School
 Shanghai

2015 MadGraph School on Collider Phenomenology
Shanghai Jiao-Tong University ,T-D Lee Library Nov. 23 - Nov. 27

November 23-27, 2015

http://www.physics.sjtu.edu.cn/madgraphschool

Ab.	Contents	h	Suggested Lecturer
CP	Collider Phenomenology: basics	2h	Fabio Maltoni
MCS	Shower MC's and merging	2 h	Stefan Prestel\&Andreas Papaefstathiou
NLO	NLO and matching to PS	2h	Stefano Frixione
FR	Introduction to FeynRules	1 h	Claude Duhr
MG	Introduction to MadGraph5_aMC@NLO	1 h	Olivier Mattaelaer
JET	Jets/Jetsubstructure/pileup/Boosted	2 h	Matteo Cacciari
BSM	New Physics simulations (LO and NLO) \& Recasting	3 h	Benjamin Fuks \& Hua-Sheng Shao
NI	Search for New Interactions (EFT)	1h	Cen Zhang
DM	Dark Matter search at the LHC	1 h	Mihailo Backovic
FDS	Fast Detector Simulation	1 h	Michele Selvaggi
FHC	Physics at future hadron colliders	2 h	Michelangelo Mangano
FEC	Physics (and sims) at future e+e- colliders	2 h	Keisuke Fujii
L2E	From Lagrangian to events (tutorials)		Kentarou Mawatari (coordinator)

Verification of SM Predictions for CP Violating Relations in Charmless Two body b-Hadron Decays

Xiao-Gang He SJTU/NTU

1. Introduction: b-mesons and b-baryons
2. CPV relations with flavor $\mathrm{SU}(3)$ for b-mesons
3. CPV relations with flavor $\mathrm{SU}(3)$ for b-baryons
4. A comment on Diquark Model for pentaquark

Introduction

Ground states of b-Mesons and b-Baryons

b-Mesons:
$B_{u}=B^{+}:(u \bar{b}), B_{d}=B^{0}:(d \bar{b}), B_{s}=B_{s}^{0}:(s \bar{b})$
These states have been measured with $5.30 \sim 5.37 \mathrm{GeV}$ for their masses.

The (u, d, s) are light compared with QCD scale of about 1 GeV .
The QCD Lagrangain is approximately flavor $S U(3)$ symmetric with (u, d, s) as a fundamental representation 3 , flavor $S U(3)$ symmetry.
b quark is much heavier, is a siglet under the flavor $S U(3)$ symmetry, So, $\left(B_{u}, B_{d}, B_{s}\right)$ transform as a $S U(3)$ fundamental representation 3, too.

b-Baryons:

$\frac{1}{2}^{+}$ground state formed by a b quark and two light quarks.
Two light quarks can form $1 \times(3 \times 3)=\overline{3}+6$ flavor $S U(3)$ representations.
The anti-triplet \mathcal{B}_{3} :

$$
\begin{gathered}
\left(\mathcal{B}_{\overline{3}}\right)_{i j}=\left(\begin{array}{ccc}
0 & \Lambda_{b}^{0} & \Xi_{b}^{0} \\
-\Lambda_{b}^{0} & 0 & \Xi_{b}^{-} \\
-\Xi_{b}^{0} & -\Xi_{b}^{-} & 0
\end{array}\right) \\
\Lambda_{b}^{0}=\frac{1}{\sqrt{2}}(u d-d u) b ; \Xi_{b}^{0}=\frac{1}{\sqrt{2}}(s u-u s) b ; \Xi_{b}^{-}=\frac{1}{\sqrt{2}}(d s-s d) b .
\end{gathered}
$$

The sextet \mathcal{B}_{6} :

$$
\left(\mathcal{B}_{6}\right)_{i j}=\left(\begin{array}{ccc}
\Sigma_{b}^{+} & \frac{\Sigma_{b}^{0}}{\sqrt{2}} & \frac{\Xi_{b}^{\prime 0}}{\sqrt{2}} \\
\frac{\Sigma_{b}^{0}}{\sqrt{2}} & \Sigma_{b}^{-} & \frac{\Xi_{b}^{2}}{\sqrt{2}} \\
\frac{\Xi_{b}^{0}}{\sqrt{2}} & \frac{\Xi_{b}^{\prime}}{\sqrt{2}} & \Omega_{b}^{-}
\end{array}\right)
$$

with

$$
\begin{aligned}
& \Sigma_{b}^{+}=u u b, \quad \Sigma_{b}^{0}=\frac{1}{\sqrt{2}}(u d+d u) b, \quad \Sigma_{b}^{-}=d d b ; \\
& \Xi_{b}^{\prime 0}=\frac{1}{\sqrt{2}}(u s+s u) b, \quad \Xi_{b}^{\prime-}=\frac{1}{\sqrt{2}}(d s+s d) b, \quad \Omega_{b}^{-}=s s b .
\end{aligned}
$$

These states have been observed also with mass in the range of $5.62 \sim 6.05 \mathrm{GeV}$.

This talk

Focuses on CP violation in charmless two body decays of b-mesons and b-baryons: B mesons decay into two light pesudoscalar mesons $M M$ in octet $\mathcal{M}: B \rightarrow M M$, \mathcal{B} baryons decay into a M and a light baryon F in the octet $\mathcal{F}: \mathcal{B} \rightarrow M F$.
Here M and F are members in \mathcal{M} and \mathcal{F} given by

$$
\mathcal{M}=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2 \eta_{8}}{\sqrt{6}}
\end{array}\right), \mathcal{F}=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda^{0}}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda^{0}}{\sqrt{6}} & n \\
\Xi^{-} & \Xi^{0} & -\frac{2 \Lambda^{0}}{\sqrt{6}}
\end{array}\right)
$$

Why these processes are interesting for CP violation ?
Both tree and penguin amplitudes contribute to the decays offering the possibility of large CP violation: in B -> MM CP asymmetry can be as large as about 10% ! Several of them measured.
Expecting similar size of CPV in b-baryon charmless two body decays!
Some predictions for CPV relations for B -> MM to better than 10% level. Universal or accidental?
Similar things will happen in \mathcal{B}-> $M \mathcal{F}$? Provide further tests

Well tested SM prediction: B -> MM relations

$C P V$ relation between $B_{s} \rightarrow K^{-} \pi^{+}$and $B_{d} \rightarrow K^{+} \pi$ LHCb collaboration, arXiv:1304.6173

First observation of $C P$ violation in the decays of B_{s}^{0} mesons

Using $p p$ collision data, corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$, collected by LHCb in 2011 at a center-of-mass energy of 7 TeV , we report the measurement of direct $C P$ violation in $B_{s}^{0} \rightarrow K^{-} \pi^{+}$decays, $A_{C P}\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)=0.27 \pm 0.04$ (stat) ± 0.01 (syst), with significance exceeding five standard deviations. This is the first observation of $C P$ violation in the decays of B_{s}^{0} mesons. Furthermore, we provide an improved determination of direct $C P$ violation in $B^{0} \rightarrow K^{+} \pi^{-}$decays, $A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-0.080 \pm 0.007$ (stat) ± 0.003 (syst), which is the most precise measurement of this quantity to date.

$$
\mathcal{E}=\frac{A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)}{A_{C P}\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)}+\frac{B r\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right) \tau_{d}}{B r\left(B_{0} \rightarrow K^{+} \pi^{-}\right) \tau_{s}}=0, \quad \mathcal{E}=-0.02 \pm 0.05 \pm 0.04
$$

Relation derived from SU(3) flavor symmetry.
Confirm SU(3) prediction!?

World Average (HFAG)

Mode	PDG2014 Avg.	BABAR	Belle	CDF	LHCb	New Avg.
$K^{+} \pi^{-}$	-0.082 ± 0.006^{1}	$-0.107 \pm 0.016_{-0.004}^{+0.006}$	$-0.069 \pm 0.014 \pm 0.007$	$-0.083 \pm 0.013 \pm 0.004$	$-0.080 \pm 0.007 \pm 0.003$	-0.082 ± 0.006

| B |
| :--- | | | Mode | PDG2014 Avg. | Belle | CDF | LHCb | New Avg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi^{+} K^{-}$ | 0.28 ± 0.04 | | $0.22 \pm 0.07 \pm 0.02$ | $0.27 \pm 0.04 \pm 0.01$ | 0.26 ± 0.04 | |

To gauge the level of the relation hold, define

$$
\delta=\frac{A_{C P}\left(\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right)}{A_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)} / \frac{\operatorname{Br}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right) \tau_{\bar{B}_{2}^{0}}}{\operatorname{Br}\left(\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right) \tau_{\bar{B}^{0}}}+1 .
$$

Combining all data show that the above is at about 5\% away from central value at 1-sigma level hold.
Relation holds well. Consistent with $\mathrm{SU}(3)$ prediction What will happen for b-baryon decay? What are the corresponding decays? Can use them to test similar relations.

Related relation, first Considered in 1995 by Deshpande and He

Phys. Rev. Lett. 75, 1703-1706 (1995)

CP Asymmetry Relations between $B^{-0} \rightarrow \pi \pi$ and $B^{-0} \rightarrow \pi K$ Rates

N. G. Deshpande and Xiao-Gang He

Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403-5203
Received 30 December 1994; published in the issue dated 28 August 1995
We prove that the CP violating rate difference $\Delta\left(\pi^{+} \pi^{+}\right)=\gamma\left(B^{0} \rightarrow \pi^{+} \pi^{+}\right)-\gamma\left(B^{0} \rightarrow \pi^{\prime} \pi^{+}\right)$is related to $\Delta\left(\pi^{+} K\right)=\gamma\left(\pi^{+} K\right)-\gamma\left(B^{0} \rightarrow \pi^{-} K^{+}\right)$in the three generation standard model. Neglecting small annihilation diagrams, and in the $\mathrm{SU}(3)$ symmetry limit, we show that $\Delta\left(\pi^{+} \pi^{+}\right)=-\Delta\left(\pi^{+} K\right)$. The SU(3) breaking effects are estimated using the factorization approximation, and yield $\Delta\left(\pi^{+} \pi^{+}\right) \approx\left(f_{\pi^{\prime}} f_{K}\right)^{2} \Delta\left(\pi^{+} K\right)$. The usefulness of this relation for determining phases in the CKM unitarity triangle is discussed.

Related between $B_{s} \rightarrow K^{-} \pi^{+}, B \rightarrow K^{+} \pi^{-}$and more, first Considered in 1998 by X-G. He

 SU(3) analysis of annihilation contributions and CP violating relations in B ---> P P decaysXiao-Gang He (Taiwan, Natl. Taiwan U.). Oct 1998. 16 pp.
Published in Eur.Phys.J. C9 (1999) 443-448
DOI: $10.1007 / \mathrm{s} 100529900064$
e-Print: hep-ph/9810397 | PDF

In the $\mathrm{SU}(3)$ limit we find the following equalities:
(1) $\Delta\left(B^{-} \rightarrow K^{-} K^{0}\right)=-\Delta\left(B^{-} \rightarrow \pi^{-} \bar{K}^{0}\right)$,
(2) $\Delta\left(\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}\right)=-\Delta\left(B_{s} \rightarrow K^{-} K^{+}\right)$,
(3) $\Delta\left(\bar{B}^{0} \rightarrow K^{-} K^{+}\right)=-\Delta\left(B_{s} \rightarrow \pi^{-} \pi^{+}\right)$
$=-2 \Delta\left(B_{s} \rightarrow \pi^{0} \pi^{0}\right)$,
(4) $\Delta\left(\bar{B}^{0} \rightarrow \bar{K}^{0} K^{0}\right)=-\Delta\left(B_{s} \rightarrow K^{0} \bar{K}^{0}\right)$,
(5) $\Delta\left(\bar{B}^{0} \rightarrow \pi^{+} K^{-}\right)=-\Delta\left(B_{s} \rightarrow K^{+} \pi^{-}\right)$,
(6) $\Delta\left(\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{0}\right)=-\Delta\left(B_{s} \rightarrow K^{0} \pi^{0}\right)$ $=3 \Delta\left(\bar{B}^{0} \rightarrow \eta_{8} \bar{K}^{0}\right)=-3 \Delta\left(B_{s} \rightarrow K^{0} \eta_{8}\right)$.

The Role of $B_{s} \rightarrow K \pi$ in determining the weak phase γ
Michael Gronau (Technion), Jonathan L. Rosner (Chicago U., EFI \& Chicago U.). Mar 2000. 8 pp. Published in Phys.Lett. B482 (2000) 71-76
TECHNION-PH-00-25, EFI-2000-8
DOI: 10.1016/S0370-2693(00)00508-6
e-Print: hep-ph/0003119 | PDF
Is observed direct $C P$ violation in $B(d) \ldots-->K+p i-d u e ~ t o ~ n e w ~ p h y s i c s ? ~ C h e c k ~ s t a n d a r d ~ m o d e l ~ p r e d i c t i o n ~ o f ~ e q u a l ~ v i o l a t i o n ~ i n ~ B(s) ~--->~ K-p i+~$
Harry J. Lipkin (Weizmann Inst. \& Tel Aviv U. \& Argonne). Mar 2005. 9 pp.
Published in Phys.Lett. B621 (2005) 126-132
TAUP-2798-05, ANL-HEP-PR-05-11, WIS-06-05-FEB-DPP
DOI: 10.1016/j.physletb.2005.06.023
e-Print: hep-ph/0503022 | PDF

2. CPV relations with flavor $\mathrm{SU}(3)$ for b-mesons

SU(3) Symmetry Derivation CPV relations

(Nation change: In the following $\mathrm{P}=\mathrm{M}$ discussions)

$$
\begin{aligned}
\Delta(B \rightarrow P P) & =\Gamma(\bar{B} \rightarrow \bar{P} \bar{P})-\Gamma(B \rightarrow P P) \\
A_{C P}(B \rightarrow P P) & =\frac{\Gamma(\bar{B} \rightarrow \bar{P} \bar{P})-\Gamma(B \rightarrow P P)}{\Gamma(\bar{B} \rightarrow \bar{P} \bar{P})+\Gamma(B \rightarrow P P)}
\end{aligned}
$$

If: $\quad \Delta\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)$
Replacing "-" to "+" will also work for this purpose, but "-" is predicted by $\mathrm{SU}(3)$ flavory symmetry.
Then: $\quad \frac{A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)}{A_{C P}\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)}+\frac{B r\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right) \tau_{B^{0}}}{B r\left(B^{0} \rightarrow K^{+} \pi^{-}\right) \tau_{B_{s}^{0}}}=0$

How to get: $\Delta\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)$

In the SM with flavor $\mathrm{SU}(3)$, one has

$$
\begin{array}{ll}
A\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)=V_{u b} V_{u s}^{*} T+V_{t b} V_{t s}^{*} P, \quad A\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=V_{u b}^{*} V_{u s} T+V_{t b}^{*} V_{t s} P \\
A\left(\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right)=V_{u b} V_{u d}^{*} T+V_{t b} V_{t d}^{*} P, \quad A\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)=V_{u b}^{*} V_{u d} T+V_{t b}^{*} V_{t d} P
\end{array}
$$

$$
\begin{aligned}
& T=C_{\overline{3}}^{T}+C_{6}^{T}-A_{15}^{T}+3 C_{15}^{T}, \quad P=C_{\overline{3}}^{P}+C_{6}^{P}-A_{\overline{15}}^{P}+3 C_{\overline{15}}^{P} \\
& \Delta(B \rightarrow P P)=\Gamma(\bar{B} \rightarrow \bar{P} \bar{P})-\Gamma(B \rightarrow P P) \\
& =\frac{\lambda_{a b}}{8 \pi m_{B}}\left(|A(\bar{B} \rightarrow \bar{P} \bar{P})|^{2}-|A(B \rightarrow P P)|^{2}\right) \\
& \operatorname{Im}\left(V_{u b} V_{u d}^{*} V_{t b}^{*} V_{t d}\right)=-\operatorname{Im}\left(V_{u b} V_{u s}^{*} V_{t b}^{*} V_{t s}\right) \\
& \Delta\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)
\end{aligned}
$$

$$
\frac{A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)}{A_{C P}\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)}+\frac{B r\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right) \tau_{B^{0}}}{B r\left(B^{0} \rightarrow K^{+} \pi^{-}\right) \tau_{B_{s}^{0}}}=0
$$

Test for SU(3) flavor symmetry, and also SM with 3 generations!

Effective Hamiltonian

$$
H_{e f f}^{q}=\frac{4 G_{F}}{\sqrt{2}}\left[V_{u b} V_{u q}^{*}\left(c_{1} O_{1}+c_{2} O_{2}\right)-\sum_{i=3}^{12}\left(V_{u b} V_{u q}^{*} c_{i}^{u c}+V_{t b} V_{t q}^{*} c_{i}^{t c}\right) O_{i}\right]
$$

$O_{1}=\left(\bar{q}_{i} u_{j}\right)_{V-A}\left(\bar{u}_{i} b_{j}\right)_{V-A}$,

$$
O_{2}=(\bar{q} u)_{V-A}(\bar{u} b)_{V-A},
$$

$$
O_{3,5}=(\bar{q} b)_{V-A} \sum_{q^{\prime}}\left(\bar{q}^{\prime} q^{\prime}\right)_{V \mp A},
$$

$$
O_{4,6}=\left(\bar{q}_{i} b_{j}\right)_{V-A} \sum_{q^{\prime}}\left(\bar{q}_{j}^{\prime} q_{i}^{\prime}\right)_{V \mp A},
$$

$$
O_{7,9}=\frac{3}{2}(\bar{q} b)_{V-A} \sum_{q^{\prime}} e_{q^{\prime}}\left(\bar{q}^{\prime} q^{\prime}\right)_{V \pm A}
$$

$$
O_{8,10}=\frac{3}{2}\left(\bar{q}_{i} b_{j}\right)_{V-A} \sum_{q^{\prime}} e_{q^{\prime}}\left(\bar{q}_{j}^{\prime} q_{i}^{\prime}\right)_{V}
$$

$$
O_{11}=\frac{g_{s}}{16 \pi^{2}} \bar{q} \sigma_{\mu \nu} G^{\mu \nu}\left(1+\gamma_{5}\right) b
$$

$$
O_{12}=\frac{Q_{b} e}{16 \pi^{2}} \bar{q} \sigma_{\mu \nu} F^{\mu \nu}\left(1+\gamma_{5}\right) b
$$

The $S U(3)$ flavor symmetry transformation properties for operators $O_{1,2}, O_{3-6,11,12}$, and O_{7-10} are: $\overline{3}_{a}+\overline{3}_{b}+6+\overline{15}, \overline{3}$, and $\overline{3}_{a}+\overline{3}_{b}+6+\overline{15}$, respectively. We indicate these representations by matrices in $S U(3)$ flavor space by $H(\overline{3}), H(6)$ and $H(\overline{15})$. For $q=d$, the non-zero entries of the matrices $H(i)$ are given by [12, 13]

$$
\begin{align*}
H(\overline{3})^{2} & =1, H(6)_{1}^{12}=H(6)_{3}^{23}=1, \quad H(6)_{1}^{21}=H(6)_{3}^{32}=-1 \\
H(\overline{15})_{1}^{12} & =H(\overline{15})_{1}^{21}=3, H(\overline{15})_{2}^{22}=-2, H(\overline{15})_{3}^{32}=H(\overline{15})_{3}^{23}=-1 \tag{2.4}
\end{align*}
$$

And for $q=s$, the non-zero entries are

$$
H(\overline{3})^{3}=1, \quad H(6)_{1}^{13}=H(6)_{2}^{32}=1, \quad H(6)_{1}^{31}=H(6)_{2}^{23}=-1
$$

$$
A=<\text { final state }\left|H_{e f f}^{q}\right| \bar{B}_{13}>=V_{u b} V_{u q}^{*} T(q)+V_{t b} V_{t q}^{*} P(q)
$$

$$
A=<\text { final state }\left|H_{e f f}^{q}\right| \bar{B}>=V_{u b} V_{u q}^{*} T(q)+V_{t b} V_{t q}^{*} P(q)
$$

$$
\begin{aligned}
& T(q)=A_{3}^{T} \bar{B}_{i} H(\overline{3})^{i}\left(M_{l}^{k} M_{k}^{l}\right)+C_{3}^{T} \bar{B}_{i} M_{k}^{i} M_{j}^{k} H(\overline{3})^{j} \\
&+A_{6}^{T} \bar{B}_{i} H(6)_{k}^{i j} M_{j}^{l} M_{l}^{k}+C_{6}^{T} \bar{B}_{1} M_{j}^{i} H(6)_{l}^{j k} M_{k}^{l} \\
&+A_{15}^{T} \bar{B}_{i} H\left(\overline{15}{ }_{k}^{i j} M_{j}^{l} M_{l}^{k}+C_{15}^{T} \bar{B}_{i} M_{j}^{i} H(\overline{15})_{l}^{j k} M_{k}^{l}\right. \\
& B_{i}=\left(B^{+}, B^{0}, B_{s}^{0}\right) \text { is an } S U(3) \text { triplet: } \\
& M_{i}^{j} \text { is the } S U(3) \text { pseudoscalar octet, }
\end{aligned}
$$

Ai-annihilation amplitude, small. $\mathrm{C}_{6}-\mathrm{A}_{6}$ appear together, just use C_{6}. Smilar structure for penguin amplitude, indicate the corresponding amplitudes by A_{i}^{P} and C_{i}^{P}.

Other Similar Tests

SU(3) decay amplitudes for B \rightarrow PP

$$
\Delta S=-1
$$

$$
T_{\pi^{-} \bar{K}^{0}}^{B_{u}}(s)=C_{\overline{3}}^{T}-C_{6}^{T}+3 A_{15}^{T}-C_{15}^{T},
$$

$$
T_{\pi^{0} K^{-}}^{B_{u}}(s)=\frac{1}{\sqrt{2}}\left(C_{3}^{T}-C_{6}^{T}+3 A_{15}^{T}+7 C_{15}^{T}\right),
$$

$$
T_{\eta_{8} K^{-}}^{B_{u}}(s)=\frac{1}{\sqrt{6}}\left(-C_{3}^{T}+C_{6}^{T}-3 A_{15}^{T}+9 C_{15}^{T}\right),
$$

$$
T_{\pi^{+} K^{-}}^{B_{d}}(s)=C_{3}^{T}+C_{6}^{T}-A_{15}^{T}+3 C_{15}^{T},
$$

$$
T_{\pi^{0} \pi^{0}}^{B_{d}}(d)=\frac{1}{\sqrt{2}}\left(2 A_{3}^{T}+C_{\overline{3}}^{T}+C_{6}^{T}+A_{15}^{T}-5 C_{15}^{T}\right), T_{\pi^{0} \tilde{K}^{0}}^{B_{d}}(s)=-\frac{1}{\sqrt{2}}\left(C_{3}^{T}+C_{6}^{T}-A_{15}^{T}-5 C_{15}^{T}\right),
$$

$$
T_{K^{-} K^{+}}^{B_{d}}(d)=2\left(A_{3}^{T}+A_{15}^{T}\right), \quad T_{\eta_{8} K^{0}}^{B_{d}}(s)=-\frac{1}{\sqrt{6}}\left(C_{\overline{3}}^{T}+C_{6}^{T}-A_{15}^{T}-5 C_{15}^{T}\right),
$$

$$
T_{\pi^{0} \pi^{0}}^{B_{s}}(s)=\sqrt{2}\left(A_{3}^{T}+A_{15}^{T}\right),
$$

$$
T_{\eta_{8} \eta_{8}}^{B_{d}}(d)=\frac{1}{\sqrt{2}}\left(2 A_{\overline{3}}+\frac{1}{3} C_{\overline{3}}^{T}-C_{6}^{T}-A_{15}^{T}+C_{\overline{15}}\right), \quad T_{K^{+} K^{-}}^{B_{s}}(s)=2 A_{\overline{3}}^{T}+C_{\overline{3}}^{T}+C_{6}^{T}+A_{15}^{T}+3 C_{15}^{T},
$$

$$
T_{K^{0} \bar{K}^{0}}^{B_{s}}(s)=2 A_{\overline{3}}^{T}+C_{\overline{3}}^{T}-C_{6}^{T}-3 A_{15}^{T}-C_{15}^{T},
$$

$$
T_{\pi^{0} \eta_{8}}^{B_{s}}(s)=\frac{2}{\sqrt{3}}\left(C_{6}^{T}+2 A_{15}^{T}-2 C_{15}^{T}\right),
$$

$$
T_{\eta_{8} \eta_{8}}^{B_{s}}(s)=\sqrt{2}\left(A_{3}^{T}+\frac{2}{3} C_{\overline{3}}^{T}-A_{15}^{T}-2 C_{15}^{T}\right) .
$$

The amplitudes Ai is called the annihilation amplitudes which are small!

$$
\begin{aligned}
& \Delta S=0 \\
& T_{\pi^{-} \pi^{0}}^{B_{u}}(d)=\frac{8}{\sqrt{2}} C_{15}^{T}, \\
& T_{\pi-\eta_{8}}^{B_{u}}(d)=\frac{2}{\sqrt{6}}\left(C_{\overline{3}}^{T}-C_{6}^{T}+3 A_{15}^{T}+3 C_{\overline{15}}\right), \\
& T_{K^{-} K^{0}}^{B_{u}}(d)=C_{3}^{T}-C_{6}^{T}+3 A_{15}^{T}-C_{15}^{T}, \\
& T_{\pi^{+} \pi^{-}}^{B_{d}}(d)=2 A_{\overline{3}}^{T}+C_{\overline{3}}^{T}+C_{6}^{T}+A_{15}^{T}+3 C_{15}^{T}, \\
& T_{\pi^{0} \eta_{8}}^{B_{d}}(d)=\frac{1}{\sqrt{3}}\left(-C_{\overline{3}}^{T}+C_{6}^{T}+5 A_{15}^{T}+C_{\overline{15}}\right) \text {, } \\
& T_{K^{+} \pi^{-}}^{B_{s}}(d)=C_{\overline{3}}^{T}+C_{6}^{T}-A_{15}^{T}+3 C_{\overline{15}} \text {, } \\
& T_{K^{0} \pi^{0}}^{B_{s}}(d)=-\frac{1}{\sqrt{2}}\left(C_{\overline{3}}^{T}+C_{6}^{T}-A_{15}^{T}-5 C_{\overline{15}}\right) \text {, } \\
& T_{K^{\mathrm{o}} \eta_{8}}^{B_{s}}(d)=-\frac{1}{\sqrt{6}}\left(C_{\overline{3}}^{T}+C_{6}^{T}-A_{15}^{T}-5 C_{\overline{15}}\right) \text {, }
\end{aligned}
$$

Several other SU(3) predictions

P1) $\Delta\left(B^{+} \rightarrow K^{+} \bar{K}^{0}\right)=-\Delta\left(B^{+} \rightarrow K^{0} \pi^{+}\right)$,
P2) $\Delta\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{-} K^{+}\right)$,
P3) $\Delta\left(B^{0} \rightarrow K^{+} K^{-}\right)=-\Delta\left(B_{s}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-2 \Delta\left(B_{s}^{0} \rightarrow \pi^{0} \pi^{0}\right)$,
P4) $\Delta\left(B^{0} \rightarrow \bar{K}^{0} K^{0}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{0} \bar{K}^{0}\right)$,
P5) $\Delta\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)=-\Delta\left(B^{0} \rightarrow K^{+} \pi^{-}\right)$,
P6) $\Delta\left(B_{s}^{0} \rightarrow \bar{K}^{0} \pi^{0}\right)=-\Delta\left(B^{0} \rightarrow K^{0} \pi^{0}\right)$.

Neglect annihilation contributions, neglecting A _i

$$
P 1) \approx P 4), \quad P 2) \approx P 5), \quad P 6) \approx \Delta\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)
$$

Example:

$$
A=V_{u b} V_{u q}^{*} T+V_{t b} V_{t q}^{*} P
$$

$$
\begin{aligned}
& T\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+} ; \bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right)=C_{3}^{T}+C_{6}^{T}-A_{15}^{T}+3 C_{15}^{T}, \\
& P\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+} ; \bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right)=C_{\overline{3}}^{P}+C_{6}^{P}-A_{15}^{P}+3 C_{15}^{P}, \\
& T\left(\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}\right)=2 A_{3}^{T}+C_{3}^{T}+C_{6}^{T}+A_{15}^{T}+3 C_{15}^{T}, \\
& P\left(\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}\right)=2 A_{\overline{3}}^{P}+C_{\overline{3}}^{P}+C_{6}^{P}-A_{15}^{P}+3 C_{15}^{P} .
\end{aligned}
$$

neglecting annihilation contributions: $T\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+} ; \bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right)=T\left(\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}\right)$,
setting $A_{i}=0$

$$
P\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+} ; \bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right)=P\left(\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}\right) .
$$

$$
\frac{A_{C P}\left(\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}\right)}{A_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)} \approx-\frac{B r\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)}{\operatorname{Br}\left(\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}\right)}
$$

Data left: -3.78+-0.67 right: -3.72+-0.17
Agree very well. Neglecting annihilation may be a good approximation!

SU(3) breaking effects

Naïve factorization: Deshpand and He, 1995, He 1998

$A\left(B^{0} \rightarrow K^{+} \pi^{-}\right) \sim\left(m_{B}^{2}-m_{\pi}^{2}\right) f_{K} F_{0}^{B \rightarrow \pi}\left(m_{K}^{2}\right)$
$A\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right) \sim\left(m_{B_{s}}^{2}-m_{K}^{2}\right) f_{\pi} F_{0}^{B \rightarrow K}\left(m_{\pi}^{2}\right)$

$$
r_{c} \approx \frac{\lambda_{K \pi}^{B} / m_{B}}{\lambda_{K \pi}^{B} / m_{B_{s}}}\left(\frac{\left(m_{B}^{2}-m_{\pi}^{2}\right) f_{K} F_{b}^{B \rightarrow \pi}\left(m_{K}^{2}\right)}{\left(m_{B_{s}}^{2}-m_{K}^{2}\right) f_{\pi} F_{0}^{B_{s} \rightarrow K}\left(m_{\pi}^{2}\right)}\right)^{2}
$$

QCD factorization: other SU(3) breaking effect. Deshpande, et al, 2003 Example: K, pi wave function amplitudes

Beneke, 2003
Wang and Zhu, 2013

$$
\Phi_{M}(x)=6 x(1-x)\left[1+\alpha_{1} C_{1}^{(3 / 2)}(2 x-1)+\alpha_{2} C_{2}^{3 / 2}(2 x-1)+\ldots\right]
$$

$$
r_{c} \approx \frac{\lambda_{K \pi}^{B} / m_{B}}{\lambda_{K \pi}^{B_{s}} / m_{B_{s}}}\left(\frac{\left(m_{B}^{2}-m_{\pi}^{2}\right) f_{K} F_{0}^{B \rightarrow \pi}\left(m_{K}^{2}\right)}{\left(m_{B_{s}}^{2}-m_{K}^{2}\right) f_{\pi} F_{0}^{B_{s} \rightarrow K}\left(m_{\pi}^{2}\right)}\right)^{2}
$$

rc range: 0.86-1.67,

$$
\times\left[\frac{1-0.748 \alpha_{1}^{K}-0.109 \alpha_{2}^{K}-0.017 H_{K \pi}^{B}}{1-0.748 \alpha_{1}^{\pi}-0.109 \alpha_{2}^{\pi}-0.017 H_{\pi K}^{B_{s}}}\right] .
$$

central value: 1.15

PQCD estimate: rc range: $0.90-1.10$, central value: 1.0.
C. D Lu et al. 2007

Data consistent with $\mathrm{SU}(3)$ prediction. Not conclusive whether SU(3) breaking effects showed up.

3. CPV relations with flavor $\mathrm{SU}(3)$ for b-baryons

X-G He, G -N Li arXiv:1501.00846, and M He, -G He, -N Li in preparation

Experimental observables

$\mathcal{B} \rightarrow \mathcal{M}+\mathcal{F}$ decay amplitude \mathcal{A} induced by weak interaction in the SM
can have both parity conserving A_{c} and violating A_{v} amplitudes

$$
\mathcal{A}=\mathcal{M} \overline{\mathcal{F}}\left(A_{v}+i A_{c} \gamma_{5}\right) \mathcal{B}=S+P \sigma \cdot \vec{p}_{c}, \quad \Gamma=2\left|p_{c}\right|\left(|\mathcal{S}|^{2}+|\mathcal{P}|^{2}\right),
$$

$\left|p_{c}\right|=\sqrt{E_{\mathcal{F}}^{2}-m_{\mathcal{F}}^{2}}$ is the final baryon \mathcal{F} momentum.
\mathcal{S} and \mathcal{P} are referred as S - and P - wave amplitudes with

$$
\mathcal{S}=A_{v} \sqrt{\frac{\left(m_{\mathcal{B}}+m_{\mathcal{F}}\right)^{2}-m_{\mathcal{M}}^{2}}{16 \pi m_{\mathcal{B}}^{2}}}, \quad \mathcal{P}=A_{c} \sqrt{\frac{\left(m_{\mathcal{B}}-m_{\mathcal{F}}\right)^{2}-m_{\mathcal{M}}^{2}}{16 \pi m_{\mathcal{B}}^{2}}} .
$$

More observables in the decay angular distribution. In the rest frame of the initial b-baryon,

$$
\frac{4 \pi}{\Gamma} \frac{d \Gamma}{d \Omega}=1+\alpha \vec{s}_{\mathcal{B}} \cdot \vec{n}+\vec{s}_{\mathcal{F}} \cdot\left[\left(\alpha+\vec{s}_{\mathcal{B}} \cdot \vec{n}\right) \vec{n}+\beta \vec{s}_{\mathcal{B}} \times \vec{n}+\gamma\left(\vec{n} \times\left(\vec{s}_{\mathcal{B}} \times \vec{n}\right)\right)\right],
$$

$\vec{s}_{\mathcal{B}}, \vec{s}_{\mathcal{F}}$ are the spins of initial b-baryon and final octet baryon,
$\vec{n}=\vec{p}_{c} /\left|p_{c}\right|$ is the direction of the final baryon \mathcal{F}.

$$
\alpha=\frac{2 \operatorname{Re}\left(\mathcal{S}^{*} \mathcal{P}\right)}{|\mathcal{S}|^{2}+|\mathcal{P}|^{2}}, \beta=\frac{2 \operatorname{Im}\left(\mathcal{S}^{*} \mathcal{P}\right)}{|\mathcal{S}|^{2}+|\mathcal{P}|^{2}}, \gamma=\frac{|\mathcal{S}|^{2}-|\mathcal{P}|^{2}}{|\mathcal{S}|^{2}+|\mathcal{P}|^{2}} .
$$

only two of them are independent with $\alpha^{2}+\beta_{19}^{2}+\gamma^{2}=1$.

CP violating observables

$$
A_{C P}=\frac{\Gamma-\bar{\Gamma}}{\Gamma+\bar{\Gamma}}, \quad A_{\alpha}=\frac{\Gamma \alpha+\bar{\Gamma} \bar{\alpha}}{\Gamma+\bar{\Gamma}}
$$

In the SM there are tree and penguin contributions to \mathcal{S} and \mathcal{P} amplitudes can be written as:

$$
\begin{aligned}
& \mathcal{S}(q)=V_{u b} V_{u q}^{*} T(q)_{0}+V_{t b} V_{t q}^{*} P(q)_{0}, \mathcal{P}(q)=V_{u b} V_{u q}^{*} T(q)_{1}+V_{t b} V_{t q}^{*} P(q)_{1}, \\
& \overline{\mathcal{S}}(q)=-\left[V_{u b}^{*} V_{u q} T(q)_{0}+V_{t b}^{*} V t q P(q)_{0}\right], \overline{\mathcal{P}}(q)=V_{u b}^{*} V_{u q} T(q)_{1}+V_{t b}^{*} V t q P(q)_{1},
\end{aligned}
$$

Then

$$
\Delta(q)=\Gamma(q)-\bar{\Gamma}(q)=-8\left|p_{c}\right| \operatorname{Im}\left(V_{u b} V_{u q}^{*} V_{t b}^{*} V_{t q}\right) \operatorname{Im}\left[T(q)_{0} P(q)_{0}^{*}+T(q)_{1} P(q)_{1}^{*}\right]
$$

$$
\Gamma \alpha+\bar{\Gamma} \bar{\alpha}=\operatorname{Re}\left(\mathcal{S}^{*} \mathcal{P}\right)+\operatorname{Re}\left(\overline{\mathcal{S}}^{*} \overline{\mathcal{P}}\right)=2 \operatorname{Im}\left(V_{u b} V_{u q}^{*} V_{t b}^{*} V_{t q}\right)\left[\operatorname{Im}\left(T(q)_{0}^{*} P(q)_{1}\right)-\operatorname{Im}\left(P(q)_{0}^{*} T(q)_{1}\right)\right]
$$

$A_{C P}$ and A_{α} probe different combinations of CPV amplitudes.

Model calculations

(a)

(b)
C.-D. Lv et al, PRD80, 034011 (2009)

	pQCD (conventional)	pQCD (hybrid scheme)
$\mathcal{B}\left(\Lambda_{b} \rightarrow p \pi\right)$	$4.66_{-1.74-0.35-0.35}^{+2.08+0.70+0.35} \times 10^{-6}$	$5.21_{-1.89}^{+2.42+0.10-0.37} \times 10^{-6}$
$\mathcal{B}\left(\Lambda_{b} \rightarrow p K\right)$	$1.82_{-0.71-0.80-0.05}^{+0.74+0.62+0.07} \times 10^{-6}$	$2.02_{-0.86-0.90-0.05}^{+0.78+0.55+0.10} \times 10^{-6}$
$A_{\mathrm{CP}}\left(\Lambda_{b} \rightarrow p \pi\right)$	$-0.32_{-0.00-0.00-0.01}^{+0.27+0.41+0.01}$	$-0.31_{-0.00-0.00-0.01}^{+0.28+0.32+0.01}$
$A_{\mathrm{CP}}\left(\Lambda_{b} \rightarrow p K\right)$	$-0.03_{-0.00-0.04-0.00}^{+0.21+0.13+0.00}$	$-0.05_{-0.00-0.05-0.00}^{+0.26+0.03+0.01}$
$\alpha\left(\Lambda_{b} \rightarrow p \pi\right)$	$-0.83_{-0.01}^{+0.03+0.07}{ }_{-0.00}^{+0.01}$	$-0.84_{-0.00-0.00-0.01}^{+0.03+0.00}+0.01$
$\alpha\left(\Lambda_{b} \rightarrow p K\right)$	$0.03_{-0.36-0.07-0.05}^{+0.00+0.00+0.03}$	$0.08_{-0.38-0.42-0.04}^{+0.00+0.05+0.04}$

Direct CP violation in Λ_{b} decays

Y.K. Hsiao ${ }^{1,2}$ and C.Q. Geng ${ }^{1,2,3}$

${ }^{1}$ Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan 300
${ }^{2}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300
${ }^{3}$ Chongqing University of Posts 85 Telecommunications, Chongqing, 400065, China arXiv: 1412.1899 (Dated: December 8, 2014)

our result	pQCD [5]	data	
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p K^{-}\right)$	$4.8 \pm 0.7 \pm 0.1 \pm 0.3$	$2.0_{-1.3}^{+1.0}$	$4.9 \pm 0.9[4]$
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p \pi^{-}\right)$	$4.2 \pm 0.6 \pm 0.4 \pm 0.2$	$5.2_{-1.9}^{+2.5}$	$4.1 \pm 0.8[4]$
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p K^{*-}\right)$	$2.5 \pm 0.3 \pm 0.2 \pm 0.3$	-	-
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p \rho^{-}\right)$	$11.4 \pm 1.6 \pm 1.2 \pm 0.6$	-	-
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p K^{-}\right)$	$5.8 \pm 0.2 \pm 0.1$	-5_{-5}^{+26}	$-10 \pm 8 \pm 4[8]$
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p \pi^{-}\right)$	$-3.9 \pm 0.2 \pm 0.0$	-31_{-1}^{+43}	$6 \pm 7 \pm 3[8]$
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p K^{*-}\right)$	$19.6 \pm 1.3 \pm 1.0$	-	-
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p \rho^{-}\right)$	$-3.7 \pm 0.3 \pm 0.0$	-	-

Construction of SU(3) decay amplitudes

Example: the $T(q)$ amplitude for antitriplet is gievn by

$$
\begin{aligned}
& T_{\text {tri }}(q)=a(\overline{3})\left\langle\mathcal{F}_{l}^{k} \mathcal{M}_{k}^{l}\right| H(\overline{3})^{i}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}}+b(\overline{3})_{1}\left\langle\mathcal{F}_{j}^{k} \mathcal{M}_{k}^{i}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}} \\
& +b(\overline{3})_{2}\left\langle\mathcal{F}_{k}^{i} \mathcal{M}_{j}^{k}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}}+a(6)_{1}\left\langle\mathcal{F}_{l}^{k} \mathcal{M}_{j}^{l}\right| H(6)_{k}^{i j}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}} \\
& +a(6)_{2}\left\langle\mathcal{F}_{j}^{l} \mathcal{M}_{l}^{k}\right| H(6)_{k}^{i j}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}}+b(6)_{1}\left\langle\mathcal{F}_{k}^{l} \mathcal{M}_{j}^{i}\right| H(6)_{l}^{j k}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}} \\
& +b(6)_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{k}^{l}\right| H(6)_{l}^{j k}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}}+a(\overline{15})_{1}\left\langle\mathcal{F}_{l}^{k} \mathcal{M}_{j}^{l}\right| H(\overline{15})_{k}^{i j}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}} \\
& +a(\overline{15})_{2}\left\langle\mathcal{F}_{j}^{l} \mathcal{M}_{l}^{k}\right| H(\overline{15})_{k}^{i j}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}}+b(\overline{15})_{1}\left\langle\mathcal{F}_{k}^{l} \mathcal{M}_{j}^{i}\right| H(\overline{15})_{l}^{j k}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}} \\
& +b(\overline{15})_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{k}^{l}\right| H(\overline{15})_{l}^{j k}\left|\mathcal{B}_{i^{\prime} i^{\prime \prime}}\right\rangle \epsilon^{i i^{\prime} i^{\prime \prime}} \\
& +c(\overline{3})\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{3})^{i^{\prime \prime}}\left|\mathcal{B}_{j j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+d(\overline{3})_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime \prime} j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +d(\overline{3})_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime \prime} j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+e(\overline{3})_{1}\left\langle\mathcal{M}_{j^{\prime}}^{i} \mathcal{F}_{j}^{i^{\prime}}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime \prime} j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +e(\overline{3})_{2}\left\langle\mathcal{F}_{j^{\prime}}^{i} \mathcal{M}_{j}^{i^{\prime}}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime \prime} j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+c(6)\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{j j^{\prime}}\left|\mathcal{B}_{i^{\prime \prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +d(6)_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{i^{\prime \prime} j}\left|\mathcal{B}_{j^{\prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+d(6)_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{i^{\prime \prime} j}\left|\mathcal{B}_{j^{\prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +e(6)_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{i^{\prime \prime} j^{\prime}}\left|\mathcal{B}_{j k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+e(6)_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{i^{\prime \prime} j^{\prime}}\left|\mathcal{B}_{j k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +f(6)\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{k}\right| H(6)_{k}^{i^{\prime} i^{\prime \prime}}\left|\mathcal{B}_{j j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+g(6)\left\langle\mathcal{M}_{j}^{k} \mathcal{F}_{j^{\prime}}^{i}\right| H(6)_{k}^{i^{\prime} i^{\prime \prime}}\left|\mathcal{B}_{j j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +m(6)\left\langle\mathcal{M}_{j}^{k} \mathcal{F}_{k}^{j}\right| H(6)_{l}^{i i^{\prime}}\left|\mathcal{B}_{i^{\prime \prime} l}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+n(6)_{1}\left\langle\mathcal{M}_{j}^{k} \mathcal{F}_{l}^{j}\right| H(6)_{k}^{i i^{\prime}}\left|\mathcal{B}_{i^{\prime \prime} l}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +n(6)_{2}\left\langle\mathcal{F}_{j}^{k} \mathcal{M}_{l}^{j}\right| H(6)_{k}^{i i^{\prime}}\left|\mathcal{B}_{i^{\prime \prime} l}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+c(\overline{15})\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{j j^{\prime}}\left|\mathcal{B}_{i^{\prime \prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +d(\overline{15})_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{i^{\prime \prime} j}\left|\mathcal{B}_{j^{\prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+d(\overline{15})_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{i^{\prime \prime} j}\left|\mathcal{B}_{j^{\prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +e(\overline{15})_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{i^{\prime \prime} j^{\prime}}\left|\mathcal{B}_{j k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+e(\overline{15})_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{i^{\prime \prime} j^{\prime}}\left|\mathcal{B}_{j k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}
\end{aligned}
$$

Similar for penguin amplitudes, and also for ${ }^{23}$ S-wave and P -wave amplidues \mathcal{S} and \mathcal{P}.

For the sextet baryons, the $S U(3)$ invariant amplitude can be expressed by

$$
\begin{aligned}
& T_{s e x}(q)=a(\overline{3})\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{3})^{i^{\prime \prime}}\left|\mathcal{B}_{j j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+b(\overline{3})_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime \prime} j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +b(\overline{3})_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime \prime} j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+c(\overline{3})_{1}\left\langle\mathcal{M}_{j^{\prime}}^{i} \mathcal{F}_{j}^{i^{\prime}}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime \prime} j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +c(\overline{3})_{2}\left\langle\mathcal{F}_{j^{\prime}}^{i} \mathcal{M}_{j}^{i^{\prime}}\right| H(\overline{3})^{j}\left|\mathcal{B}_{i^{\prime \prime} j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+a(6)\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{j j^{\prime}}\left|\mathcal{B}_{i^{\prime \prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +b(6)_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{i^{\prime \prime} j}\left|\mathcal{B}_{j^{\prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+b(6)_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{i^{\prime \prime} j}\left|\mathcal{B}_{j^{\prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +c(6)_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{i^{\prime \prime} j^{\prime}}\left|\mathcal{B}_{j k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+c(6)_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(6)_{k}^{i^{\prime \prime} j^{\prime}}\left|\mathcal{B}_{j k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +d(6)\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{k}\right| H(6)_{k}^{i^{\prime} i^{\prime \prime}}\left|\mathcal{B}_{j j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+e(6)\left\langle\mathcal{M}_{j}^{k} \mathcal{F}_{j^{\prime}}^{i}\right| H(6)_{k}^{i^{\prime} i^{\prime \prime}}\left|\mathcal{B}_{j j^{\prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +f(6)\left\langle\mathcal{M}_{j}^{k} \mathcal{F}_{k}^{j}\right| H(6)_{l}^{i i^{\prime}}\left|\mathcal{B}_{i^{\prime \prime \prime}}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+g(6)_{1}\left\langle\mathcal{M}_{j}^{k} \mathcal{F}_{l}^{j}\right| H(6)_{k}^{i i^{\prime}}\left|\mathcal{B}_{i^{\prime \prime} l}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +g(6)_{2}\left\langle\mathcal{F}_{j}^{k} \mathcal{M}_{l}^{j}\right| H(6)_{k}^{i i^{\prime}}\left|\mathcal{B}_{i^{\prime \prime} l}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+a(\overline{15})\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{j j^{\prime}}\left|\mathcal{B}_{i^{\prime \prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +b(\overline{15})_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{i^{\prime \prime} j}\left|\mathcal{B}_{j^{\prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+b(\overline{15})_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{i^{\prime \prime} j}\left|\mathcal{B}_{j^{\prime} k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}} \\
& +c(\overline{15})_{1}\left\langle\mathcal{M}_{j}^{i} \mathcal{F}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{i^{\prime \prime} j^{\prime}}\left|\mathcal{B}_{j k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}}+c(\overline{15})_{2}\left\langle\mathcal{F}_{j}^{i} \mathcal{M}_{j^{\prime}}^{i^{\prime}}\right| H(\overline{15})_{k}^{i^{\prime \prime} j^{\prime}}\left|\mathcal{B}_{j k}\right\rangle \epsilon_{i i^{\prime} i^{\prime \prime}},
\end{aligned}
$$

$\mathcal{B}^{i j}$ with (i, j) is symmetric, and due to the nature of matrix $H_{k}^{i j}$,
(i, j) is antisymmetric for (6), while symmetric for $(\overline{15})$,
so $a(\overline{3}), a(6), d(6), e(6), f(6), a(\overline{15})$ have no new contribution with the exchange of \mathcal{F} and \mathcal{M}. for $(\overline{15})$, it do not have d, e, f, g terms like (6) for the symmetric nature of (i, j) of $H_{k}^{i j}(\overline{15})$.

Expanding previous relations, one obtains the decay amplitudes for all decay processes.
One finds the following relations for anti-triplet decays:

$$
\begin{array}{ll}
T\left(\Xi_{b}^{-} \rightarrow K^{-} n\right)=T\left(\Xi_{b}^{-} \rightarrow \pi^{-} \Xi^{0}\right), & T\left(\Xi_{b}^{0} \rightarrow \bar{K}^{0} n\right)=T\left(\Lambda_{b}^{0} \rightarrow K^{0} \Xi^{0}\right), \\
T\left(\Xi_{b}^{-} \rightarrow K^{0} \Xi^{-}\right)=T\left(\Xi_{b}^{-} \rightarrow \bar{K}^{0} \Sigma^{-}\right), & T\left(\Xi_{b}^{0} \rightarrow K^{0} \Xi^{0}\right)=T\left(\Lambda_{b}^{0} \rightarrow \bar{K}^{0} n\right), \\
T\left(\Xi_{b}^{0} \rightarrow \pi^{-} \Sigma^{+}\right)=T\left(\Lambda_{b}^{0} \rightarrow K^{-} p\right), & T\left(\Lambda_{b}^{0} \rightarrow \pi^{-} p\right)=T\left(\Xi_{b}^{0} \rightarrow K^{-} \Sigma^{+}\right) ; \\
T\left(\Xi_{b}^{0} \rightarrow \pi^{+} \Sigma^{-}\right)=T\left(\Lambda_{b}^{0} \rightarrow K^{+} \Xi^{-}\right), & T\left(\Lambda_{b}^{0} \rightarrow K^{+} \Sigma^{-}\right)=T\left(\Xi_{b}^{0} \rightarrow \pi^{+} \Xi^{-}\right), \\
T\left(\Xi_{b}^{-} \rightarrow \eta_{1} \Sigma^{-}\right)=T\left(\Xi_{b}^{-} \rightarrow \eta_{1} \Xi^{-}\right), & T\left(\Lambda_{b}^{0} \rightarrow \eta_{1} n\right)=T\left(\Xi_{b}^{0} \rightarrow \eta_{1} \Xi^{0}\right), \\
T\left(\Xi_{b}^{0} \rightarrow K^{-} p\right)=T\left(\Lambda_{b}^{0} \rightarrow \pi^{-} \Sigma^{+}\right), & T\left(\Xi_{b}^{0} \rightarrow K^{+} \Xi^{-}\right)=T\left(\Lambda_{b}^{0} \rightarrow \pi^{+} \Sigma^{-}\right) .
\end{array}
$$

These relations are due to U-spin symmetry: d and s exchange ($\Delta S=0$ and $\Delta S=-1$).

$$
\begin{array}{ll}
T\left(\Sigma_{b}^{+} \rightarrow n \pi^{+}\right)=-T\left(\Sigma_{b}^{+} \rightarrow \Xi^{0} K^{+}\right), & T\left(\Sigma_{b}^{+} \rightarrow \Sigma^{+} K^{0}\right)=-T\left(\Sigma_{b}^{+} \rightarrow p \bar{K}^{0}\right), \\
T\left(\Sigma_{b}^{-} \rightarrow n \pi^{-}\right)=-T\left(\Omega_{b}^{-} \rightarrow \Xi^{0} K^{-}\right), & T\left(\Sigma_{b}^{-} \rightarrow \Sigma^{-} K^{0}\right)=-T\left(\Omega_{b}^{-} \rightarrow \Xi^{-} \bar{K}^{0}\right), \\
T\left(\Omega_{b}^{-} \rightarrow \Xi^{0} \pi^{-}\right)=-T\left(\Sigma_{b}^{-} \rightarrow n K^{-}\right), & T\left(\Omega_{b}^{-} \rightarrow \Sigma^{-} \bar{K}^{0}\right)=-T\left(\Sigma_{b}^{-} \rightarrow \Xi^{-} K^{0}\right), \\
T\left(\Sigma_{b}^{0} \rightarrow \Sigma^{-} K^{+}\right)=-T\left(\Xi_{b}^{\prime 0} \rightarrow \Xi^{-} \pi^{+}\right), & T\left(\Sigma_{b}^{0} \rightarrow p \pi^{-}\right)=-T\left(\Xi_{b}^{0} \rightarrow \Sigma^{+} K^{-}\right) ; \\
T\left(\Xi_{b}^{\prime 0} \rightarrow \Xi^{-} K^{+}\right)=-T\left(\Sigma_{b}^{0} \rightarrow \Sigma^{-} \pi^{+}\right), & T\left(\Xi_{b}^{\prime 0} \rightarrow \Sigma^{-} \pi^{+}\right)=-T\left(\Sigma_{b}^{0} \rightarrow \Xi^{-} K^{+}\right), \\
T\left(\Xi_{b}^{\prime 0} \rightarrow p K^{-}\right)=-T\left(\Sigma_{b}^{0} \rightarrow \Sigma^{+} \pi^{-}\right), & T\left(\Xi_{b}^{\prime 0} \rightarrow \Sigma^{+} \pi^{-}\right)=-T\left(\Sigma_{b}^{0} \rightarrow p K^{-}\right), \\
T\left(\Xi_{b}^{\prime 0} \rightarrow \Xi^{0} K^{0}\right)=-T\left(\Sigma_{b}^{0} \rightarrow n \bar{K}^{0}\right), & T\left(\Xi_{b}^{\prime 0} \rightarrow n \bar{K}^{0}\right)=-T\left(\Sigma_{b}^{0} \rightarrow \Xi^{0} K^{0}\right), \\
T\left(\Xi_{b}^{\prime-} \rightarrow n K^{-}\right)=-T\left(\Xi_{b}^{\prime-} \rightarrow \Xi^{0} \pi^{+}\right), & T\left(\Xi_{b}^{\prime-} \rightarrow \Xi^{-} K^{0}\right)=-T\left(\Xi_{b}^{\prime-} \rightarrow \Sigma^{-} \bar{K}^{0}\right) .
\end{array}
$$

In addition to U-spin amplitude relations, there are also some isospin relations

$$
T\left(\Omega_{b}^{-} \rightarrow \pi^{-} \Xi^{0}\right)=\frac{1}{\sqrt{2}} T\left(\Omega_{b}^{-} \rightarrow \pi^{0} \Xi^{-}\right) ; T\left(\Omega_{b}^{-} \rightarrow K^{-} \Sigma^{0}\right)=\frac{1}{\sqrt{2}} T\left(\Omega_{b}^{-} \rightarrow \bar{K}^{0} \Sigma^{-}\right)
$$

Using

$$
\begin{aligned}
& \mathcal{S}(q)=V_{u b} V_{u q}^{*} T(q)_{0}+V_{t b} V_{t q}^{*} P(q)_{0}, \mathcal{P}(q)=V_{u b} V_{u q}^{*} T(q)_{1}+V_{t b} V_{t q}^{*} P(q)_{1} \\
& \overline{\mathcal{S}}(q)=-\left[V_{u b}^{*} V_{u q} T(q)_{0}+V_{t b}^{*} V t q P(q)_{0}\right], \overline{\mathcal{P}}(q)=V_{u b}^{*} V_{u q} T(q)_{1}+V_{t b}^{*} V t q P(q)_{1} \\
& \Delta(q)=\Gamma(q)-\bar{\Gamma}(q)=-8\left|p_{c}\right| \operatorname{Im}\left(V_{u b} V_{u q}^{*} V_{t b}^{*} V_{t q}\right) \operatorname{Im}\left[T(q)_{0} P(q)_{0}^{*}+T(q)_{1} P(q)_{1}^{*}\right]
\end{aligned}
$$

The U-spin related pairs would have

$$
\Delta(d)=-\Delta(s), \frac{A_{C P}\left(\mathcal{B}_{a} \rightarrow \mathcal{M} \mathcal{F}\right)_{\Delta S=0}}{A_{C P}\left(\mathcal{B}_{b} \rightarrow \mathcal{M F}\right)_{\Delta S=-1}}=-\frac{\operatorname{Br}\left(\mathcal{B}_{b} \rightarrow \mathcal{M} \mathcal{F}\right)_{\Delta S=-1}}{\operatorname{Br}\left(\mathcal{B}_{a} \rightarrow \mathcal{M F}\right)_{\Delta S=0}} \cdot \frac{\tau_{\mathcal{B}_{a}}}{\tau_{\mathcal{B}_{b}}} .
$$

Comparison of relations for $B \rightarrow M M$ and $\mathcal{B} \rightarrow M F$.
Well tested relation in $B \rightarrow M M$

$$
\frac{A_{C P}\left(\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right)}{A_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)}=-\frac{\operatorname{Br}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right) \tau_{\bar{B}_{s}^{0}}}{\operatorname{Br}\left(\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right) \tau_{\bar{B}^{0}}}
$$

The present data give: left 3.41 ± 0.55 and right 3.56 ± 0.40.
These two values agree with the prediction very well.
Corresponding to the above relation, there are two relations for b-baryon decays.

$$
\begin{aligned}
& \frac{\mathcal{A}_{\alpha}\left(\mathcal{B}_{a} \rightarrow \mathcal{M \mathcal { F }}\right)_{\Delta S=0}}{\mathcal{A}_{\alpha}\left(\mathcal{B}_{b} \rightarrow \mathcal{M}\right)_{\Delta S=-1}}=-\frac{\operatorname{Br}\left(\mathcal{B}_{b} \rightarrow \mathcal{M} \mathcal{F}\right)_{\Delta S=-1}}{\operatorname{Br}\left(\mathcal{B}_{a} \rightarrow \mathcal{M} \mathcal{F}\right)_{\Delta S=0}} \cdot \frac{\tau_{\mathcal{B}_{a}}}{\tau_{\mathcal{B}_{b}}} \\
& \frac{A_{C P}\left(\mathcal{B}_{a} \rightarrow \mathcal{M \mathcal { F }) _ { \Delta S = 0 }}\right.}{A_{C P}\left(\mathcal{B}_{b} \rightarrow \mathcal{M \mathcal { F }}\right)_{\Delta S=-1}}=-\frac{\operatorname{Br}\left(\mathcal{B}_{b} \rightarrow \mathcal{M \mathcal { F }}\right)_{\Delta S=-1}}{\operatorname{Br}\left(\mathcal{B}_{a} \rightarrow \mathcal{M F}\right)_{\Delta S=0}} \cdot \frac{\tau_{\mathcal{B}_{a}}}{\tau_{\mathcal{B}_{b}}}
\end{aligned}
$$

These relations will hold at the same level as their $B \rightarrow M M$ counter parts.

Anti-triplet

Practical test for A_{CP} relations

$$
\begin{array}{ll}
\left(\Xi_{b}^{-} \rightarrow K^{0} \Xi^{-}, \quad \Xi_{b}^{-} \rightarrow \bar{K}^{0} \Sigma^{-}\right), & \\
\left(\Xi_{b}^{0} \rightarrow \pi^{-} \Sigma^{+}, \quad \Lambda_{b}^{0} \rightarrow K^{-} p\right), & \left(\Lambda_{b}^{0} \rightarrow \pi^{-} p, \quad \Xi_{b}^{0} \rightarrow K^{-} \Sigma^{+}\right), \\
\left(\Xi_{b}^{0} \rightarrow \pi^{+} \Sigma^{-}, \quad \Lambda_{b}^{0} \rightarrow K^{+} \Xi^{-}\right), & \left(\Lambda_{b}^{0} \rightarrow K^{+} \Sigma^{-}, \quad \Xi_{b}^{0} \rightarrow \pi^{+} \Xi^{-}\right), \\
\left(\Xi_{b}^{0} \rightarrow K^{-} p, \quad \Lambda_{b}^{0} \rightarrow \pi^{-} \Sigma^{+}\right), & \left(\Xi_{b}^{0} \rightarrow K^{+} \Xi^{-}, \quad \Lambda_{b}^{0} \rightarrow \pi^{+} \Sigma^{-}\right) .
\end{array}
$$

Practical test for A_{a} relations

$$
\begin{aligned}
& \left(\Xi_{b}^{-} \rightarrow K^{0} \Xi^{-}, \quad \Xi_{b}^{-} \rightarrow \bar{K}^{0} \Sigma^{-}\right), \quad\left(\Xi_{b}^{0} \rightarrow \pi^{+} \Sigma^{-}, \quad \Lambda_{b}^{0} \rightarrow K^{+} \Xi^{-}\right), \\
& \left(\Lambda_{b}^{0} \rightarrow K^{+} \Sigma^{-},\right. \\
& \left.\Xi_{b}^{0} \rightarrow \pi^{+} \Xi^{-}\right), \quad\left(\Xi_{b}^{0} \rightarrow K^{+} \Xi^{-},\right. \\
& \left.\Lambda_{b}^{0} \rightarrow \pi^{+} \Sigma^{-}\right) .
\end{aligned}
$$

Sextet

Practical test for A_{CP} relations

$$
\begin{aligned}
& \left(\Sigma_{b}^{+} \rightarrow \Sigma^{+} K^{0}, \quad \Sigma_{b}^{+} \rightarrow p \bar{K}^{0}\right), \quad\left(\Sigma_{b}^{-} \rightarrow \Sigma^{-} K^{0}, \quad \Omega_{b}^{-} \rightarrow \Xi^{-} \bar{K}^{0}\right), \\
& \left(\Omega_{b}^{-} \rightarrow \Sigma^{-} \bar{K}^{0}, \quad \Sigma_{b}^{-} \rightarrow \Xi^{-} K^{0}\right), \quad\left(\Sigma_{b}^{0} \rightarrow \Sigma^{-} K^{+}, \quad \Xi_{b}^{\prime 0} \rightarrow \Xi^{-} \pi^{+}\right), \\
& \left(\Sigma_{b}^{0} \rightarrow p \pi^{-}, \quad \Xi_{b}^{\prime 0} \rightarrow \Sigma^{+} K^{-}\right), \quad\left(\Xi_{b}^{\prime \prime} \rightarrow \Xi^{-} K^{+}, \quad \Sigma_{b}^{0} \rightarrow \Sigma^{-} \pi^{+}\right), \\
& \left(\Xi_{b}^{\prime 0} \rightarrow \Sigma^{-} \pi^{+}, \quad \Sigma_{b}^{0} \rightarrow \Xi^{-} K^{+}\right), \quad\left(\Xi_{b}^{\prime 0} \rightarrow p K^{-}, \quad \Sigma_{b}^{0} \rightarrow \Sigma^{+} \pi^{-}\right), \\
& \left(\Xi_{b}^{\prime 0} \rightarrow \Sigma^{+} \pi^{-}, \quad \Sigma_{b}^{0} \rightarrow p K^{-}\right), \quad\left(\Xi_{b}^{\prime-} \rightarrow \Xi^{-} K^{0}, \quad \Xi_{b}^{\prime-} \rightarrow \Sigma^{-} \bar{K}^{0}\right) .
\end{aligned}
$$

Practical test for A_{a} relations

$$
\begin{array}{lll}
\left(\Sigma_{b}^{-} \rightarrow \Sigma^{-} K^{0},\right. & \left.\Omega_{b}^{-} \rightarrow \Xi^{-} \bar{K}^{0}\right), & \left(\Omega_{b}^{-} \rightarrow \Sigma^{-} \bar{K}^{0}, \quad \Sigma_{b}^{-} \rightarrow \Xi^{-} K^{0}\right) \\
\left(\Sigma_{b}^{0} \rightarrow \Sigma^{-} K^{+},\right. & \left.\Xi_{b}^{\prime 0} \rightarrow \Xi^{-} \pi^{+}\right), & \left(\Xi_{b}^{\prime 0} \rightarrow \Xi^{-} K^{+}, \quad \Sigma_{b}^{0} \rightarrow \Sigma^{-} \pi^{+}\right) \\
\left(\Xi_{b}^{\prime 0} \rightarrow \Sigma^{-} \pi^{+},\right. & \left.\Sigma_{b}^{0} \rightarrow \Xi^{-} K^{+}\right), & \left(\Xi_{b}^{\prime-} \rightarrow \Xi^{-} K^{0}, \quad \Xi_{b}^{\prime-} \rightarrow \Sigma^{-} \bar{K}^{0}\right)
\end{array}
$$

4. A comment on Diquark Model for pentaquark

L. Maiani et al., arxiv:1507.0489

$$
\begin{aligned}
& \mathbb{P}\left(3 / 2^{-}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=1}, L=0\right\} \\
& \mathbb{P}\left(5 / 2^{+}\right)=\left\{\bar{c}[c q]_{s=1}\left[q^{\prime} q^{\prime \prime}\right]_{s=0}, L=1\right\}
\end{aligned}
$$

The LHCb collaboration has reported observation of two new resonances in the Λ_{b} decay [1],

$$
\Lambda_{b}(\text { bud }) \rightarrow \mathbb{P}^{+} K^{-}
$$

each decaying according to

$$
\begin{equation*}
\mathbb{P}^{+} \rightarrow J / \Psi+p \tag{2}
\end{equation*}
$$

Thus the new particles carry a unit of baryonic number and feature the valence quark composition

$$
\begin{equation*}
\mathbb{P}^{+}=\bar{c} c u u d \tag{3}
\end{equation*}
$$

whence the name pentaquarks.
The best fit quantum numbers and masses are ${ }^{1}$

$$
\begin{align*}
& J^{P}=3 / 2^{-}, M \simeq 3380 \mathrm{GeV}, \text { fract. } \simeq 8.4 \% \\
& J^{P}=5 / 2^{+}, M \simeq 4450 \mathrm{GeV}, \text { fract. } \simeq 4.1 \% \tag{4}
\end{align*}
$$

In the particular case of the newly discovered pentaquarks, we are led to identify the basic (color $\overline{\mathbf{3}}$) units as: the charm antiquark \bar{c}, one heavy-light diquark, $[c q]$, and one light-light diquark, $\left[q^{\prime} q^{\prime \prime}\right]\left(q, q^{\prime}, q^{\prime \prime}\right.$ denote light quarks, which we restric at first to be the u, d quarks, extending later to the flavor $\mathrm{SU}(3)$ triplet, $u, d, s)$.

$$
\begin{align*}
\mathbb{P}_{A} & =\epsilon^{\alpha \beta \gamma}\left\{\bar{c}_{\alpha}[c q]_{\beta, s=0,1}\left[q^{\prime} q^{\prime \prime}\right]_{\gamma, s=0}, L\right\}= \\
& =\mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{1} \oplus \mathbf{8} \tag{8}\\
\mathbb{P}_{S} & =\epsilon^{\alpha \beta \gamma}\left\{\bar{c}_{\alpha}[c q]_{\beta, s=0,1}\left[q^{\prime} q^{\prime \prime}\right]_{\gamma, s=1}, L\right\}= \\
& =\mathbf{3} \otimes \mathbf{6}=\mathbf{8} \oplus \mathbf{1 0} \tag{9}
\end{align*}
$$

$$
\left(\mathcal{P}_{i}^{j}\right)=\left(\begin{array}{ccc}
\frac{\Sigma_{p}^{0}}{\sqrt{2}}+\frac{\Lambda_{p}^{0}}{\sqrt{6}} & \Sigma_{p}^{+} & p_{p} \\
\Sigma_{p}^{-} & -\frac{\Sigma_{p}^{0}}{\sqrt{2}}+\frac{\Lambda_{p}^{0}}{\sqrt{6}} & n_{p} \\
\Xi_{p}^{-} & \Xi_{p}^{0} & -\frac{2 \Lambda_{p}^{0}}{\sqrt{6}}
\end{array}\right)
$$

For S-waves, the first and the second series give the angular momenta

$$
\begin{align*}
& \mathbb{P}_{A}(L=0): \quad J=1 / 2(2), 3 / 2(1) \tag{10}\\
& \mathbb{P}_{S}(L=0): \quad J=1 / 2(3), 3 / 2(3), 5 / 2(1) \tag{11}
\end{align*}
$$

(in parenthesis the multiplicity of each spin value). In consideration of (5), we propose to assign the $3 / 2^{-}$and

$$
\begin{array}{ll}
\mathcal{P}_{111}=\Xi_{10}^{++}, & \mathcal{P}_{112}=\Xi_{10}^{+} / \sqrt{3}, \\
\mathcal{P}_{122}=\Xi_{10}^{0} / \sqrt{3}, & \mathcal{P}_{222}=\Xi_{10}^{-}, \\
\mathcal{P}_{113}=\Sigma_{10}^{+} / \sqrt{3}, & \mathcal{P}_{123}=\Sigma_{10}^{+} / \sqrt{6}, \\
\mathcal{P}_{223}=\Sigma_{10}^{-} / \sqrt{3}, & \mathcal{P}_{133}=N_{10}^{0} / \sqrt{3}, \\
\mathcal{P}_{223}=N_{10}^{+} / \sqrt{3}, & \mathcal{P}_{333}=\Omega_{10}^{-} .
\end{array}
$$ the $5 / 2^{+}$states to the symmetric and antisymmetric serieses, respectively.

For Pentaquark in 8 (the two new ones), same treatment as what we did for \mathcal{B} to $\mathcal{F} \mathcal{M}$ for as anti-triplet b-baryons. \mathcal{F} is now can in pentaquark \mathcal{P} (octet)
Φ can also be a decuplet.

$$
H_{e f f}(q)=\frac{4 G_{F}}{\sqrt{2}}\left[V_{c b} V_{c q}^{*}\left(c_{1} O_{1}+c_{2} O_{2}\right), \begin{array}{ll}
H(\overline{3})^{2}=1, & \text { for } \Delta S=0 \\
H(\overline{3})^{3}=1, & \text { for } \Delta S=-1
\end{array}\right.
$$

Consider \mathcal{B}_{3} to $\mathrm{M} \mathcal{P}_{8}$

$$
\begin{gathered}
T_{t}\left(\Xi_{b}^{-} \rightarrow K^{-} n_{p}\right)=T_{t}\left(\Xi_{b}^{-} \rightarrow \pi^{-} \Xi_{p}^{0}\right), \quad T_{t}\left(\Xi_{b}^{0} \rightarrow \bar{K}^{0} n_{p}\right)=T_{t}\left(\Lambda_{b}^{0} \rightarrow K^{0} \Xi_{p}^{0}\right) \\
T_{t}\left(\Xi_{b}^{-} \rightarrow K^{0} \Xi_{p}^{-}\right)=T_{t}\left(\Xi_{b}^{-} \rightarrow \bar{K}^{0} \Sigma_{p}^{-}\right), \quad T_{t}\left(\Xi_{b}^{0} \rightarrow K^{0} \Xi_{p}^{0}\right)=T_{t}\left(\Lambda_{b}^{0} \rightarrow \bar{K}^{0} n_{p}\right) \\
T_{t}\left(\Xi_{b}^{0} \rightarrow \pi^{-} \Sigma_{p}^{+}\right)=T_{t}\left(\Lambda_{b}^{0} \rightarrow K^{-} p_{p}\right), \quad T_{t}\left(\Lambda_{b}^{0} \rightarrow \pi^{-} p_{p}\right)=T_{t}\left(\Xi_{b}^{0} \rightarrow K^{-} \Sigma_{p}^{+}\right) \\
T_{t}\left(\Xi_{b}^{0} \rightarrow \pi^{+} \Sigma_{p}^{-}\right)=T_{t}\left(\Lambda_{b}^{0} \rightarrow K^{+} \Xi_{p}^{-}\right), \quad T_{t}\left(\Lambda_{b}^{0} \rightarrow K^{+} \Sigma_{p}^{-}\right)=T_{t}\left(\Xi_{b}^{0} \rightarrow \pi^{+} \Xi_{p}^{-}\right) \\
T_{t}\left(\Xi_{b}^{0} \rightarrow K^{-} p_{p}\right)=T\left(\Lambda_{b}^{0} \rightarrow \pi^{-} \Sigma_{p}^{+}\right), \quad T_{t}\left(\Xi_{b}^{0} \rightarrow K^{+} \Xi_{p}^{-}\right)=T_{t}\left(\Lambda_{b}^{0} \rightarrow \pi^{+} \Sigma_{p}^{-}\right) \\
\left.A(\mathcal{B} \rightarrow M \mathcal{P}, \Delta S=0) \quad=V_{c b} V_{c d}^{*} T, \quad A(\mathcal{B} \rightarrow M \mathcal{P}, \Delta S=-1)=V_{c b} V_{c s}^{*}\right) T \\
\frac{\Gamma(\mathcal{B} \rightarrow M \mathcal{P}, \Delta S=0)}{\Gamma(\mathcal{B} \rightarrow M \mathcal{P}, \Delta S=-1)}=\frac{\left|V_{c d}\right|^{2}}{\left|V_{c s}\right|^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& T\left(\Lambda_{b}^{0} \rightarrow \pi^{+} \Xi_{10}^{-}\right)=\frac{1}{\sqrt{3}} T\left(\Lambda_{b}^{0} \rightarrow K^{+} \Sigma_{10}^{-}\right)=\frac{1}{\sqrt{6}} T\left(\Lambda_{10}^{0} \rightarrow \pi^{0} \Xi_{10}^{0}\right) \\
& =-\frac{1}{\sqrt{3}} T\left(\Lambda_{b}^{0} \rightarrow \pi^{-} \Xi_{10}^{+}\right)=-\frac{1}{\sqrt{6}} T\left(\Lambda_{b}^{0} \rightarrow K^{0} \Sigma_{10}^{0}\right) \\
& =\frac{1}{\sqrt{3}} T\left(\Lambda_{b}^{0} \rightarrow \pi^{0} \Sigma_{10}^{0}\right)=\frac{\sqrt{2}}{3} T\left(\Lambda_{b}^{0} \rightarrow \eta_{8} \Sigma_{10}^{0}\right)=\frac{1}{\sqrt{3}} T\left(\Lambda_{10}^{0} \rightarrow \pi^{+} \Sigma_{10}^{-}\right) \\
& =\frac{1}{\sqrt{3}} T\left(\Lambda_{b}^{0} \rightarrow K^{+} N_{10}^{-}\right)=-\frac{1}{\sqrt{3}} T\left(\Lambda_{b}^{0} \rightarrow K^{-} \Xi_{10}^{+}\right) \\
& =-\frac{1}{\sqrt{3}} T\left(\Lambda_{b}^{0} \rightarrow \bar{K}^{0} \Xi_{10}^{0}\right) .
\end{aligned}
$$

Can be tested at the LHCb!

Several other $\mathrm{SU}(3)$ predictions

P1) $\Delta\left(B^{+} \rightarrow K^{+} \bar{K}^{0}\right)=-\Delta\left(B^{+} \rightarrow K^{0} \pi^{+}\right)$,
P2) $\Delta\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{-} K^{+}\right)$,
P3) $\Delta\left(B^{0} \rightarrow K^{+} K^{-}\right)=-\Delta\left(B_{s}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-2 \Delta\left(B_{s}^{0} \rightarrow \pi^{0} \pi^{0}\right)$,
P4) $\Delta\left(B^{0} \rightarrow \bar{K}^{0} K^{0}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{0} \bar{K}^{0}\right)$,
P5) $\Delta\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)=-\Delta\left(B^{0} \rightarrow K^{+} \pi^{-}\right)$,
P6) $\Delta\left(B_{s}^{0} \rightarrow \bar{K}^{0} \pi^{0}\right)=-\Delta\left(B^{0} \rightarrow K^{0} \pi^{0}\right)$.
Neglect annihilation contributions

$$
P 1) \approx P 4), \quad P 2) \approx P 5), \quad P 6) \approx \Delta\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)
$$

$$
\frac{A_{C P}\left(\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}\right)}{A_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)} \approx-\frac{\operatorname{Br}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)}{\operatorname{Br}\left(\bar{B}^{0} \rightarrow \pi^{-} \pi^{+}\right)}
$$

Data left: -3.78+-0.67 right: -3.72+-0.17 Agree very well. Neglecting annihilation is a good approximation!

CP asymmetry relation for $\mathrm{B} \rightarrow \mathrm{PV}$

 Deshpande, He and Shi, 2000V1) $\Delta\left(B^{+} \rightarrow K^{+} \bar{K}^{* 0}\right)=-\Delta\left(B^{+} \rightarrow K^{* 0} \pi^{+}\right)$,
V2) $\Delta\left(B^{0} \rightarrow K^{0} \bar{K}^{* 0}\right)=-\Delta\left(B_{s}^{0} \rightarrow \bar{K}^{0} K^{* 0}\right)$,
V3) $\Delta\left(B^{+} \rightarrow \bar{K}^{0} K^{*+}\right)=-\Delta\left(B^{+} \rightarrow K^{0} \rho^{+}\right)$,
V4) $\Delta\left(B^{0} \rightarrow \bar{K}^{0} K^{* 0}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{0} \bar{K}^{* 0}\right)$,
V5) $\Delta\left(B^{0} \rightarrow \pi^{+} \rho^{-}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{+} K^{*-}\right)$,
V6) $\Delta\left(B_{s}^{0} \rightarrow \pi^{+} K^{*-}\right)=-\Delta\left(B^{0} \rightarrow K^{+} \rho^{-}\right)$,
V7) $\Delta\left(B^{0} \rightarrow \pi^{-} \rho^{+}\right)=-\Delta\left(B_{s}^{0} \rightarrow K^{-} K^{*+}\right)$,
V8) $\Delta\left(B_{s}^{0} \rightarrow K^{-} \rho^{+}\right)=-\Delta\left(B^{0} \rightarrow \pi^{-} K^{*+}\right)$,
V9) $\Delta\left(B^{0} \rightarrow K^{+} K^{*-}\right)=-\Delta\left(B_{s}^{0} \rightarrow \pi^{+} \rho^{-}\right)$,
$V 10) \quad \Delta\left(B^{0} \rightarrow K^{-} K^{*+}\right)=-\Delta\left(B_{s}^{0} \rightarrow \pi^{-} \rho^{+}\right)$.
Neglect annihilation contributions
$\left.\left.\left.\left.V 1) \approx V 2), \quad V 3) \approx V 4)_{36} \quad V 5\right) \approx V 6\right), \quad V 7\right) \approx V 8\right)$.

$\mathrm{B} \rightarrow \mathrm{PP}$ data

Branching ratios (HFAG averages)

P1)	$B^{+} \rightarrow K^{+} \bar{K}^{0}$	1.19 ± 0.18	$B^{+} \rightarrow K^{0} \pi^{+}$	23.80 ± 0.74
P2)	$B^{0} \rightarrow \pi^{+} \pi^{-}$	5.10 ± 0.19	$B_{s}^{0} \rightarrow K^{-} K^{+}$	24.5 ± 1.8
P3)	$B^{0} \rightarrow K^{+} K^{-}$	0.12 ± 0.06	$B_{s}^{0} \rightarrow \pi^{+} \pi^{-}$	0.73 ± 0.14
			$B_{s}^{0} \rightarrow \pi^{0} \pi^{0}$	--
P4)	$B^{0} \rightarrow \bar{K}^{0} K^{0}$	1.21 ± 0.16	$B_{s}^{0} \rightarrow K^{0} \bar{K}^{0}$	<66
P5)	$B_{s}^{0} \rightarrow K^{-} \pi^{+}$	5.4 ± 0.6	$B^{0} \rightarrow K^{+} \pi^{-}$	$19.55_{-0.53}^{+0.54}$
P6)	$B_{s}^{0} \rightarrow \bar{K}^{0} \pi^{0}$	--	$B^{0} \rightarrow K^{0} \pi^{0}$	$9.92_{-0.48}^{+0.49}$
			$B^{0} \rightarrow \pi^{0} \pi^{0}$	$1.91_{-0.23}^{+0.22}$

$C P$ asymmetries and predictions for $B \rightarrow P P$

	$A_{C P}^{E x p .}(\Delta S=0)$	$A_{C P}^{\text {Pred. }}(\Delta S=-1)$	$A_{C P}^{E x p} .(\Delta S=-1)$	$A_{C P}^{P r e d .}(\Delta S=0)$
P1)	$B^{+} \rightarrow K^{+} \bar{K}^{0}$	$B^{+} \rightarrow K^{0} \pi^{+}$	$B^{+} \rightarrow K^{0} \pi^{+}$	$B^{+} \rightarrow K^{+} \bar{K}^{0}$
	0.041 ± 0.141	-0.0021 ± 0.0071	-0.015 ± 0.012	0.300 ± 0.244
P2)	$B^{0} \rightarrow \pi^{+} \pi^{-}$	$B_{s}^{0} \rightarrow K^{-} K^{+}$	$B_{s}^{0} \rightarrow K^{-} K^{+}$	$B^{0} \rightarrow \pi^{+} \pi^{-}$
	0.29 ± 0.05	-0.060 ± 0.011	$0.02 \pm 0.18 \pm 0.04$	-0.097 ± 0.892
P3)	$B^{0} \rightarrow K^{+} K^{-}$	$B_{s}^{0} \rightarrow \pi^{+} \pi^{-}$	$B_{s}^{0} \rightarrow \pi^{+} \pi^{-}$	$B^{0} \rightarrow K^{+} K^{-}$
		$B_{s}^{0} \rightarrow \pi^{0} \pi^{0}$	$B_{s}^{0} \rightarrow \pi^{0} \pi^{0}$	$B^{0} \rightarrow K^{+} K^{-}$
P4)	$B^{0} \rightarrow \bar{K}^{0} K^{0}$	$B_{s}^{0} \rightarrow K^{0} \bar{K}^{0}$	$B_{s}^{0} \rightarrow K^{0} \bar{K}^{0}$	$B^{0} \rightarrow \bar{K}^{0} K^{0}$
P5)	$B_{s}^{0} \rightarrow K^{-} \pi^{+}$	$B^{0} \rightarrow$	$\rightarrow K$	$B_{s}^{0} \rightarrow K^{-} \pi^{+}$
	0.26 ± 0.04	-0.073 ± 0.010	-0.085 ± 0.006	0.304 ± 0.040
P6)	$B_{s}^{0} \rightarrow \bar{K}^{0} \pi^{0}$	$B^{0} \rightarrow K^{0} \pi^{0}$	$B^{0} \rightarrow K^{0} \pi^{0}$	$B_{s}^{0} \rightarrow \bar{K}^{0} \pi^{0}$
	--		-0.01 ± 0.10	
	$B^{0} \rightarrow \pi^{0} \pi^{0}$	$B^{0} \rightarrow K^{0} \pi^{0}$		$B^{0} \rightarrow \pi^{0} \pi^{0}$
	0.43 ± 0.24	-0.083 ± 0.047		0.052 ± 0.519

New from LHCb: arXiv:1308.1428.
$\mathrm{A}_{\text {CP }}\left(\pi^{+} \pi^{-}\right)=0.38+-0.15+-0.02, \mathrm{~A}_{\text {CP }}\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)=-0.14+-0.11+-0.30$ With in error bar with theory prediction!

Data for $B \rightarrow P V$

Branching ratios

	$\Delta S=0$ Process	$B r^{H F A G}\left(10^{-6}\right)$	$\Delta S=-1$ Process	$B r^{H F A G}\left(10^{-6}\right)$
V1)	$B^{+} \rightarrow K^{+} \bar{K}^{* 0}$	--	$B^{+} \rightarrow K^{* 0} \pi^{+}$	$9.9_{-0.9}^{+0.8}$
V2)	$B^{0} \rightarrow K^{0} \bar{K}^{* 0}$	--	$B_{s}^{0} \rightarrow \bar{K}^{0} K^{* 0}$	--
V3)	$B^{+} \rightarrow \bar{K}^{0} K^{*+}$	--	$B^{+} \rightarrow K^{0} \rho^{+}$	$8.0_{-1.4}^{+1.5}$
V4)	$B^{0} \rightarrow \bar{K}^{0} K^{* 0}$	<1.9	$B_{s}^{0} \rightarrow K^{0} \bar{K}^{* 0}$	--
V5)	$B^{0} \rightarrow \pi^{+} \rho^{-}$	23 ± 2.3	$B_{s}^{0} \rightarrow K^{+} K^{*-}$	--
V6)	$B_{s}^{0} \rightarrow \pi^{+} K^{*-}$	--	$B^{0} \rightarrow K^{+} \rho^{-}$	7.2 ± 0.9
V7)	$B^{0} \rightarrow \pi^{-} \rho^{+}$	23 ± 2.3	$B_{s}^{0} \rightarrow K^{-} K^{*+}$	--
V8)	$B_{s}^{0} \rightarrow K^{-} \rho^{+}$	--	$B^{0} \rightarrow \pi^{-} K^{*+}$	8.5 ± 0.7
V9)	$B^{0} \rightarrow K^{+} K^{*-}$	--	$B_{s}^{0} \rightarrow \pi^{+} \rho^{-}$	--
V10 $)$	$B^{0} \rightarrow K^{-} K^{*+}$	--	$B_{s}^{0} \rightarrow \pi^{-} \rho^{+}$	--

$C P$ asymmetries and predictions for $B \rightarrow P V$

	$A_{C P}^{E x p .}(\Delta S=0)$	$A_{C P}^{\text {Pred. }}(\Delta S=-1)$	$A_{C P}^{\text {Exp. }}(\Delta S=-1)$	$A_{C P}^{\text {Pred }}(\Delta S=0)$
V1)	$B^{+} \rightarrow K^{+} \bar{K}^{* 0}$	$B^{+} \rightarrow K^{* 0} \pi^{+}$	$\begin{aligned} & B^{+} \rightarrow K^{* 0} \pi^{+} \\ & -0.038 \pm 0.042 \end{aligned}$	$B^{+} \rightarrow K^{+} \bar{K}^{* 0}$
V2)	$B^{0} \rightarrow K^{0} \bar{K}^{* 0}$	$B_{s}^{0} \rightarrow \bar{K}^{0} K^{* 0}$	$B_{s}^{0} \rightarrow \bar{K}^{0} K^{* 0}$	$B^{0} \rightarrow K^{0} \bar{K}^{* 0}$
V3)	$B^{+} \rightarrow \bar{K}^{0} K^{*+}$	$B^{+} \rightarrow \bar{K}^{0} \mathrm{~K}^{*+}$	$\begin{aligned} & B^{+} \rightarrow K^{0} \rho^{+} \\ & -0.12 \pm 0.17 \end{aligned}$	$B^{+} \rightarrow \bar{K}^{0} K^{*+}$
V4)	$B^{0} \rightarrow \bar{K}^{0} K^{* 0}$	$B_{s}^{0} \rightarrow K^{0} \bar{K}^{* 0}$	$B_{s}^{0} \rightarrow K^{0} \bar{K}^{\star 0}$	$B^{0} \rightarrow \bar{K}^{0} K^{* 0}$
V5)	$\begin{aligned} & B^{0} \rightarrow \pi^{+} \rho^{-} \\ & -0.13 \pm 0.04 \end{aligned}$	$B_{s}^{0} \rightarrow K^{+} K^{*-}$ $\begin{aligned} & B^{0} \rightarrow K^{+} \rho^{-} \\ & 0.415 \pm 0.144 \end{aligned}$	$B_{s}^{0} \rightarrow K^{+} K^{*-}$	$B^{0} \rightarrow \pi^{+} \rho^{-}$
V6)	$B_{s}^{0} \rightarrow \pi^{+} K^{*-}$	$B^{0} \rightarrow K^{+} \rho^{-}$	$\begin{gathered} B^{0} \rightarrow K^{+} \rho^{-} \\ 0.20 \pm 0.11 \end{gathered}$	$\begin{gathered} B_{s}^{0} \rightarrow \pi^{+} K^{*-} \\ B^{0} \rightarrow \pi^{+} \rho^{-} \\ -0.063 \pm 0.036 \end{gathered}$
V7)	$\begin{aligned} & B^{0} \rightarrow \pi^{-} \rho^{+} \\ & -0.13 \pm 0.04 \end{aligned}$	$B_{s}^{0} \rightarrow K^{-} K^{*+}$ $\begin{aligned} & B^{0} \rightarrow \pi^{-} K^{*+} \\ & 0.352 \pm 0.117 \end{aligned}$	$B_{s}^{0} \rightarrow K^{-} K^{*+}$	$B^{0} \rightarrow \pi^{-} \rho^{+}$
V8)	$B_{s}^{0} \rightarrow K^{-} \rho^{+}$	$B^{0} \rightarrow \pi^{-} K^{*+}$	$\begin{gathered} B^{0} \rightarrow \pi^{-} K^{*+} \\ -0.23 \pm 0.06 \end{gathered}$	$\begin{aligned} & B_{s}^{0} \rightarrow K^{-} \rho^{+} \\ & B^{0} \rightarrow \pi^{-} \rho^{+} \\ & 0.085 \pm 0.025 \end{aligned}$

