Overview Linacs

Shinian Fu CSNS, IHEP

> ICFA Mini-workshop on Beam Commissioning for High Intensity Accelerator, Dongguan, 8-10 June 2015

Challenges and Design Principles

- Beam loss control --- <1W/m
- Space-change effect --- Tune depression σ_i/σ_0 > 0.5
- Beam halo formation --- Matched beam

O ₀ < 90⁰

- Kr , KI smooth change
- Equipartitionin/Fast cross $\frac{\varepsilon_{nr}z_m}{\varepsilon_{nr}R} = 1$
- High availability and reliability --- Redundancy, fault compensation

Some High Intensity Linacs

- 1. LANSCE
- 2. SNS
- 3. J-PARC
- 4. ISIS
- 5. CSNS
- 6. KOMAC
- 7. Linac4
- 8. ESS
- 9. MYRRHA
- 10. C-ADS
- 11. HIAF
- 12. FRIB
- 13. RAON

LANSCE Linac

Courtesy of R.E.Shafer

Four 201.25-MHz drift tube linac (DTL) tanks accelerate beam from 750 keV to 100 Me 805MHz SCL linac of 800 MeV with 44 modules

Proton beam operation

- ~800 MeV
- ~6% duty cycle
- 60-Hz pulse rep rate
- $\sim 1000 \ \mu s$ pulses
- ~ 15 mA peak current
- ∼ 1 mA avg. current
- ~ 0.8 MW avg. beam power

Proton beam rms emittances (normalized)

100 MeV: ~ 0.30 π mm-mrad 800 MeV: ~ 0.70 π mm-mrad (very large emittance growth between 100 And 800 MeV)

Major sources of beam losses are caused by

- 1) DTL to CCL transition at 100 MeV, including a 15' drift w/o RF bunching cavities.
- 2) Abrupt change in doublet lattice period at about 180 MeV.

Lack of ability to steer beam may also contribute (simultaneous H- and proton acceleration).

Because of the different type of users, with much shorter experiment durations (2-3 days instead of 2-3 months), the impact of availability and down time led to LRIP (LANSCE Reliability Upgrade Project).

Recent improvements have improved neutron availability from < 75% to >85%.

LANSCE-R Project with \$200M: Replacing radio-frequency equipment to achieve high reliability and providing adequate spare components; replacing hardware and software in the accelerator controls, data acquisition, and timing systems; refurbishing and replacing vacuum, cooling, and magnet power supplies for the accelerator and beam-transfer lines; and refurbishing and improving the beam-diagnostics systems; replacing some drift tubes.

Courtesy of J. Galambos

SNS Linac

- First neutron production at 1.4 MW: June 29, 2014
 - Sustained power increase during the 2014 run, increasing power from ~ 1. MW to 1.4 MW

Superconducting Linac Beam Loss History

STS Accelerator Scope: *Double the "power" (intensity/pulse)*

	1.4 MW	STS			
		First Target	Second Target		
Beam Energy (GeV)	.94	1.3^	1.3		
Rep rate (Hz)	60	50	10		
Average current (mA)	26	33	38		
Energy / pulse (kJ)	23.3	40	46.6		
Power (MW)	1.4	2.0**	0.47		

^ plasma-processing of the existing superconducting linac (SCL) cavities and additional 7 cryomodules.

* Use beam chopping (average current) to independently throttle FTS / STS power

** Shielding / target system limit, may be possible to increase.

J-PARC Linac

Drift-Tube Linac (DTL)

Separated DTL (SDTL)

ACS

J-PARC Linac

J-PARC Linac New front-end system of the linac

During the 2014 summer shutdown period, the front-end system of the linac was replaced to increase the peak current to 50 mA.

J-PARC Linac

Replacing with the new IS, RFQ and adding ACS, the beam current can reach design value of 50mA and energy can reach design value of 400MeV. After the upgrade program, 1MW equivalent beam power with reduced repetition rate from the RCS ring has been demonstrated.

 H^- ion source at -35 kV

RFQ

Linac, 4 tanks

35 keV – 665 keV

10 MeV
30 MeV
50 MeV
70 MeV

Beam current

Penning IS: 30mA, 30day life time

Old Cockcraft-Walton accelerator of 665 keV

RFQ: $35 \text{ keV} \rightarrow 665 \text{ keV}$ 70 MeV, $202\frac{1}{2}$ MHz DTL linac

Courtesy of R. McGreevy

Linac R&D Activity

VESPA: ion source test stand

Front end test stand: new RFQ

New Linac Tank 4 prototype and test stand

History and Future

Historical Performance of ISIS Accelerator

85-90 % operation efficiency

By 2020: will be running at double current capacity By 2030: Build a new (international) facility: ISIS-II

	Ion Source	RFQ	DTL
Input Energy (MeV)		0.05	3.0
Output Energy(MeV)	0.05	3.0	80
Pulse Current (mA)	20/40	20/40	15/30
RF frequency (MHz)		324	324
Chop rate (%)		50	50
Duty factor (%)	1.3	1.05	1.05
Repetition rate (Hz)	25	25	25

RFQ&MEBT commissioning

FE is under beam commissioning

	IS	LEBT	RFQ	MEBT
Peak Current (mA)	40	30	20	20
Transmission rate		75%	67%	100%

Pulse length is 100 $\mu \rm s$ and 1 Hz. Emittance from IS is lager than acceptance of RFQ. There is a collimator in the LEBT

DTL-1 has 64 DT cells

Achieved field stability < 130%/MHz

 \sim 初始场分布 调谐前后场分布相对于设计场的误差百分比 EO/EOdesign-1 (%) 调谐后场分布 80 60-40--40--60--80-65 ò 10 15 20 25 30 35 40 45 50 55 60 Cell

Achieved field flatness <2%

KOMAC Linac

KOMAC Linac

Linac commissioned for user operation in July 2013 @1kW beam power

Key Parameters					
Output energy (MeV)	20	100			
Peak beam current (mA)	20	20			
Beam duty (%)	24	8			
Avg. beam current (mA)	<mark>4.8</mark>	1.6			
Pulse length (ms)	2	1.33			
Repetition rate (Hz)	120	60			
Avg. beam power (kW)	96	160			

Availability ~ 82%

KOMAC Linac

Upgrade to 1GeV for spallation neutron source

- Construction of 100MeV accelerator complex (Phase I) is under way

- Land will be prepared for future extension (1GeV and Spallation Neutron Source etc.)

Linac4

	LINAC4 machine layout- 352Mi						- 352MHz
П-mode 160 MeV			CCDTL		DTL	Pre-injector	
			100 Me'	V	50 MeV	3MeV	
	23 m25 m12 Modules7 Modules8 Klystrons: 12MW7 Klystrons :12 EMQ7 EMQ + 1412 steerer7 steerers		19 m 3 Tanks 3 Klystrons : 5 4 PMQ 1 EMQ 114 PMQ 2 steerers		9 m Source(s) 2 solenoids RFQ 11 EMQ 3 Cavities 2 Chopper In-line dum	<mark>units</mark> p	
beam						Source	
-76M							
Commissioning stages							
160 MeV	105 MeV	50 Me	eV 🗸	12 MeV	3 MeV	45 k	eV
End 2015	August 2015	May 2	015	Well advanced	Chopping demonstrat	Not ed sour	the final ce

Linac4

Beam transmission rate is 75%

10 mA H- beam was accelerated to 3MeV by RFQ in March 2013 first time

Linac4

DTL accelerate 7.5mA H- beam from 3MeV to 12MeV with 100 % transmission rate in August 2013.

	Length (m)	W_in (MeV)	F (MHz)	β Geometric	No. Sections	Т (К)
LEBT	2.38	0.075			1	~300
RFQ	4.6	0.075	352.21		1	~300
MEBT	3.81	3.62	352.21		1	~300
DTL	38.9	3.62	352.21		5	~300
LEDP + Spoke	55.9	89.8	352.21	0.50 (Optimum)	13	~2
Medium Beta	76.7	216.3	704.42	0.67	9	~2
High Beta	178.9	571.5	704.42	0.86	21	~2
Contingency	119.3	2000	704.42	(0.86)	14	~300 / ~2

MYRRHA

C-ADS Linac

Injector I

C-ADS Linac (IHEP)

10 mA beam from 3.2MeV RQF at 70% duty

Pulse beam of 10mA from 2 spokes of β =0.14

C-ADS Linac (IMP)

RFQ and HWR accelerate CW proton beam of 10mA to 2.5MeV.

C-ADS Linac

•Local compensation scheme was proposed in design for high reliability in operation.

	Accelerator		lons	Energy	Intensity
SECR: ECR ion source	Ion source	ECR	U ³⁴⁺	14 keV/u	0.05 pmA
iLinac: Superconducting ion linac		${\rm H_{2}^{+}}$	${\rm H_{2}^{+}}$	14 keV/u	2.0 pmA
BRing: Booster ring	iLinac		U ³⁴⁺	25 MeV/u	0.028 pmA
Brung. Boooter ning			H_2^+	54 MeV/u	1.0 pmA
CRing: Compression ring	BRing		U ³⁴⁺	0.8 GeV/u	~3.3×10 ¹¹ ppp
eLinac: Electron linac			р	9.5 GeV/u	${\sim}2.3{\times}10^{12}ppp$
SRing: High precision spectrometer	cRing		U ³⁴⁺	1.1 GeV/u	~1.0×10 ¹² ppp
oning. high precision spectrometer			U ⁹²⁺	4.1 GeV/u	~2.0×10 ¹¹ ppp
			р	12.0 GeV/u	~4.5×1012 ppp

iLinac ^{550M} Yuan

Commissioning in 2020

Features: SC, high charge state, high pulse current

Site selection: Huizhou, Guangdong

FRIB Drive Linac

Parameter	Value	Unit
Primary beam ion species	H to ²³⁸ U	
Beam kinetic energy on target	> 200	MeV/u
Maximum beam power on target	400	kW
Macropulse duty factor	100	%
Beam current on target (²³⁸ U)	0.7	mA
Beam radius on target (90%)	0.5	mm
Driver linac beam-path length	517	m
Average uncontrolled beam loss	< 1	W/m

RISP Linac : RAON

- :: Goal: To build a world class heavy ion accelerator RAON, for rare isotope science research in Korea
- :: Project period: 2011. 12 2021. 02
- :: High intensity rare isotope beam with ISOL and IF methods
 - 70 MeV, 1 mA proton beam, ²³⁸U target: 70 kW ISOL system
 - 200 MeV/u, 8.3 pµA, ²³⁸U beam and other SI beam: 400 kW IF system, 600 MeV for proton
- **::** High current high purity neutron-rich RI beam (For example, ¹³²Sn : ~250 MeV/u, ~ 10⁸ pps)
- :: Production of exotic beams combining ISOL and IF methods
- :: Simultaneous operation of IF and ISOL systems

Layout of driver linac

RAON Prototype

28GHz ECR IS

81.25MHz RFQ

QWR Beta=0.047

HWR Beta=0.12

Spoke cavity Beta=0.51

Thank you very much for your attention