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Threshold phenomenology of nucleon form factors
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Abstract: The complete knowledge of nucleon form factors is a mandatory pass to deeply understand the dynamics

of strong interaction at regimes where QCD is still non perturbative. Phenomenology, i.e., the description of the data

by means models based of first principles and depending on physical quantities, represents one of the most powerful

tools to attain such a degree of knowledge.
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1 Definition and basic properties

1.1 Definitions

The nucleon form factors [1] (FFs) parametrize
the factor to be associated to the photon-nucleon-
antinucleon vertex, see fig. 1, γNN , assuming extended
nucleons, i.e., particles with non-pointlike charge and
magnetic moment spatial distributions.
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Fig. 1. Feynman diagram of the one-photon ex-
change annihilation and scattering processes
e+e− → NN and e−N → e−N . The hexagon
represents the non-pointlike nucleon vertex.

The Feynman amplitude of diagram in fig. 1, in the
space-like direction, i.e., for the scattering process, reads

M=
1

q2
eu(k2)γµu(k1)eU(p1)Γµ(p1,p2)U(p2) ,

where −e is the electron charge, u and U are the spinors
of electrons and nucleons respectively, and the four-
momenta, in parentheses, are defined as in fig. 1. The

non-constant matrix, Γµ(p1,p2), which describes the nu-
cleon vertex is

Γµ(p1,p2) = γµFN
1 (q2)+

iσµνqν
2MN

FN
2 (q2) , (1)

where FN
1 and FN

2 are the Dirac and Pauli FFs. Such
an expression represents the most general Lorentz four-
vector, containing gamma matrices and nucleon four-
momenta, that fulfills Lorentz, parity, time-reversal and
gauge invariance. Form factors are scalar Lorentz func-
tions of q2, where q is the photon four-momentum.

1.2 Analyticity

The hexagon in fig. 1 symbolizes the sum of all the
electromagnetic contributions, i.e., all those diagrams
having an arbitrary number of loops of all hadrons (com-
putable in scalar quantum electrodynamics), with the
only: photon, nucleon and antinucleon external lines.
The amplitudes of all these diagrams are analytic func-
tions in the whole q2 complex plane, except for a dis-
continuity cut, along the positive real axis, starting from
q2

0 = (2Mπ)2. Such a threshold corresponds to the mass
of the lightest hadronic state that can couple with the
virtual photon. Moreover, the hermiticity of the elec-
tromagnetic current operator of the nucleons implies the
Schwarz reflection principle for FFs. So that, they are
real for real q2 outside the cut, while they have non van-
ishing imaginary parts for real q2 > (2Mπ)2.
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1.3 Sachs form factors

From the expression of the nucleon electromagnetic
four-current in terms of the Dirac and Pauli FFs,

JµN = eU(p1)Γµ(p1,p2)U(p2)

= e

(
FN

1 +
q2

4M2
N

FN
2 , U(p1)~γU(p2)

(
FN

1 +FN
2

))
,

another pair of FFs can be defined as

GN
E (q2) = FN

1 (q2)+τ FN
2 (q2) ,

GN
M(q2) = FN

1 (q2)+FN
2 (q2) , τ =

q2

4M2
N

.

(2)

These are the Sachs electric and magnetic FFs [2], that,
in the Breit frame, where the nucleon four-momenta are
p1 = (E,−~q/2) and p2 = (E,~q/2), represent the Fourier
transforms of the nucleon charge and magnetization spa-
tial distributions. It follows that their values at q2 = 0
correspond to the total charge, QN , and magnetic mo-
ment, µN , of the nucleon, i.e., GN

E (0) =QN , GN
M(0) =µN .

1.4 Measuring form factors

The differential cross section for the elastic scatter-
ing, in Born approximation, Feynman diagram of fig. 1
in vertical direction, and in the laboratory frame (Lab),
also known as Rosenbluth formula [3], reads

dσeN
dΩ

=
α2ω2 cos2

(
θe
2

)

4ω3
1 sin4

(
θe
2

) 1

1−τ

{
GN
E

2
(q2) (3)

−τ
[
1+2(1−τ)tan2

(
θe
2

)]
GN
M

2
(q2)

}
,

while the annihilation cross section, in the same approx-
imation, but in the e+e− center of mass frame (CoM),
is [4]

dσNN
dΩ

=
α2β

4q2
C
[

1

τ
sin2(θ)|GN

E (q2)|2 (4)

+
(
1+cos2(θ)

)
|GN

M(q2)|2
]
, β=

√
1− 1

τ
,

where θe, ω1,2 are the scattering angle, the initial and
final energies of the electron in Lab, C is the Coulomb
correction, θ is the scattering angle and β the velocity of
the outgoing proton in CoM.
By studying the angular distributions of the scattering
and annihilation processes, Sachs FFs can be measured:
completely in the space-like region, q2 < 0, where they
are real; only in modulus in the time-like region, q2 > 0,
above the physical threshold q2

1 = (2MN)2, where they

are complex. Moreover, by using only cross section data,
the time-like complex structure of FFs remains inacces-
sible, as well as their values below the threshold q2

1 , in
the so-called unphysical region, 0≤ q2≤ q2

1 .
Besides this procedure, FFs can also be measured by
using polarization observables, i.e., by exploiting the so-
called Akhiezer-Rekalo polarization method [5]. In par-
ticular, the polarization transferred to the nucleon, ini-
tially unpolarized, by longitudinally polarized electrons
in a scattering process, allows to measure space-like FFs.
More in detail, by exploiting of the scattering process
e−↑p→ e−p↑ (the up-arrow stands for polarization), the
ratio between the transversal (in the scattering plane)
and the longitudinal component of the outgoing proton
polarization vector in Lab is proportional to the ratio of
FFs [5], i.e.,

P p
T (q2)

P p
L(q2)

=−2Mp cot(θe/2)

ω1 +ω2

Gp
E(q2)

Gp
M(q2)

,

where the symbols are those of eq. (3).

In the annihilation process e+e− → N↑N
↑
, due to the

complex nature of time-like FFs, unpolarized electrons
produce polarized nucleons. In particular, the compo-
nent, orthogonal to the scattering plane, of the nucleon
polarization vector in CoM is [6]

PN
⊥ (q2) =

−√τ sin(2θ)
∣∣∣ G

N
E (q2)

GN
M

(q2)

∣∣∣

τ
(
1+cos2(θ)

)
+sin2(θ)

∣∣∣ G
N
E

(q2)

GN
M

(q2)

∣∣∣
2 sin(ΦN) ,

where symbols follow the labelling of eq. (4) and ΦN is
the relative phase between electric and magnetic FFs. It
follows that, by detecting the polarization of only one
of the final nucleons, the phase of the complex ratio
GN
E /G

N
M can be measured.

1.5 Basic properties

The complex nature of the amplitude and hence of
FFs, for time-like values of q, which is expressed for-
mally by the optical theorem, relies in the fact that the
photon, with such a four-momentum, gets enough vir-
tual mass,

√
q2, to couple with, and hence produce a

series of on-shell hadronic intermediate states. Besides
multi hadron ones, light vector meson resonances are the
strongest coupled, i.e., the most probable intermediate
states. They represent the main contributions to the FFs
even though, having masses below the physical thresh-
old

√
q2

1 , their peaks lie in the unphysical region. The
complex structure of a prototype FF F (q2) is sketched in
fig. 2, where the three-dimensional surface (grid) repre-
sents the modulus squared |F (q2)|2 versus the unphysical
q2 complex plane. Indeed, it is in this Riemann sheet,

∗The , the position of the pole in the q2 complex plane is strictly connected to the physical mass and width of the resonance, the
definition of such quantities depends on the function used to describe the cross section. For instance, by using the relativistic Breit-Wigner
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where analyticity can be violated, that a generic reso-
nance, of mass Mj and width Γj , manifests itself as a
pair of complex conjugate poles zj and z∗j (this is due to
the Schwarz reflection principles), with zj 'M2

j+iΓjMj
∗.
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Im(q2)

|F (q2)|2

Fig. 2. Pictorial representation of first quarter of
the q2 unphysical complex plane. The grid surface
represents the modulus squared of a prototype FF
F (q2). The poles are the resonances, the red curve
is the |F (q2)|2 as it appears for real values of q2,
i.e., it is the intersection between the surface and
the plane Im(q2) = 0. The green band indicates
the discontinuity cut

(
(2Mπ)2,∞

)
.

1.6 The asymptotic behavior

The space-like asymptotic behavior of FFs is inferred
by means of dimensional counting rules of quantum chro-
modynamics [7]. At high space-like q2, i.e. q2�−Λ2

QCD,
the momentum transferred by the virtual photon to the
nucleon must be shared among the constituent quarks,
in order for the nucleon to remain intact, by gluon ex-
changes.

q

q

q

g

g

γ

Fig. 3. Gluon (g) exchanges among the constituent
quarks (q), to share the momentum transferred to
the nucleon by the virtual photon.

Following the schematic representation in fig. 3, for the
nucleons, that have three valence quarks, the minimum
number of exchanges is two hence

FN
i (q2)∝

(
−q2

)−1−i
, q2→−∞ ,

with i= 1,2.
The Pauli FF has a further power

(
− q2

)−1
since it is

responsible for the spin-flip part of the nucleon electro-
magnetic current. The Sachs FFs, given in eq. (2), have
the same behavior

GN
E,M(q2)∝

(
−q2

)−2
, q2→−∞ .

The asymptotic behavior in the time-like region can be
obtained by taking advantage from the analyticity and
boundedness of FFs in the upper half plane, Im(q2)> 0.
Such regularities allow to apply the Phragmén-Lindelöf
theorem [8], that ensures that FFs have the same van-
ishing power-law along any straight line from the origin
to infinity, i.e.,

lim
|q2|→∞

GN
E,M (|q2|eiπ)

GN
E,M (|q2|eiθ) = 1 , ∀θ∈ [0,π] .

The identity between space-like and time-like asymptotic
behavior is verified by taking this limit with θ= 0. It fol-
lows that

GN
E,M(q2)∝

(
q2
)−2

, q2→∞ .

This result, since time-like FFs are complex, implies that
imaginary parts vanish faster than the real ones

lim
q2→∞

Im
[
GN
E,M (q2)

]

Re
[
GN
E,M (q2)

] = lim
q2→∞

arctan
(
φNE,M (q2)

)
= 0 ,

i.e., ΦE(M)(q
2), the phase of the electric (magnetic) FF,

tends to 2π radians as stated by the Levinson theo-
rem [9].

2 The threshold

The threshold region is represented by few hundreds
MeV, say δE, interval (2MN ,2MN+δE), which starts at
the time-like NN production energy. An e+e− collider
operating at a CoM energy E ∈ (2MN ,2MN+δE) would
produce NN pairs almost at rest.
It is in this energy interval that charged nucleon and
antinucleon experience the strongest electromagnetic in-
teraction that, in the Born differential cross section for-
mula of eq. (4), is accounted for by the Coulomb factor
C. The expression of C can be obtained in the point-like
limit as [10]

C= |ψCoul.(0)|2 =
πα

β
× 1

1−e−πα/β ≡E×R , (5)

where ψCoul.(r) is the wave function solution of the
Schrödinger equation with the Coulomb potential and β

formula, that in modulus squared reads |BW (s)|2 =

[(
M2
j −s

)2
+Γ2

jM
2
j

]−1

, the poles would be located exactly at M2
j ± iΓjMj .
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is the nucleon velocity given in eq. (4). The two terms E
and R, called enhancement and resummation factor [11],
account for the single and multi-photon contributions,
respectively; E dominates at threshold where R' 1, i.e.,

C 'E =
πα

β
, β→ 0+ .

The enhancement factor compensates for the closing of
the phase-space by making the total Born cross section
finite and different from zero at threshold, in particu-
lar [12]

lim
q2→4M2

N

σNN(q2) =
π3α2

2M2
N

∣∣GN(4M2
N)
∣∣2 , (6)

where GN(4M2
N) is the common threshold value of elec-

tric and magnetic FFs, that is, from the definitions of
eq. (2), assuming no singularities for the Dirac and Pauli
FFs, GN

E (4M2
N) = GN

M(4M2
N) ≡ GN(4M2

N). It follows
that, cross section and modulus of FFs can be measured
even exactly at threshold. By taking advantage from the
initial state radiation techniques, BaBar Collaboration
measured pp cross section [13], practically reaching the
threshold.
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Fig. 4. Total cross section of e+e−→ pp, measured
by the BaBar Collaboration in 2005, solid circles,
and 2012, empty circles. The blue dashed line in-
dicates the physical threshold

√
q2 = 2Mp. The

solid red point at threshold represents the cross
section expected if

∣∣GpE(4M2
p )
∣∣ =

∣∣GpM (4M2
p )
∣∣ =∣∣Gp(4M2

p )
∣∣ = 1. The blue curve is a prediction,

see text.

Solid and empty black circles in fig. 4 represent two sets
of BaBar data [13] on e+e− → pp cross section, while

the red point at the production threshold, which is indi-
cated by the blue dashed line, is the expected value for
the total cross section in case of

∣∣Gp
E(4M2

p )
∣∣=
∣∣Gp

M(4M2
p )
∣∣=
∣∣Gp(4M2

p )
∣∣= 1 .

In other words, assuming a flat cross section in the
threshold region, BaBar Collaboration has measured, for
the first time and at a percent level, a unit FF at
threshold. Such a result seems to suggest that the
physical threshold has a special meaning for the FFs,
in contrast with their basic theoretical properties. In-
deed, by considering a FF as the superposition of in-
termediate resonances and multi-hadron states, at these
time-like four-momenta its value should be the sum of
tails of these contributions, hence there is no reason for
expecting this sum to be exactly one.
The flat e+e−→ pp cross section in the threshold region
could be explained by considering:

• FFs almost constant and unitary;

• a resummation factor which accounts for multi-
gluon exchanges (α→αs)

R→Rs =
1

1−e−παs/β
, αs = 0.5 .

In fact, in this case, the total cross section, that is ob-
tained from the expression of eq. (4) where all constants
are reported in units of pb, becomes

σpp(q
2) = [850pb]

1

τ
Rs ,

and its behavior, shown as a blue curve in fig. 4, describes
quite well the data.
On the other hand, the effective FF

Geff(q2) =

√
1

R
σpp(q2)

E 4πα2β

3q2

(
1+ 1

2τ

) ,

extracted from the BaBar cross section data, by consider-
ing the usual resummation factor (eq. (5)), and reported
in fig. 5, shows a steep decreasing behavior starting from
the threshold, that, having a flat cross section, turns out
to be

Geff(q2)' 1√
R

=
√

1−e−πα/β ,
√
q2 ∈ [2Mp,2Mp+δE] .

The curve 1/
√
R is shown in red in fig. 5. It is in perfect

agreement with the BaBar data on Geff(q2), represented
by black circles jointed by lines.
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2.1 Isotropy at the pp production threshold

The identity of electric and magnetic FFs at the
threshold is also interpreted as a consequence of isotropy.
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1.8 2 2.2 2.4√
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G
e
ff
(q

2
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.

Fig. 5. The black circles, but for the point at the
threshold, which has been obtained by extrapolat-
ing the cross section, are the data on the effective
proton FF measured by the BaBar Collaboration.
The red solid curve represents the function 1/

√
R,

see text. The dashed blue line indicates the pro-
ton physical threshold.

Besides Sachs and, Dirac and Pauli FFs, also partial
wave FFs can be defined. From parity and total angular
momentum conservation, in Born approximation, NN
can be produced with only two values of orbital angular
momentum, i.e., LNN = 0,1. In fact, the NN system
has to have parity PNN = Pγ = −1 and total angular
momentum JNN = Jγ = 1, where Pγ and Jγ are photon
quantum numbers. Since, PNN = (−1)LNN

+1, −1 is the
intrinsic NN parity, and the total spin is SNN = 0,1, it
follows that: LNN must be even (LNN = 0,2, . . .) and

JNN = 1∈{|LNN−SNN |, . . . , |LNN +SNN |} ,

=

{
{1} (LNN ,SNN) = (0,1)

{1,2,3} (LNN ,SNN) = (2,1)
,

all the other combinations (LNN ,SNN) give total angu-
lar momenta different from Jγ = 1. Hence only S and D
waves are allowed, the corresponding FFs are

GN
S (q2) =

1

3

(
2
√
τGN

M(q2)+GN
E (q2)

)
,

GN
D(q2) =

1

3

(√
τGN

M(q2)−GN
E (q2)

)
,

(7)

while the total annihilation cross section in CoM and in
terms of GN

S and GN
D reads

σNN(q2) =
2πα2β

q2

1

τ

[
C|GN

S (q2)|2 +2|GN
D(q2)|2

]
.

where the Coulomb correction acts only on the S-wave
term. From the definitions of eq. (7) follows that the
isotropy at threshold, i.e., the presence at threshold of
the only S wave and the vanishing of the D-wave contri-
bution, is equivalent to the identity GN

E (q2
1) =GN

M(q2
1).

Such an identity is experimentally observable, espe-
cially for lambda and sigma baryons, in a typical exper-
iment at an e+e− collider (e.g. BESIII at BEPCII [14]).
In particular, the ratio |GBE(q2

1)/GBM(q2
1)| is measurable,

even exactly at the production threshold, for all those
BB final states where the (lambda or sigma) baryon, B
(anti-baryon B), at rest in the Lab, decays weakly in
a nucleon (anti-nucleon) and a pion, that have enough
momentum to reach the detector.

Measuring a non-vanishing D-wave contribution, i.e.,
the inequality |GBE(q2

1)/GBM(q2
1)| 6= 1 would be the first ob-

servation of the analyticity-violation for the Dirac and
Pauli FFs, that must have a simple pole at threshold
(τ = 1) with opposite residues. In more detail, we define

FB1 (q2) =
−∆GB

τ−1
+FB1,an(q2) ,

FB2 (q2) =
∆GB

τ−1
+FB2,an(q2) ,

where ∆GB = GBE(q2
1)−GBM(q2

1) and F1(2),an(q2) is the
analytic part of the Dirac (Pauli) FF. In this case, i.e.,
by allowing for different values of Sachs FFs at thresh-
old and assuming |∆GB| � |GBM(q2

1)|, the annihilation
differential cross section of eq. (4) has the limit

dσBB
dΩ

−→
q2→q21

α2β

3M2
B

[
|GBM(q2

1)|2 +Re
(
∆GBGBM

∗
(q2

1)
)

sin2(θ)
]
.

It depends on the scattering angle, and hence is not
isotropic, even at threshold. This can be also seen by
considering the values of the partial wave FFs at q2 = q2

1 ,
they are

GBS(q2) −→
q2→q21

GBM(q2
1)+

∆GB

3

GBD(q2) −→
q2→q21

−∆GB

3
.

As expected, the anisotropy, which is measured by the
threshold value of GBD, depends on difference between
electric and magnetic FFs.
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Unique sources of anisotropy are corrections due to BB
final state interaction, that provide an overall power of
β−2, which means a simple pole for the FFs. Theoret-
ical calculations give an order-α2 [15] effect in case of
only Coulomb final state interaction (charged baryons).
On the other hand strong Coulomb-like interaction, com-
puted in case of heavy quarks [16], provides a large ef-
fect but proportional to βn (n ∈ N), hence vanishing at
threshold.

3 Conclusion

The threshold region for baryon FFs is a mine of in-
formation on low-energy strong dynamics as much rich
as unexplored. Recently, in the pp final state, a FF os-
cillatory behavior has been clearly identified [17] and in-

terpreted as a manifestation of pp final state interaction.
Moreover, the observation of anisotropy, by measuring
a value different from one for ratio between the moduli
of Sachs FFs, is now suitable for experiments like BE-
SIII [14]. Indeed, in such an experiment the detection
efficiency for a BB pair of lambda or sigma baryons, is
different from zero even exactly at threshold, when BB
are produced at rest in Lab, since the decay products
have always enough momentum to reach the detector.
From the theoretical point of view shading light on the
threshold behavior would help in understanding, not only
the nature of possible BB final state corrections still un-
derestimated or neglected, but also the unexpected uni-
tary normalization observed in case of pp and that seems
to hold also for other BB channels [18].
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