$\Lambda\Lambda$ Interaction and Neutron stars

Chang Ho Hyun (Deagu University, Korea)

In collaboration with Yeunhwan Lim (RISP/IBS, Korea) Kyujin Kwak (UNIST, Korea) Chang-Hwan Lee (Pusan Nat'l University, Korea)

Contents

- 1. Hyperonization puzzle
- 2. Motif
- 3. Skyrme force
- 4. Our results
- 5. Summary

1. Hyperonization puzzle

• Status of neutron star mass measurement

J.M. Lattimer, M. Prakash / Physics Reports 442 (2007) 109-165

- \bullet Canonical range: (1.2-1.6) $\rm M_{\odot}$
- Out of canonical range: large errors
- Exceptions: Large mass with small errors
 - * PSR J1614-2230: (1.97±0.04) $\rm M_{\odot}$
 - * PSR J0348+0432: (2.01 \pm 0.04) M $_{\odot}$

• Theoretical uncertainties

- Nucleon-NR potential: (1.4-2.4) $\rm M_{\odot}$
- \bullet Nucleon-RMF: (1.5-2.8) $\rm M_{\odot}$
- \bullet Nucleon & Hyperon-RMF: (1.4-1.8) $\rm M_{\odot}$

• Hyperonization puzzle

Observation leaves narrow room for the existence of hyperons. Hyperons should be kicked out? How? Other breakthrough?

2. Motif

- What solutions possible
 - β -equilibrium is a wrong assumption
 - Modified gravity
 - Dark matter
 - Uncertainties in the hyperon interactions
- Hyperon interactions in RMF
- Hyperon-Nucleon (YN): optical potential depth + quark counting
- Hyperon-Hyperon (YY): SU(6) symmetry
- We try more realistic approach
 - YN and YY potential fitted to hyper-nuclear data
 - Skyrme force (NR potential): YN and YY as well as NN available

3. Skyrme force

• NN interaction: more than 100 models $v_{NN}(r_{ij}) = t_0(1+x_0P_{\sigma})\delta(r_{ij}) + \frac{1}{2}t_1(1+x_1P_{\sigma})[k_{ij}^2\delta(r_{ij}) + \delta(r_{ij})k_{ij}^2] + t_2(1+x_2P_{\sigma})k_{ij} \cdot \delta(r_{ij})k_{ij} + \frac{1}{6}t_3(1+x_3P_{\sigma})\rho_N^{\epsilon}(R)\delta(r_{ij}) + iW_0k_{ij} \cdot \delta(r_{ij})(\sigma_i + \sigma_j) \times k_{ij},$

- Contact types with 10 parameters
- Derivatives up to 2nd order plus density-dependent term

• Models in the work

NN model	$ ho_0$	B	S_v	L	K	m_N^*/m_N	$M_{\rm max}/M_{\odot}$
SLy4	0.160	16.0	32.0	45.9	230	0.694	2.06
SkI4	0.160	16.0	29.5	60.4	248	0.649	2.19
SGI	0.155	15.9	28.3	63.9	262	0.608	2.25

- Distinct compression modulus
- Satisfy mass-radius relation reasonably

• YN interaction: more than 10 models

$$v_{N\Lambda} = u_0(1+y_0P_{\sigma})\delta(\mathbf{r}_{N\Lambda}) + \frac{1}{2}u_1\left[\mathbf{k}_{N\Lambda}^2\delta(\mathbf{r}_{N\Lambda}) + \delta(\mathbf{r}_{N\Lambda})\mathbf{k}_{N\Lambda}^2\right] + u_2\mathbf{k}_{N\Lambda} \cdot \delta(\mathbf{r}_{N\Lambda})\mathbf{k}_{N\Lambda} + \frac{3}{8}u_3'(1+y_3P_{\sigma})\rho_N^{\gamma}\left(\frac{\mathbf{r}_N + \mathbf{r}_{\Lambda}}{2}\right)\delta(\mathbf{r}_{N\Lambda}),$$

- Contact types with 7 parameters
- Derivatives up to 2nd order plus density-dependent term

• Models in the work

$N\Lambda \text{ model}$	γ	u_0	u_1	u_2	u'_3	y_0	y_3	$U_{\Lambda}^{\mathrm{opt}}$
$HP\Lambda 2$	1	-399.946	83.426	11.455	2046.818	-0.486	-0.660	-31.23
$O\Lambda 2$	1/3	-417.7593	1.5460	-3.2671	1102.2221	-0.3854	-0.5645	-28.27
YBZ6	1	-372.2	100.4	79.60	2000.	-0.107	0.	-29.73

HPΛ2, OΛ2: N. Guleria, S.K. Dhiman, R. Shyam, Int. J. Mod. Phys. E 23 (2014) 1450026, YBZ6: Y. Yamamoto, H. Bando, Z. Zofka, PTP 80 (1988) 757

• Reasonable depth of optical potential (~ -30 MeV)

• YY interaction: about 5 models

 $v_{\Lambda\Lambda}(\boldsymbol{r}_{ij}) = \lambda_0 \delta(\boldsymbol{r}_{ij}) + \frac{1}{2} \lambda_1 \left[\boldsymbol{k}_{ij}^2 \delta(\boldsymbol{r}_{ij}) + \delta(\boldsymbol{r}_{ij}) \boldsymbol{k}_{ij}^2 \right] + \lambda_2 \boldsymbol{k}_{ij} \cdot \delta(\boldsymbol{r}_{ij}) \boldsymbol{k}_{ij} + \lambda_3 \rho_N^{\alpha}(\boldsymbol{R}) \delta(\boldsymbol{r}_{ij}),$

- Contact types with 5 parameters
- Derivatives up to 2nd order plus density-dependent term

Models in the work

$\Lambda\Lambda \ { m model}$	λ_0	λ_1	λ_2	λ_3	α
$S\Lambda\Lambda1$	-312.6	57.5	0	0	_
$S\Lambda\Lambda2$	-437.7	240.7	0	0	-
$S\Lambda\Lambda3$	-831.8	922.9	0	0	-
$S\Lambda\Lambda1'$	-37.9	14.1	0	0	_
$S\Lambda\Lambda3'$	-156.4	347.2	0	0	_

 SΛΛ1',	,3' : F. Minat	o, S. Chiba,	NPA 856 (20)11) 55
Nuclei	$B_{\Lambda\Lambda}(S\Lambda\Lambda1)$	$B_{\Lambda\Lambda}(S\Lambda\Lambda2)$	$B_{\Lambda\Lambda}(S\Lambda\Lambda3)$	$B_{\Lambda\Lambda}(\text{Exp.})$
$^{6}_{\Lambda\Lambda}{ m He}$	11.88	9.25	7.60	6.91 ± 0.16 [19]
 $^{10}_{\Lambda\Lambda}{\rm Be}$	19.78	18.34	15.19	14.94 ± 0.13 [20
$^{11}_{\Lambda\Lambda}\mathrm{Be}$	20.55	19.26	16.27	20.49 ± 1.15 [19
$^{12}_{\Lambda\Lambda}\mathrm{Be}$	21.10	19.97	17.18	22.23 ± 1.15 [19
$^{13}_{\Lambda\Lambda}{ m B}$	21.21	20.26	17.76	23.30 ± 0.70 [19

SAA1,2,3: D.E. Lanskoy, PRC 58 (1998) 3351,

• Each model is partially good to reproduce empirical data

4. Our results

• Energy density: matrix element of Hamiltonian

$$\begin{aligned} \mathcal{H} &= \mathcal{H}_{N} + \mathcal{H}_{\Lambda} + \mathcal{H}_{e} + \mathcal{H}_{\mu} \\ \mathcal{H}_{N} &= \sum_{i=n,p} \frac{\hbar^{2}}{2m_{N}} \tau_{i} + \rho_{N} (\tau_{n} + \tau_{p}) \left[\frac{t_{1}}{4} \left(1 + \frac{x_{1}}{2} \right) + \frac{t_{2}}{4} \left(1 + \frac{x_{2}}{2} \right) \right] \\ &+ \sum_{i=n,p} \tau_{i} \rho_{i} \left[-\frac{t_{1}}{4} \left(1 + \frac{x_{1}}{2} \right) + \frac{t_{2}}{4} \left(1 + \frac{x_{2}}{2} \right) \right] \\ &+ \frac{t_{0}}{2} \left[\left(1 + \frac{x_{0}}{2} \right) \rho_{N}^{2} - \left(\frac{1}{2} + x_{0} \right) \left(\rho_{n}^{2} + \rho_{p}^{2} \right) \right] \\ &+ \frac{t_{3}}{12} \left[\left(1 + \frac{x_{3}}{2} \right) \rho_{N}^{2} - \left(\frac{1}{2} + x_{3} \right) \left(\rho_{n}^{2} + \rho_{p}^{2} \right) \right] \rho_{N}^{\epsilon}, \end{aligned}$$

$$\begin{aligned} \mathcal{H}_{\Lambda} &= \frac{\hbar^{2}}{2} \tau_{\Lambda} + u_{0} \left(1 + \frac{1}{2} y_{0} \right) \rho_{N} \rho_{\Lambda} + \frac{1}{4} (u_{1} + u_{2}) (\tau_{\Lambda} \rho_{N} + \tau_{N} \rho_{N}^{2} + \tau_{N} \rho_{N}^{2} \right) \end{aligned}$$

$$\mathcal{H}_{\Lambda} = \frac{\pi}{2m_{\Lambda}} \tau_{\Lambda} + u_0 \left(1 + \frac{1}{2}y_0\right) \rho_N \rho_{\Lambda} + \frac{1}{4} (u_1 + u_2) (\tau_{\Lambda} \rho_N + \tau_N \rho_{\Lambda}) \\ + \frac{3}{8} u_3' \left(1 + \frac{1}{2}y_3\right) \rho_N^{\gamma+1} \rho_{\Lambda} + \mathcal{H}_{\Lambda\Lambda},$$

$$\mathcal{H}_{\Lambda\Lambda} = \frac{\lambda_0}{4} \rho_{\Lambda}^2 + \frac{1}{8} (\lambda_1 + 3\lambda_2) \rho_{\Lambda} \tau_{\Lambda} + \frac{\lambda_3}{4} \rho_{\Lambda}^2 \rho_{N}^{\alpha},$$

 \bullet Functions of densities of nucleon and Λ

• Pressure: thermodynamic relation

$$P = \rho \frac{\partial}{\partial \rho} \left(\frac{\mathcal{E}}{\rho}\right)$$

- Conditions for neutron star matter
- Baryon number conservation
- Charge neutrality
- β–equilibrium

Ţ

- Density of each particle determined self-consistently
- Calculate energy density
- Calculate pressure
- Equation of state: pressure vs energy density

• Maximum mass

	SLy4 2.06		SkI4 2.19			SGI 2.25		
	$HP\Lambda 2$	ΟΛ2	$HP\Lambda 2$	$O\Lambda 2$	YBZ6	$HP\Lambda 2$	$O\Lambda 2$	YBZ6
$\mathrm{no}\Lambda\Lambda$	1.51	1.08	1.52	1.19	1.80	1.52	1.22	1.79
$S\Lambda\Lambda1$	1.40	1.00	1.41	1.12	1.70	1.42	1.16	1.69
$S\Lambda\Lambda2$	1.58	1.28	1.57	1.30	1.79	1.57	1.31	1.77
$S\Lambda\Lambda3$	1.85	1.57	1.87	1.62	2.03	1.88	1.65	2.04
$S\Lambda\Lambda1'$	1.51	1.08	1.51	1.18	1.79	1.51	1.21	1.78
$S\Lambda\Lambda3'$	1.76	1.43	1.76	1.47	1.97	1.77	1.49	1.96
\mathbf{FRF}	1.61	1.22	1.60	1.25	1.86	1.59	1.26	1.84

FRF: E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, PRC 66 (2002) 024007

- Stiffness of interaction
 - * NN: SGI > SkI4 > SLy4
 - * YN: YBZ6 > HP Λ 2 > O Λ 2

* YY: SAA3 > SAA3' > FRF > SAA2 > SAA1' > SAA1

• Mass-radius relation

- Horizontal region: mass range of PSR J1614-2230 and PSR J0348+0432
- Green and brown region: mass-radius range suggested by A.W. Stein, J.M. Lattimer, ApJ 722 (2010) 33

- Hyperonization puzzle can be solved
 - * SLy4+HPл2: Sлл3
 - * SkI4+YBZ6: S $\Lambda\Lambda$ 3, S $\Lambda\Lambda$ 3', FRF
 - * SGI+YBZ6: SΛΛ3, SΛΛ3', FRF

• Λ population

- Density where Λ starts to be created
- Mass of the star with central density equal to critical density

	SLy4		SkI4			SGI		
	$HP\Lambda 2$	$O\Lambda 2$	$HP\Lambda 2$	ΟΛ2	YBZ6	$HP\Lambda 2$	$O\Lambda 2$	YBZ6
$ ho_{ m crit}$	0.453	0.380	0.374	0.340	0.455	0.352	0.325	0.412
M/M_{\odot}	1.17	0.90	1.19	1.04	1.51	1.21	1.08	1.47

- Significant dependence on the model
- The stiffer, the lesser
- Neutron star cooling is sensitive to the internal composition: test the hyperonization puzzle with cooling curve

5. Summary

- Focus: the role of YN and YY interaction
- Skyrme force models: reproduce empirical data well
- YN and YY interactions: can be as important as NN
- Hyperon: can be compatible with observation
- Required improvements
 - $\Lambda\Lambda$ interactions: still poorly constrained
 - More and better statistics of experimental data essential

$\Lambda\Lambda \ {\rm model}$	λ_0	λ_1	λ_2	λ_3	α
$S\Lambda\Lambda1$	-312.6	57.5	0	0	_
$S\Lambda\Lambda2$	-437.7	240.7	0	0	_
$S\Lambda\Lambda3$	-831.8	922.9	0	0	_
$S\Lambda\Lambda1'$	-37.9	14.1	0	0	_
$S\Lambda\Lambda3'$	-156.4	347.2	0	0	_

Thank you.