lambda}\mathrm{C}$	3	12.17 ± 0.33					
$^{8}_{\Lambda}\mathrm{Be}$	68	6.84 ± 0.05	$^{15}_{\Lambda}\mathrm{N}$	14	13.59 ± 0.15					

Courtesy of J. Millener

Caution: In some cases only few events

Results: Light Single-A Hypernuclei:

← Reasonable fit with $(\Delta B_{\Lambda})_{rms} \approx 0.4$ MeV Exceptions: overbound ${}^{16}_{\Lambda}$ O? and cluster nucleus ${}^{9}_{\Lambda}$ Be : large $\langle R_{N}^{2} \rangle \rightarrow low \rho_{N} \rightarrow low V_{\Lambda} \rightarrow low B_{\Lambda}$

Results: Light Single-A Hypernuclei:

← Reasonable fit with $(\Delta B_{\Lambda})_{rms} \approx 0.4$ MeV Exceptions: overbound ${}^{16}_{\Lambda}$ O? and cluster nucleus ${}^{9}_{\Lambda}$ Be : large $\langle R_{N}^{2} \rangle \rightarrow \text{low } \rho_{N} \rightarrow \text{low } V_{\Lambda} \rightarrow \text{low } B_{\Lambda}$

Results: Heavy Single-A Hypernuclei:

 Exp. data too low by ~ 0.6 MeV ? (J. Millener, H. Tamura): Emulsion ¹²_AC used for normalization is not accurate

Results: Density Distributions:

Compare SHF and cluster model, PTEP 013D01 (2014), results:

- Cluster structure causes larger radius and lower central nucleon density
- Exp. data (¹²C) lie between cluster and SHF predictions

Atom. Data Nucl. Data 36, 495 (1987)

Results: NA Skyrme Parameters:

Force		<i>a</i> ₀	<i>a</i> ₁	a ₂	a ₃	α	$\Delta_{B_{\Lambda}}[MeV]$
SLL4		-316.0	23.25	13.88	650.0	1	0.40
SLL4'		-326.0	20.50	20.75	705.0	1	0.35
RAY13	[1]	-280.7	0	-16.25	750.00	1	1.02
YBZ6	[2]	-352.3	45.00	27.70	750.00	1	0.75
SKSH2	[3]	-290.0	0.35	10.68	693.75	1	0.66
YMR	[4]	-1056.2	26.25	35.00	1054.20	1/8	0.47
ΗΡΛ2	[5]	-302.8	23.72	29.85	514.25	1	1.00

SLL4' : $\Delta B_{\Lambda}|_{PPNP57}$ corrected by 0.6 MeV

[1] M. Rayet, Ann. Phys. 102, 226 (1976); Nucl. Phys. A367, 381 (1981)

[2] Y. Yamamoto, H. Bandō, J. Žofka, Prog. Theor. Phys. 80, 757 (1988)

[3] F. Fernández, T. López-Arias, C. Prieto, Z. Phys. A334, 349 (1989)

[4] Y. Yamamoto, T. Motoba, T. Rijken, Prog. Theor. Phys. Suppl. 185, 72 (2010)

[5] N. Guleria, S. K. Dhiman, R. Shyam, Nucl. Phys. A886, 71 (2012)

Summary:

- Optimized Skyrme parameters for currently known light and heavy hypernuclei: $\Delta B_{\Lambda} \approx 0.4$ MeV
- Experimental open problems: ${}^{12}_{\Lambda}C$, ${}^{16}_{\Lambda}O$

Summary:

- Optimized Skyrme parameters for currently known light and heavy hypernuclei: $\Delta B_{\Lambda} \approx 0.4$ MeV
- Experimental open problems: ${}^{12}_{\Lambda}C$, ${}^{16}_{\Lambda}O$

Outlook:

- More sophisticated Skyrme model: Pairing, Deformation, ...
- HFB etc. for dripline (hyper)nuclei
- Extension to double Λ hypernuclei
- Extend comparison with cluster model