

Experiments on Form Factors

Tord Johansson Uppsala University

Int. Workshop e+e- collisions from Phi to Psi Sept. 23-26, 2015, Hefei

Experiments on Form Factors

How ? What ? Why ?

Experiments on Form Factors

How?

What?

Why? did I accept to give this talk?

Outline

- Introduction to Baryon Form Factors
- Measurements of Space-like Form Factors
 - Proton
 - Neutron
- Measurements of Time-like Form Factors
 - Proton
 - Neutron
 - Hyperons
- Outlook

3

- Electromagnetic Form Factors (EMFF) of hadrons are among the most basic quantities containing information about hadron internal structure.
- The electromagnetic structure of a hadron with spin S is given by 2S+1 Form Factors.
- Elastic Form Factors contain information the hadron ground state.

Electromagnetic Form Factors provide the most direct access to the spatial charge and magnetisation distributions.

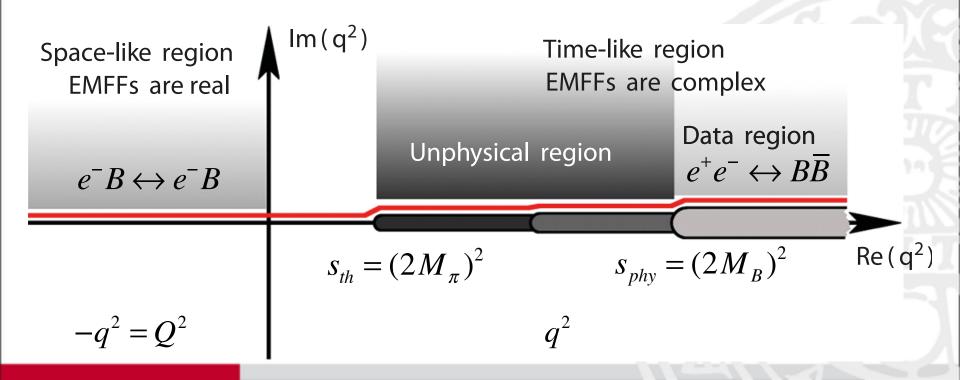
EMFF of baryons are studied in:

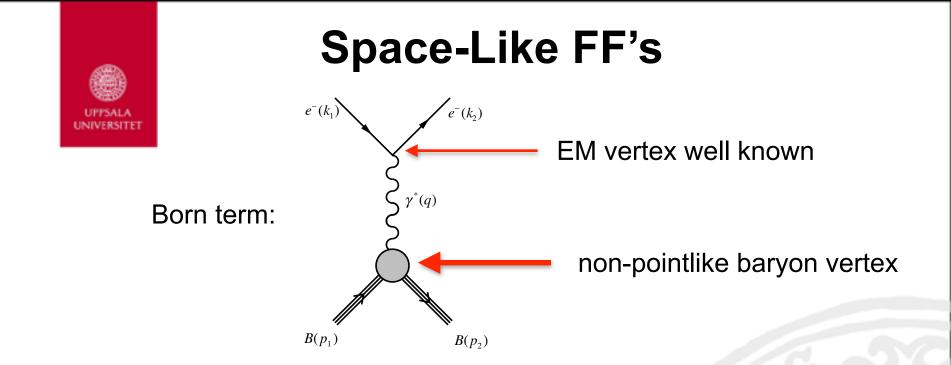
- elastic $e^-B \rightarrow e^-B$ scattering; Space-Like FF
- baryon-antibaryon production/annihilation, $e^+e^- \leftrightarrow B\overline{B}$; Time-Like FF

Electromagnetic Form Factors provide the most direct access to the spatial charge and magnetisation distributions.

EMFF of baryons are studied in:

- elastic $e^-B \rightarrow e^-B$ scattering; Space-Like FF
- baryon-antibaryon production/annihilation, $e^+e^- \leftrightarrow B\overline{B}$; Time-Like FF





Baryon vertex matrix element: $\Gamma^{\mu} = F_1^B(Q^2)\gamma^{\mu} + \frac{\kappa}{2M_B}F_2^B(Q^2)i\sigma^{\mu\nu}q_{\nu}$

 $F_1(Q^2)$ and $F_2(Q^2)$ are related to non-helicity-flip and helicity-flip part of the hadronic current and are the Dirac and Pauli EMFF's, respectively.

Normalisation: $F_1(0) = Z =$ baryon charge

 $F_2(0) = 1$

It is convenient to rewrite the Dirac and Pauli EEMFF's as

$$G_E = F_1 - \tau F_2$$
; $\tau = \frac{Q^2}{4M_B^2}$
 $G_M = F_1 + F_2$

These are the Sachs Form Factors with normalisation $G_E(0) = Z$ and $G_M(0) = 1 + \kappa = \mu_B$ = baryon magnetic moment.

The Sachs FF's correspond to the Fourier transformations of the charge and magnetic spatial distributions in the Breit frame ($q = (0, \vec{q})$). (The situation is more complicated in reality.)

The Space-Like EEMFF is obtained from elastic electron scattering in terms of G_E^2 and G_M^2 (**Rosenbluth separation**) as:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{E_e}{E_{beam}} \frac{1}{1+\tau} \left(G_E^2 + \frac{\tau}{\varepsilon}G_M^2\right);$$

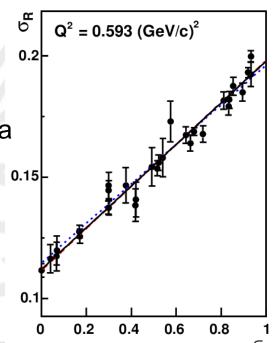
$$\varepsilon = \frac{1}{1+2(1+\tau)\tan^2\theta_e/2} = \text{virtual photon polarisation}$$

The linear dependence on τ in ϵ makes it possible to define a reduced cross section as

$$\sigma_{red} = \frac{\varepsilon(1+\tau)}{\tau} \frac{E_e}{E_{beam}} \frac{d\sigma}{d\Omega} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott} = G_M^2 + \frac{\varepsilon}{\tau} G_E^2$$

=> σ_{red} is expected to have linear dependence on ε at a given Q^2 with a slope proportional to G_E^2 and with the intercept G_M^2 .

 G_E^2 and G_M^2 are extracted from fits to experimental data by measuring the cross section at a given Q^2 at different energies (ε).



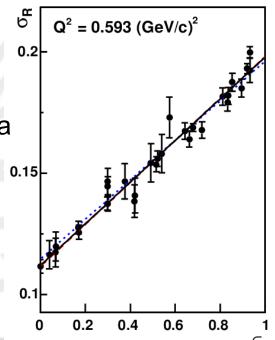
The linear dependence on τ in ϵ makes it possible to define a reduced cross section as

$$\sigma_{red} = \frac{\varepsilon(1+\tau)}{\tau} \frac{E_e}{E_{beam}} \frac{d\sigma}{d\Omega} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott} = G_M^2 + \frac{\varepsilon}{\tau} G_E^2$$

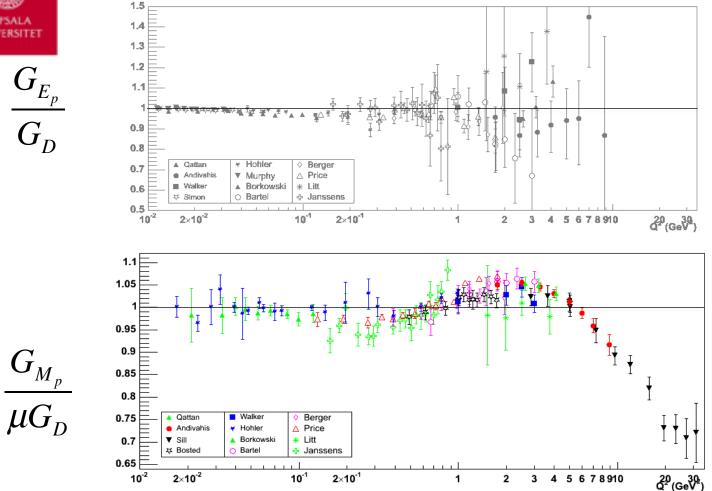
 G_E^2 difficult to measure at high Q^2

=> σ_{red} is expected to have linear dependence on ε at a given Q^2 with a slope proportional to G_E^2 and with the intercept G_M^2 .

 G_E^2 and G_M^2 are extracted from fits to experimental data by measuring the cross section at a given Q^2 at different energies (ε).



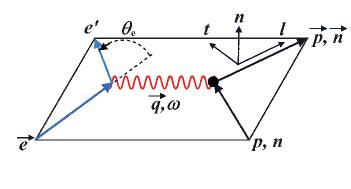
UP7SALA UNIVERSITET In the static limit is $G_{M_p} = \mu_p G_{E_p}$, and this is roughly consistent with data. Rosenbluth separation:



The q^2 dependence of the proton EMFF is well characterised by a dipole behaviour: $G_D = \left(1 + \frac{Q^2}{.71}\right)^{-2}$

An alternative to extract EEMFF is offered by polarisation measurements.

A longitudinally polarised electron transfers its polarisation in elastic scattering with non-zero P_l and P_t components:



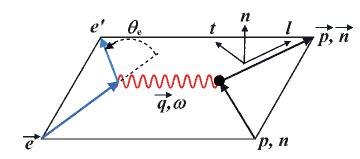
$$\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{(E_{beam} + E_e)}{2M_B} \tan \frac{\theta_e}{2}$$



An alternative to extract EEMFF is offered by polarisation measurements.

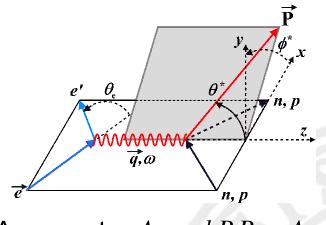
 $A = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+}} =$

A longitudinally polarised electron transfers its polarisation in elastic scattering with non-zero P_l and P_t components:



$$\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{(E_{beam} + E_e)}{2M_B} \tan \frac{\theta_e}{2}$$

Polarised target:



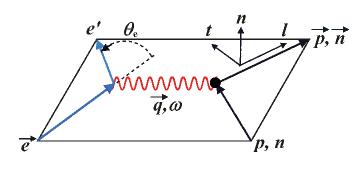
Asymmetry:
$$A_{exp} = hP_eP_{target}A$$

$$-\frac{2\sqrt{\tau(1+\tau)}\tan\frac{\theta_e}{2}}{G_E^2 + \frac{\tau}{\varepsilon}G_M^2} \left(\sin\theta^*\cos\phi^*G_E G_M + \sqrt{\tau(1+(1+\tau))}\tan^2\frac{\theta_e}{2}\cos\theta^*G_M^2\right)$$

$$\theta^* = \pi / 2, \phi^* = 0,180 \Longrightarrow A_y = -\frac{2\sqrt{\tau(1+\tau)}\tan\frac{\theta_e}{2}\frac{G_E}{G_M}}{\left(\frac{G_E}{G_M}\right)^2 + \frac{\tau}{\varepsilon}}$$

An alternative to extract EEMFF is offered by polarisation measurements.

A longitudinally polarised electron transfers its polarisation in elastic scattering with non-zero P_l and P_t components:

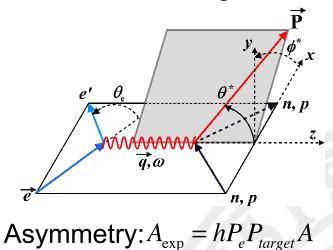


$$\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{(E_{beam} + E_e)}{2M_B} \tan \frac{\theta_e}{2}$$

• Many systematical effects cancel when taking ratios.

• Higher sensitivity to $G_E \otimes$.

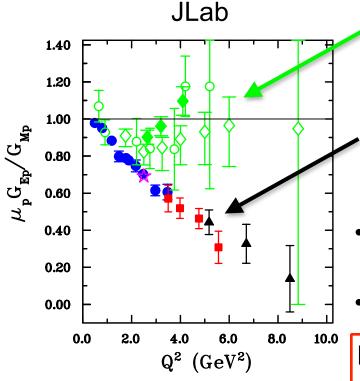
Polarised target:



$$A = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} =$$

$$-\frac{2\sqrt{\tau(1+\tau)}\tan\frac{\theta_{e}}{2}}{G_{E}^{2} + \frac{\tau}{\varepsilon}G_{M}^{2}} \left(\sin\theta^{*}\cos\phi^{*}G_{E}G_{M} + \sqrt{\tau(1+(1+\tau))}\tan^{2}\frac{\theta_{e}}{2}\cos\theta^{*}G_{M}^{2}\right)$$

$$\theta^{*} = \pi/2, \phi^{*} = 0,180 \Rightarrow A_{y} = -\frac{2\sqrt{\tau(1+\tau)}\tan\frac{\theta_{e}}{2}\frac{G_{E}}{G_{M}}}{\left(\frac{G_{E}}{G_{M}}\right)^{2} + \frac{\tau}{\varepsilon}} \qquad 10$$



Rosenbluth separation

polarisation measurements

Why this difference?

- Effect from two-photon exchange? Polarisation expt's much less sensitive
- Radiation effects?

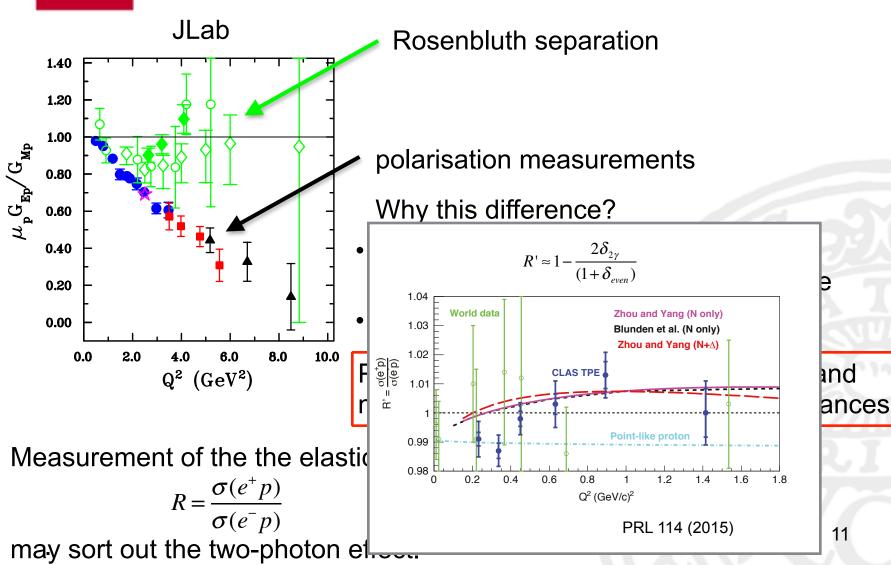
Points to a difference between charge and magnetisation distributions at short distances.

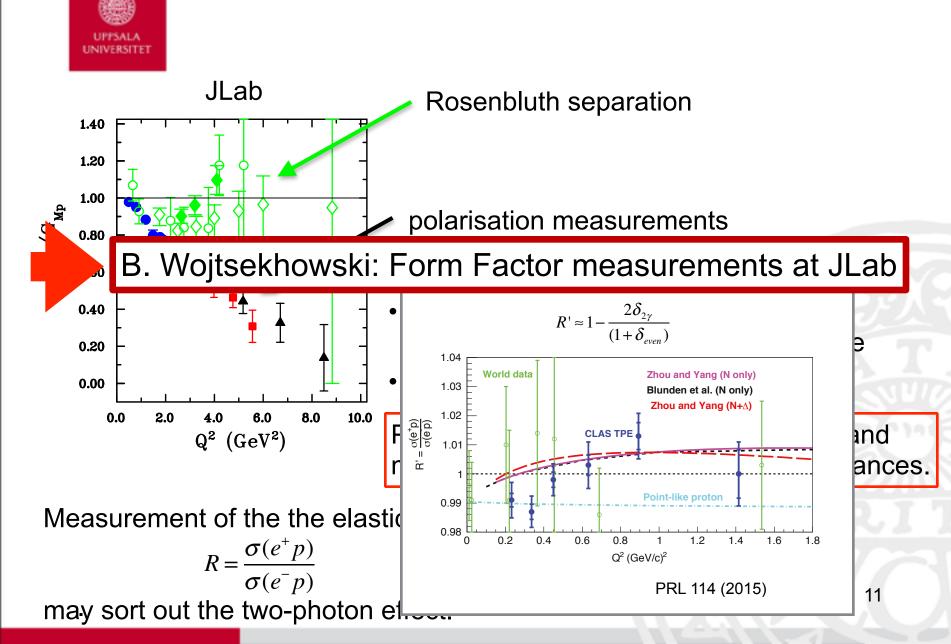
Measurement of the the elastic cross section ratio:

$$R = \frac{\sigma(e^{-}p)}{\sigma(e^{-}p)}$$

may sort out the two-photon effect

 $-(a^+-a)$

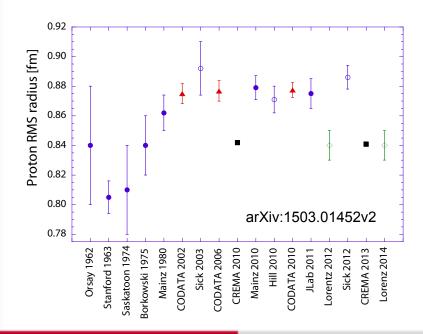




Non rel.:
$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left| \int_{V} \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} \right|$$
$$G_{E_p} = 1 - \frac{Q^2}{6} \left\langle r_{E_p}^2 \right\rangle + \frac{Q^4}{120} \left\langle r_{E_p}^4 \right\rangle \cdots$$

Low Q^2 : $\frac{dG_{E_p}}{dQ^2} \cong -\frac{1^2}{6} \langle r_{E_p}^2 \rangle \Big|_{Q^2=0}$

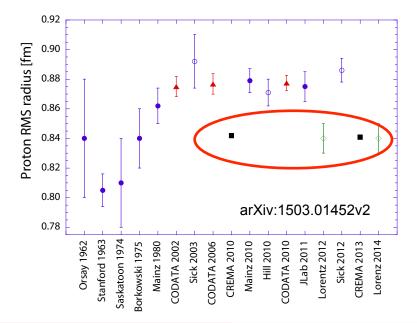
=> The proton RMS radius is obtained from the slope



Non rel.:
$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left| \int_{V} \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} \right|$$
$$G_{E_p} = 1 - \frac{Q^2}{6} \left\langle r_{E_p}^2 \right\rangle + \frac{Q^4}{120} \left\langle r_{E_p}^4 \right\rangle \cdots$$

Low Q^2 : $\frac{dG_{E_p}}{dQ^2} \cong -\frac{1^2}{6} \langle r_{E_p}^2 \rangle \Big|_{Q^2=0}$

=> The proton RMS radius is obtained from the slope

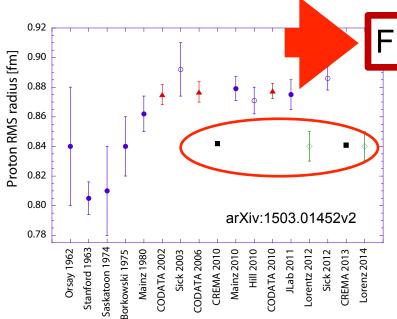


=>=> muonic hydrogen measurements at PSI give a 4% (7 σ) smaller proton RMS radius.

Non rel.:
$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left| \int_{V} \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} \right|$$
$$G_{E_p} = 1 - \frac{Q^2}{6} \left\langle r_{E_p}^2 \right\rangle + \frac{Q^4}{120} \left\langle r_{E_p}^4 \right\rangle \cdots$$

Low
$$Q^2$$
: $\frac{dG_{E_p}}{dQ^2} \cong -\frac{1^2}{6} \left\langle r_{E_p}^2 \right\rangle \Big|_{Q^2=0}$

=> The proton RMS radius is obtained from the slope



Friday morning session

=>=> muonic hydrogen measurements at PSI give a 4% (7 σ) smaller proton RMS radius.

Neutron SL EEMFF

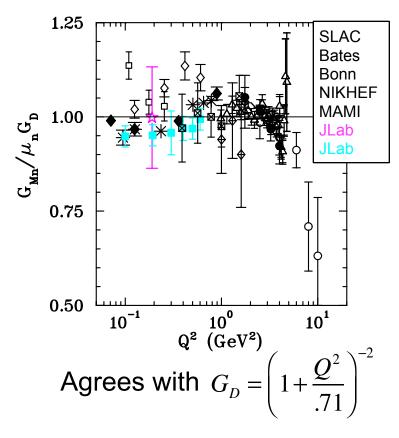
 G_{En} : Earlier extracted from elastic (e^{-} , d) scattering. Now polarisation measurements.

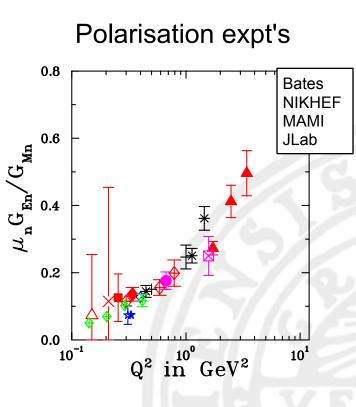
The slope as Q² \longrightarrow 0 determines, in principle, $\langle r_{E_n}^2 \rangle$ (*n*,*e*⁻), however, more precise (-.1161±.0022 fm²) (PDG)

 G_{Mn} : Earlier Rosenbluth separation from quasi-free (e^{-},n) scattering on deuterons. Requires large corrections. Now polarisation measurements.

Polarisation measurements use recoil polarisation and double polarisation measurements deuteron and ³He targets.

Neutron SL EEMFF





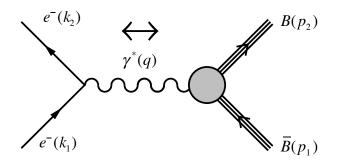
 $G_{En} \neq G_{Ep}$

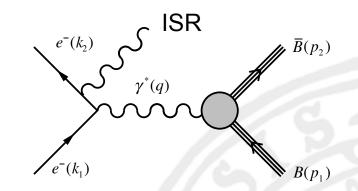
=> similarity between G_{Mn} and G_{Mp}

arXiv:1503.01452v2

Time-Like FF's

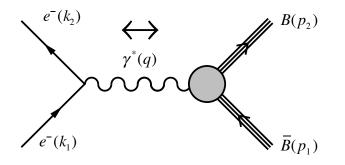
 $e^+e^- \leftrightarrow \overline{B}B$

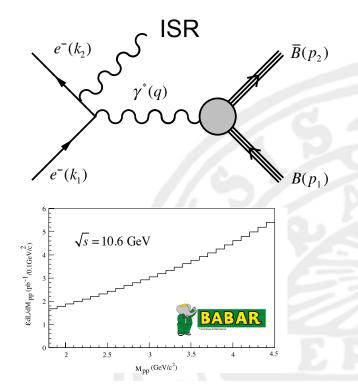




Time-Like FF's

 $e^+e^- \leftrightarrow \overline{B}B$





Non-zero momentum of final state particles at threshold.

Time-Like Form Factors

• Time-like FF's are complex:

 $\operatorname{Re}\left[G_{E}(q^{2})G_{M}^{*}(q^{2})\right] = \left|G_{E}(q^{2})\right| \left|G_{M}(q^{2})\right| \cos \Delta \phi$ $\operatorname{Im}\left[G_{E}(q^{2})G_{M}^{*}(q^{2})\right] = \left|G_{E}(q^{2})\right| \left|G_{M}(q^{2})\right| \sin \Delta \phi$

 $\Delta \phi$ = the relative phase between G_E and G_M .

- => Three observables determine the Time-Like Form Factors.
- The relative phase between G_E and G_M gives polarisation effects on the final state even when the initial state is unpolarised.

Time-Like Elastic FF can be extracted from the differential cross sections in analogy with the Rosenbluth technique.

$$\frac{d\sigma}{d\cos\theta} = \frac{\alpha^2 \beta C}{4q^2} \left(\left| G_M \right|^2 \left(1 + \cos^2 \theta \right) + \frac{1}{\tau} \left| G_E \right|^2 \sin^2 \theta \right);$$

$$\tau = \frac{q^2}{4m_B^2}, \ \beta = \sqrt{1 - 1/\tau}, \ C = \text{Coulomb factor} = \frac{y}{(1 - e^{-y})}, \ y = \pi \alpha / \beta$$

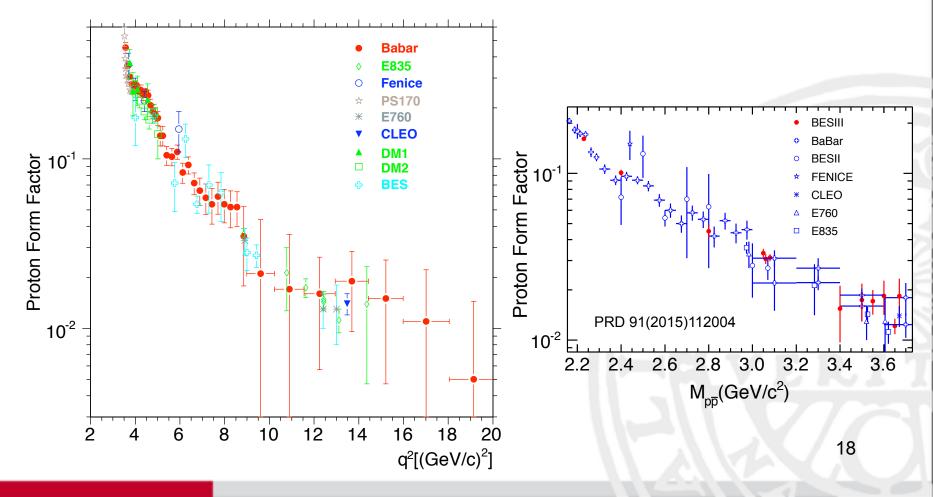
A measurement of the differential cross section at one energy is sufficient to extract the modulii of $|G_E|$ and $|G_M| \stackrel{\textcircled{o}}{=} .$

The total cross section gives access to effective form factor:

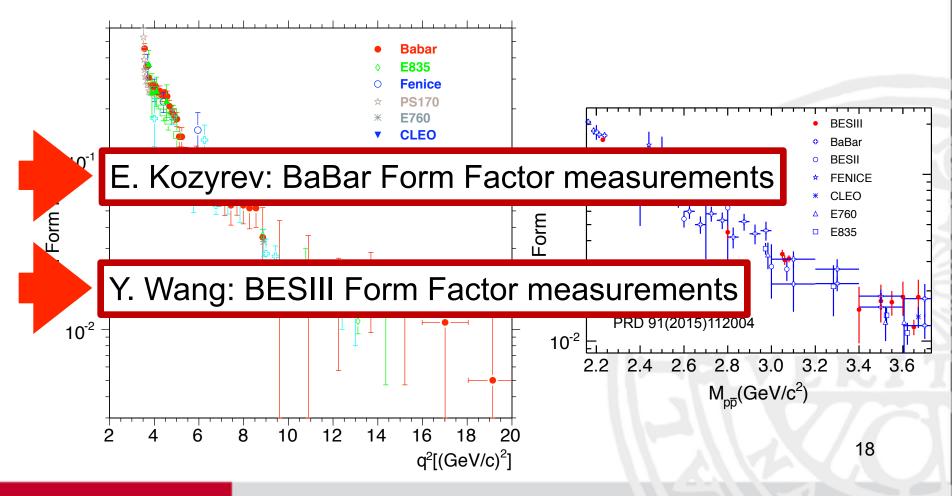
$$\sigma_{tot} = \frac{4\pi\alpha^2\beta C}{3q^2} \left[\left| G_M \right|^2 + \frac{\left| G_E \right|^2}{2\tau} \right] \Leftrightarrow \left| G_{eff} \right| = \left(\frac{\sigma_{tot}}{4\pi\alpha^2\beta C / 3q^2} \right)^{\frac{1}{2}}$$

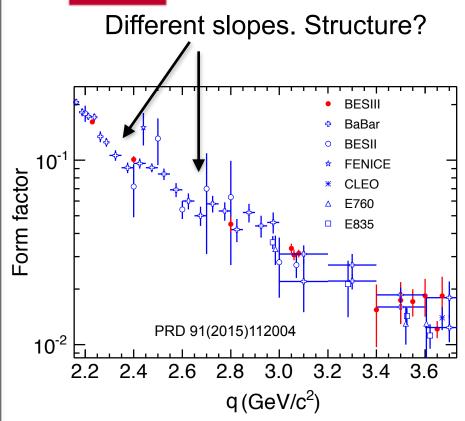
At threshold: $\tau = 1$ and $|G_E| = |G_M|$, The Coulomb factor leads to a non-zero cross section for a charged final state.

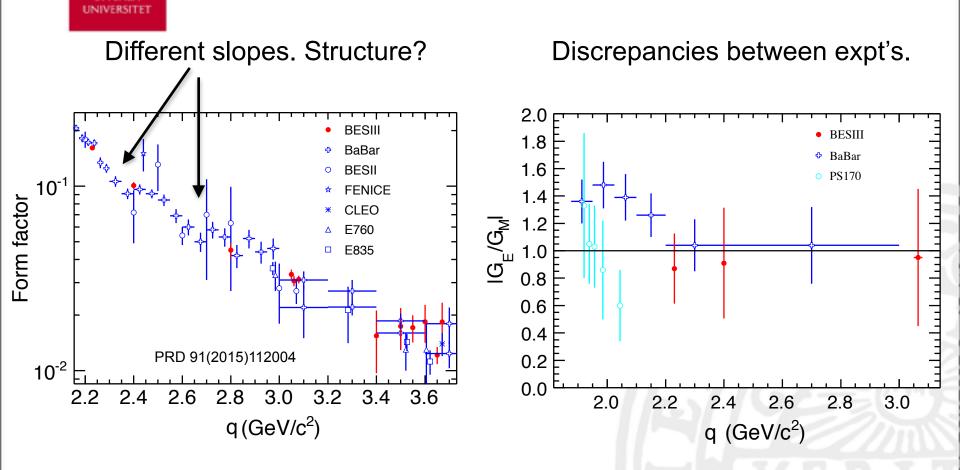
- Most experiments in the TL region only provide G_{eff} .
- The *q*² dependence is obtained from energy scan or by using initial state radiation (ISR):

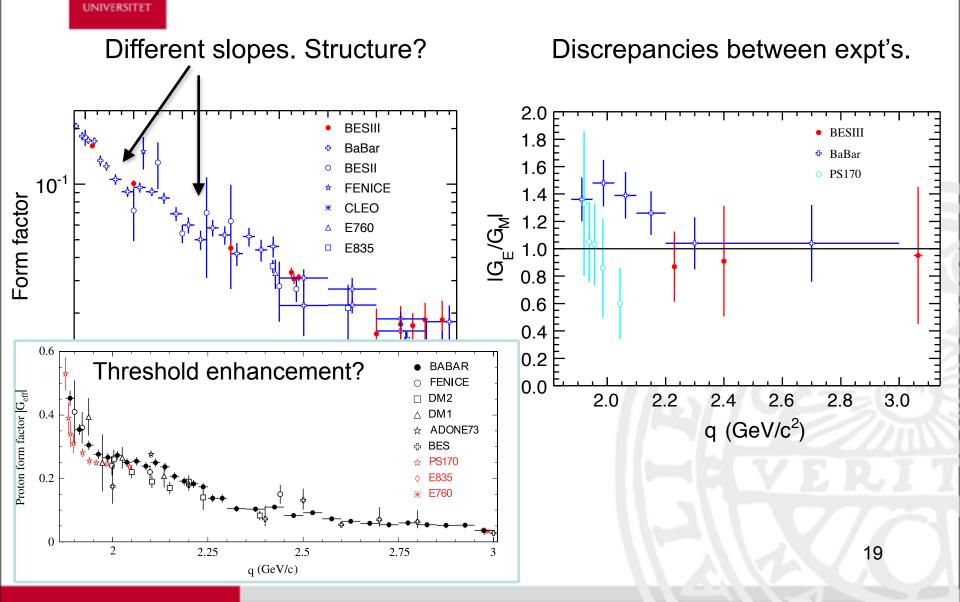


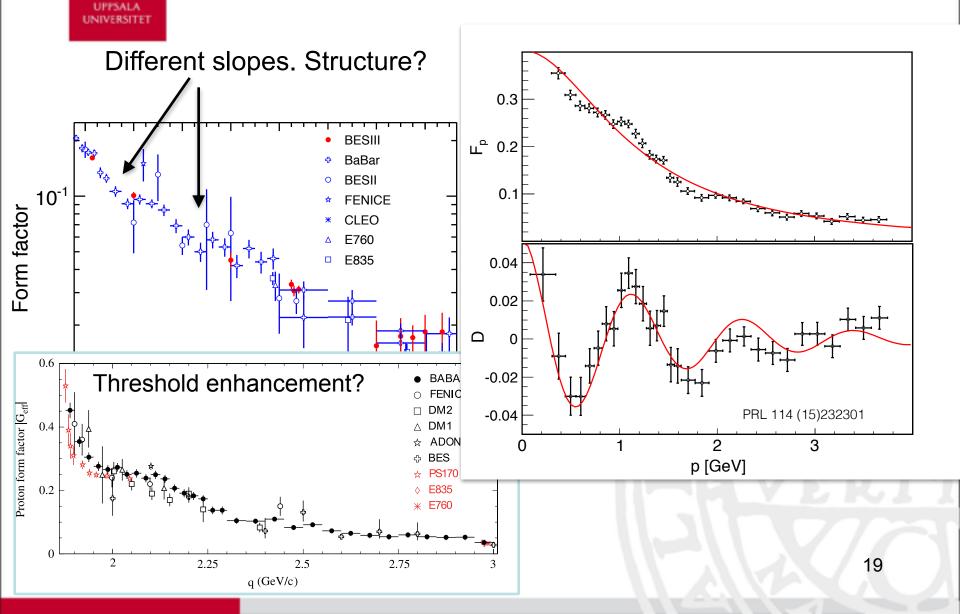
- Most experiments in the TL region only provide G_{eff} .
- The *q*² dependence is obtained from energy scan or by using initial state radiation (ISR):











pQCD predicts that asymptotically

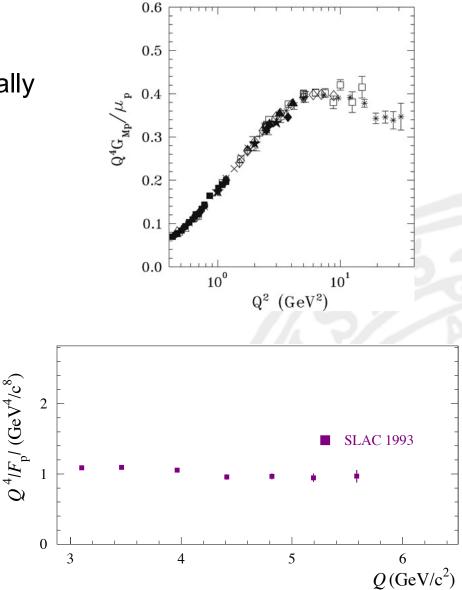
$$F_i^B(q^2) \rightarrow \left(\frac{1}{q^2}\right)^{i+1} \left(\ln\left(\frac{q^2}{\Lambda_{qcd}^2}\right)\right)^{\gamma}$$
$$i = 1, 2; \ \gamma = 2.148 \ (N_f = 2)$$
$$\Rightarrow G_E, G_M \propto \frac{1}{q^4} \text{ and } \frac{G_E}{G_m} \sim 1$$

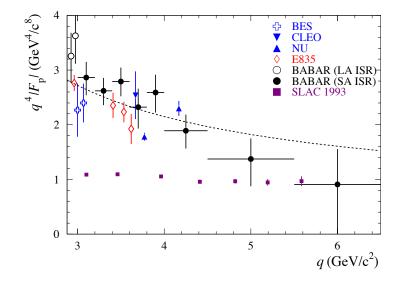
PRL 31(73)1153 Nuov. Cim. L. 7(73)719

Analyticity:

$$G_{E,M}^{SL}\Big|_{q^2\to\infty} = G_{E,M}^{TL}\Big|_{q^2\to\infty}$$

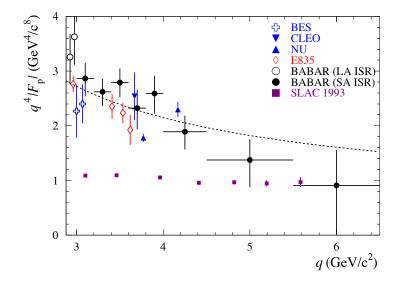
pQCD scaling observed at $Q > 3 \text{ GeV/c}^2$?





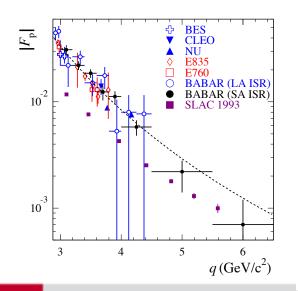
pQCD region reached at $Q \approx 6$ Gev/c²?

arXiv:1311.751v1

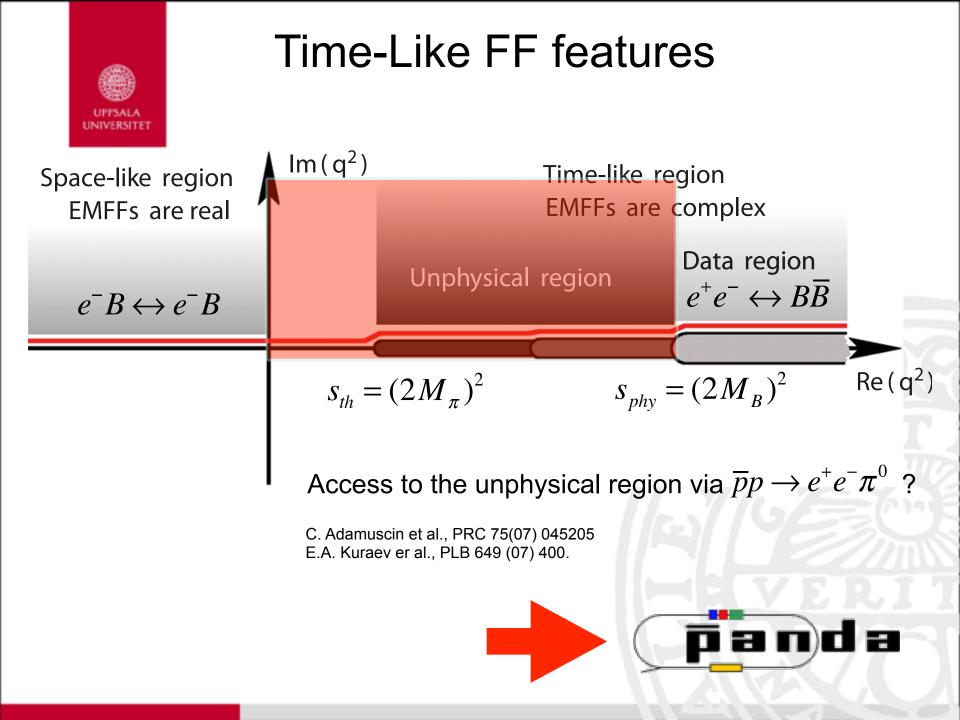


pQCD region reached at $Q \approx 6 \text{ Gev/c}^2$?

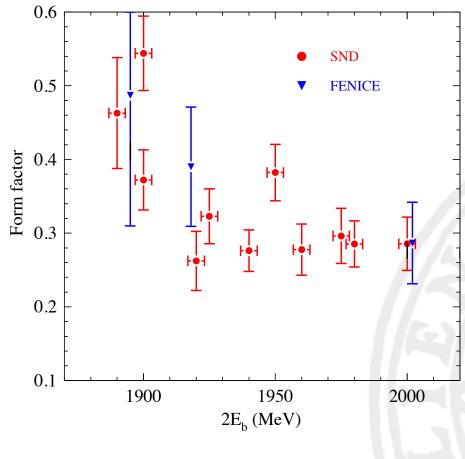
arXiv:1311.751v1



 $TL |F_p| = 2x SL |F_p| !?$



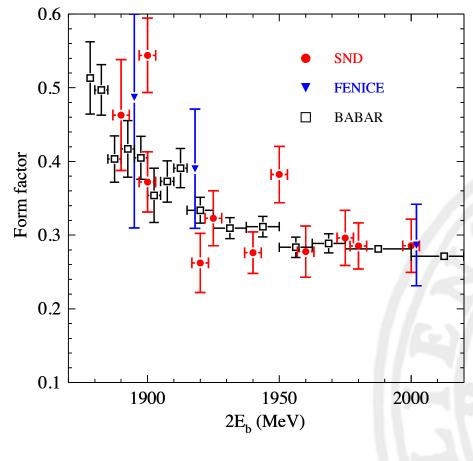
Scarse data on neutron TL FF:



PRD 90 (14) 112007

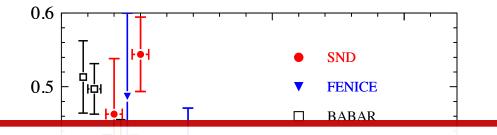
23

Scarse data on neutron TL FF:

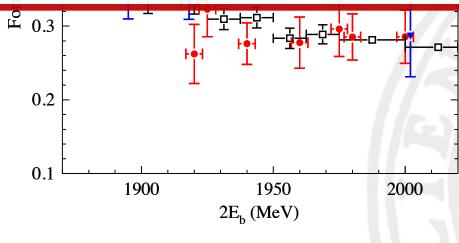


PRD 90 (14) 112007

Scarse data on neutron TL FF:



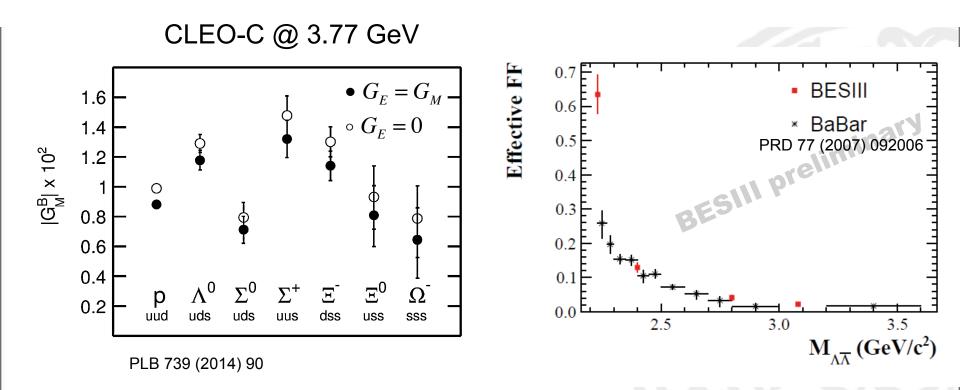
A. Korol: Measurement of the timeline neutron and proton Form Factors at VEPP-2000



PRD 90 (14) 112007

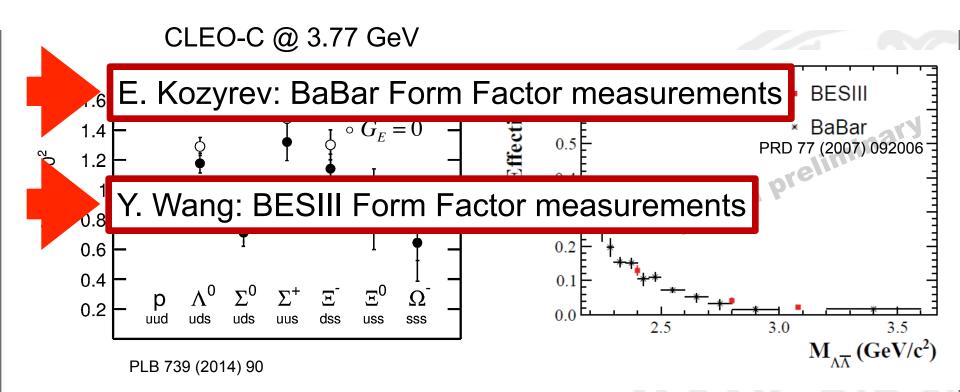
Hyperon Form Factors

- What happens when adding strangeness to the baryons? SU(3) breaking?
- Only Time-Like Form Factors are experimentally accessible.
- e⁺e⁻ -collisions are currently the best way to study hyperon structure.

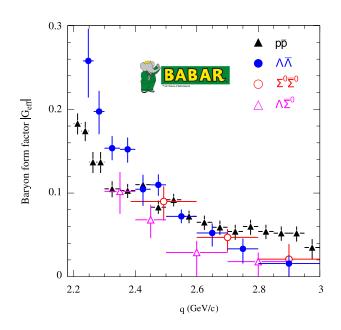


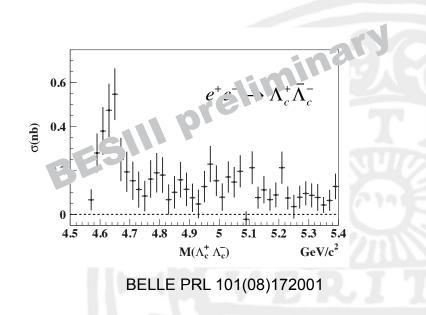
Hyperon Form Factors

- What happens when adding strangeness to the baryons? SU(3) breaking?
- Only Time-Like Form Factors are experimentally accessible.
- e⁺e⁻ -collisions are currently the best way to study hyperon structure.



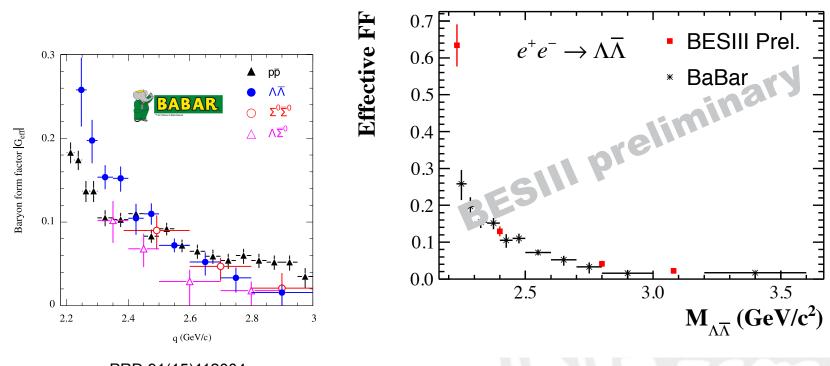
Threshold enhancements?





PRD 91(15)112004

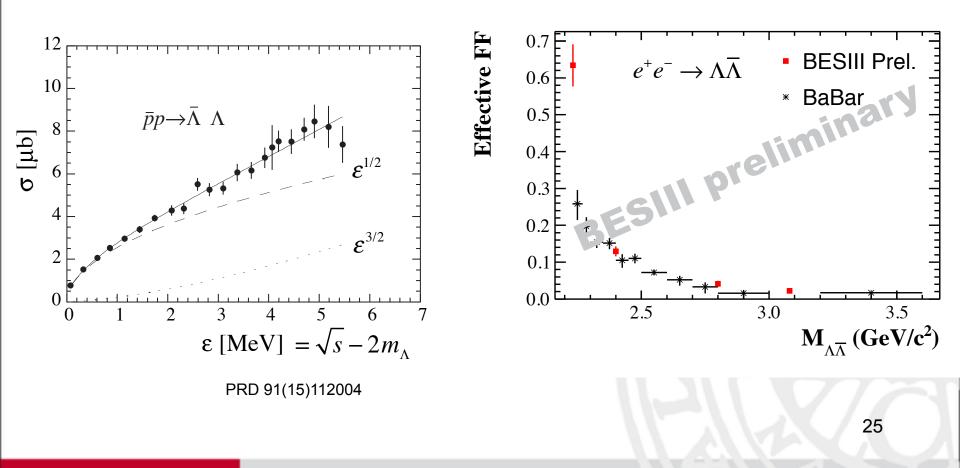
Threshold enhancements?



PRD 91(15)112004

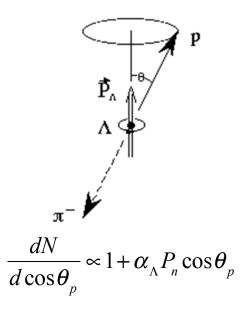
25

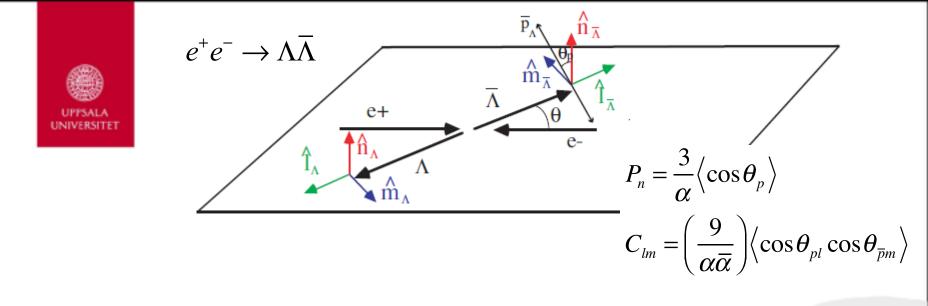
Threshold enhancements?



Need to measure polarisation to extract the phase between G_E and G_M .

Polarisation is available "for free" in hyperon TL FF's experiments because of their self-analysing weak decay.





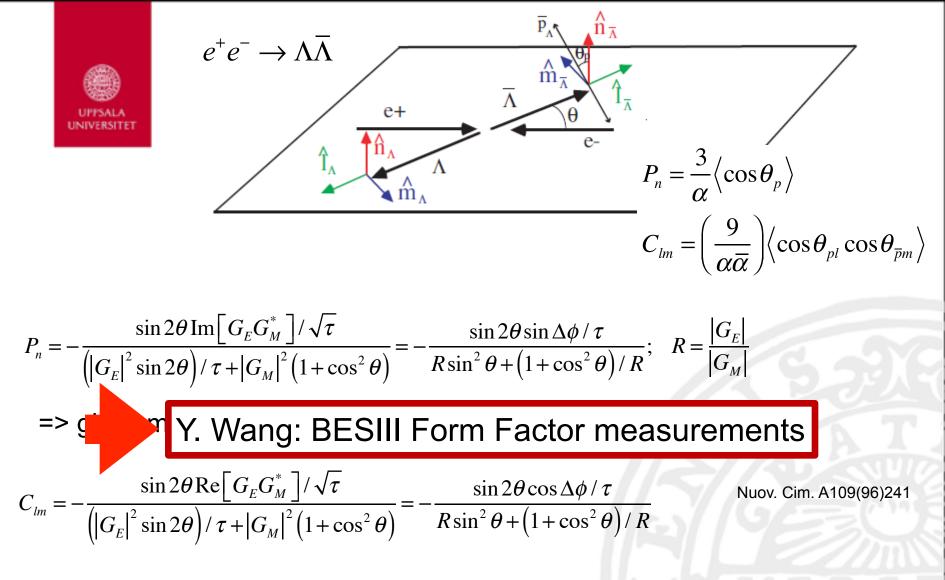
$$P_n = -\frac{\sin 2\theta \operatorname{Im} \left[G_E G_M^* \right] / \sqrt{\tau}}{\left(\left| G_E \right|^2 \sin 2\theta \right) / \tau + \left| G_M \right|^2 \left(1 + \cos^2 \theta \right)} = -\frac{\sin 2\theta \sin \Delta\phi / \tau}{R \sin^2 \theta + \left(1 + \cos^2 \theta \right) / R}; \quad R = \frac{|G_E|}{|G_M|}$$

=> gives modulus of the phase ϕ

$$C_{lm} = -\frac{\sin 2\theta \operatorname{Re}\left[G_{E}G_{M}^{*}\right]/\sqrt{\tau}}{\left(\left|G_{E}\right|^{2}\sin 2\theta\right)/\tau + \left|G_{M}\right|^{2}\left(1+\cos^{2}\theta\right)} = -\frac{\sin 2\theta \cos \Delta\phi/\tau}{R\sin^{2}\theta + \left(1+\cos^{2}\theta\right)/R}$$
 Nuov. Cim. A109(96)241

=> gives the sign of the phase ϕ

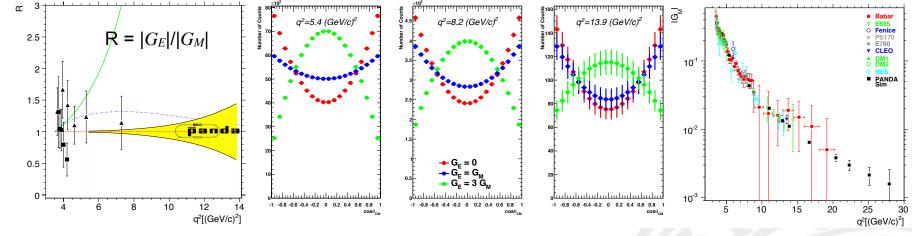
A complete determination of the Λ Time-Like Form Factor using $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ is possible!



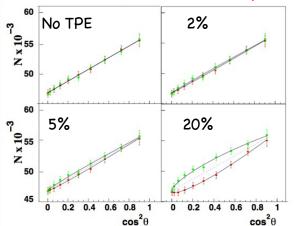
=> gives the sign of the phase ϕ

A complete determination of the Λ Time-Like Form Factor using $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ is possible!

High luminosity mode: $2x10^{32}$ cm⁻²s⁻¹ \rightarrow 100 fb⁻¹ in \approx 100 days



EPJ A44 (10) 373



forward lepton backward lepton

- Individual determination of $|G_E|$, $|G_M|$ up to $q^2 \approx 14$ (GeV/c)²
- $|G_M|$ up to $q^2 \approx 28 \text{ (GeV/c)}^2$
- Sensitivity to odd cos-terms down to ≈ 5 %
 => two photon exchange can be investigated.

Long range: Polarised target to measure the phase.

Conclusions and Outlook

(non-exhaustive list)

A lot has been learned on baryon elastic EM Form Factors and there is much more to come.

- SL: Polarisation measurements are superior to Rosenbluth separation in determining Form Factors.
 - New precise data at very low Q^2 will shed light on the proton radius puzzle.
 - The importance of two-photon contributions will be clarified.
 - Neutron FF's at higher q^2 .
- TL: New precise data at very low q^2 will shed light on threshold enhancements.
 - First precise determination of $|G_E|$ and $|G_M|$ for the proton and the Λ .
 - First measurement of the phase between of $|G_E|$ and $|G_M|$ is within reach via $e^+e^- \rightarrow \Lambda \overline{\Lambda}$.
- SL+TL: Measure FF's at higher momentum transfers to investigate analyticity and the onset of pQCD. Flavour decomposition. 29

Conclusions and Outlook

(non-exhaustive list)

A lot has been learned on baryon elastic EM Form Factors and there is much more to come.

SL: - Polarisation measurements are superior to Resenbluth separation in deterring Factors.

- New precise drift ery low Q^2 with shed light on the proton radius puzzle.
- The importance of two-photon contributions will be clarified.
- Neutron FF's at higher q^2 .

TL: - New precise data at very low q^2 will shed light on threshold enhancements. P(G, q) = 0 for the problem of the standard for the st

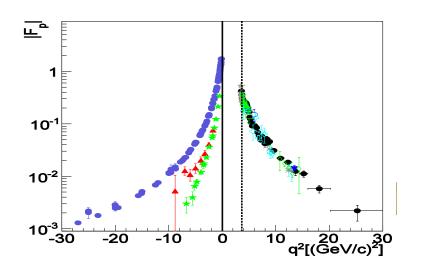
reach via $e^+e^- \rightarrow \Lambda\overline{\Lambda}$.

SL+TL: Measure FF's at higher momentum transfers to investigate analyticity and the onset of pQCD. Flavour decomposition. 29

Backup slide

Wishes

An unified description of baryon EM Form Factors.



Density distributions.

