AZh combination 2HDM interpretations Type I II IIII IV

A -> Zh -> II(vv) bb
A -> Zh -> II tautau

Xiaohu Sun and all AZh people 28-10-2014 IHEP

Combined limits (tautau)

-

Combined limits (bb)

-

2HDM type I and II

- Non-SM BR(h->bb) and BR(h->tautau) are considered, they scale in the same way in LO, so no need to redo the limits, just simply rescale the upper limits

2HDM - type I

- manually remove the wrongly interpolated islands

in paper draft

2HDM - type II

- manually remove the wrongly interpolated islands

in paper draft

2 HDM - type III in tanb vs mA $\cos (\mathbf{b}-\mathbf{a})=-\mathbf{0 . 1}$

- The variations from $\operatorname{BR}(\mathrm{bb} / \mathrm{tautau})$ are also considered in exclusion contours for plane of tanb vs mA

in paper draft

in paper draft

2HDM - type I check in tanb vs mA

- Check on the contours of $x \sec (g g H->h h)$ in tanb vs mA
- The non-excluded areas in low tanb region is caused by the diminishing br(h->bb) at low tanb @ cos(b-a)=-0.1

2HDM - type I II in tanb vs mA $\cos (\mathbf{b}-\mathbf{a})=+\mathbf{0 . 1}$

- The variations from $\operatorname{BR}(\mathrm{bb} / \mathrm{tautau})$ are also considered in exclusion contours for plane of tanb vs mA

in paper draft

in paper draft

2HDM - type I II check width

type I width_A / mA
althist

type II width_A / mA
althist

2HDM - type I check width

- type I, our exclusion is valid with narrow width approximation

shadow $=$ width $(A) / m(A)>1 \%$

shadow $=$ width $(A) / m(A)>5 \%$

2HDM - type II check width

- type II, our exclusion is valid with narrow width approximation

shadow $=$ width $(A) / m(A)>1 \%$

shadow $=$ width $(A) / m(A)>5 \%$

2HDM type III and IV (ongoing)

- $B R(h->b b)$ and $B R(h->$ tautau $)$ are NOT scaling in the same way for type III and IV, have to redo the limits

2HDM type III and IV (ongoing)

- The idea is to only redo the limits for a certain ratios of $B R(h-$ >bb) / BR(h->tautau) (bb is always fixed, only change tautau), then rescale the limits to the different BRs
- On the bottom, with help of Andy, these ratios are scanned

2HDM type III and IV (ongoing)

- 300 GeV workspace is used

2HDM type III and IV (ongoing)

- Curves for bands

2HDM type III and IV (ongoing)

- Curves for observed limits

2HDM type III (ongoing)

- Plotting for type III with rescaled limits

2HDM type IV (ongoing)

- Plotting for type IV with rescaled limits, wrongly interpolated

Summary

- Type I and II are interpreted by simply rescaling the combined limits with the considerations of nonSM Brs of $h->b b /$ tautau
- have manually removed the wrong interpolated contours (islands) in the exclusion plots
- should be safe since median exist in the middle of green band, but additional check are needed
- Type III and IV now can be interpreted, the combined limits are redone as a function of the ratio (tautau/bb) and can be rescaled at different phase points
- use 2HDMPlottingTool to include this effects, but the plots do not seem to be correct
- Checks on width show that NWA always works in our excluded regions in type I and II
- In paper draft, we have now:
- type III, tanb vs cos(b-a)
- type I II, tanb vs mA @ $\operatorname{cos(b-a)=+-0.1~}$

backup

Solutions on type I and II

- Triggered by more physics interests, feasible solutions are proposed for type I and II after many discussions with all AZh people
- Due to the same scale on BR(h->bb) and BR(h->tautau) from SM to 2HDM in type I and II, limits are directly rescaled by factors due to $B R$ deviation from SM values
- equivalent to considering all signal rescaled with new BR
- not considering rescaling backgrounds whose contribution should be small
- Use rescaled limits to make exclusion plots

		Type I	Type II	Type III	Type IV
	$\xi_{\text {h }}^{V}$	$\sin (\beta-\alpha)$	$\sin (\beta-\alpha)$	$\sin (\beta-\alpha)$	$\sin (\beta-\alpha)$
	ξ_{h}^{u}	$\frac{\cos \alpha}{\operatorname{mos} \alpha}$		$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
h->bb	ξ_{h}^{d}	($\frac{\cos \alpha}{\sin \beta}$	- $\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$
h->tautau	$\xi_{\mathrm{h}}^{\prime}$		- $-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$

BR(h->hh) type II

- $\operatorname{BR}(2 \mathrm{HDM}) / \mathrm{BR}(\mathrm{SM})$ is plotted as a function of tanb

BR(h->hh) type II

- $\operatorname{BR}(2 H D M) / B R(S M)$ is plotted as a function of tanb

Combined limits

- combination of tautau and bb workspaces

2HDM type III and IV (no rescale)

- 2HDM type III and IV without considering the variations on branching ratios of $h->b b$ and $h->$ tautau
- Only SM h->bb and h->tautau are assumed

$\tan \beta$ vs $m_{A} \sin (\beta-\alpha)=0.99$

Type I- $\sin (\beta-\alpha)=0.99$

Type III $-\sin (\beta-\alpha)=0.99$

Type II $-\sin (\beta-\alpha)=0.99$

Type IV - $\sin (\beta-\alpha)=0.99$

Type $I-\sin (\beta-\alpha)=0.999$

Type III $-\sin (\beta-\alpha)=0.999$

Type II - $\sin (\beta-\alpha)=0.999$

Type IV $-\sin (\beta-\alpha)=0.999$

