Open Charm Effects on the E1 Transition of $\psi(3770)/\psi' \rightarrow \gamma \chi_{cJ}$

Zheng Cao

Institute of High Energy Physics

Lanzhou University 22nd, July, 2015

In Collaboration with

Martin Cleven, Qian Wang and Qiang Zhao

Institute of High Energy Physics Chinese Academy of Sciences

SPECTRUM

Charmonium Spectrum: QM Prediction[1] V.S. Exp. Data

 Quark model works quite good in producing the charmonium spectrum. Even with a "naive" color Coulomb plus linear scalar potential we get a relatively successful description of the spectrum[2].

```
[1]S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985)[2]E. Eichten et al., Phys. Rev. D 21 (1980) 203
```

E1 TRANSITION IN QM

[1]E. Eichten *et al.*, Phys. Rev. D 21 (1980) 203 [2]N. Brambilla *et al.*[Quarkonium Working Group Collaboration], hep-ph/0412158 [3] T. Barnes, S. Godfrey and E. S. Swanson, Phys. Rev. D 72 (2005) 054026

Channel	<i>Ref.</i> [1]/keV	Ref. [2]/keV	Ref. [3] /keV	<i>Ref.</i> [3]/keV	<i>Exp. data</i> /keV
$\psi(3770) \rightarrow \gamma \chi_{c0}$		299	403	213	198.56±25.54
$\psi(3770) \rightarrow \gamma \chi_{c1}$		99	125	77	67.46±7.85
$\psi(3770) ightarrow \gamma \chi_{c2}$		3.88	4.9	3.3	<17.4
$m{\psi}' o m{\gamma} m{\chi}_{c0}$	43.2	47	63	26	29.87±1.14
$\psi' ightarrow \gamma \chi_{c1}$	34	42.8	54	29	28.55±1.20
$\psi' ightarrow \gamma \chi_{c2}$	23.7	30.1	38	24	27.24±1.18

Table of the E1 decay width of $\psi(3770)/\psi' \rightarrow \gamma \chi_{cl}$ predicted by various QM model comparing with exp. data

 Significant discrepancies between various QM predictions and experimental data.

OPEN CHARM EFFECTS

The coupling of $\psi(3770)/\psi'$ and two *D* mesons(pseudoscalar or vector) allows these kinds of diagrams which derive our study of the open charm effects.

MOTIVATION

• We focus on the E1 transitions $\psi(3770)/\psi' \rightarrow \gamma \chi_{cJ}$ and study the open charm effects as final state Interactions for these processes for both $\psi(3770)$ and ψ' are close to the $D\overline{D}$ threshold.

- Studying these effects help us better understand the long-standing $\rho\pi$ puzzle and the non- $D\overline{D}$ decay of $\psi(3770)$.
- Similar mechanism has been studied in the M1 transition of J/ψ and ψ' [1]comparing to the previous studies in quark model and lattice QCD.

[1]G. Li and Q. Zhao, Phys. Lett. B 670 (2008) 55

NONRELATIVISTIC EFFECTIVE FIELD THEORY

Heavy mesons:

......

 $H = P + \vec{\sigma} \cdot \vec{V}$

D-mesons:

$$P_D = (D^0, D^+, D_S); V_D = (D^{*0}, D^{*+}, D_S^*)$$

.....

Interaction Lagrangians with heavy mesons:

Not all the couplings here are clearly known

POWER COUNTING AND COUPLINGS

• For the leading order terms, we use the Lagrangians

 $\mathcal{L}_{SP\gamma} = \mathbf{A} \langle \chi^{\dagger i} J \rangle E^{i} + h. c. \qquad \mathcal{L}_{DP\gamma} = \mathbf{B} \langle \chi^{\dagger i} J^{ij} \rangle E^{j} + h. c.$

- g_1 is taken from Ref. [1] and the photon coupling is introduced from Ref. [2].
- g_D is fitted through the tree process $\psi(3770) \rightarrow D\overline{D}$.
- g_s is taken as a free parameter.
- We are still working on including S-D mixing.

[1] P. Colangelo, F. De Fazio, and T. N. Pham, Phys. Lett. B542, 71 (2002) [2] J. Hu and T. Mehen, Phys. Rev. D 73 (2006) 054003

RESULTS& CONCLUSION

Fitting results in decay width comparing with exp. data and predictions in QM

- Fitting results for most channels work well.
- Fitting results for $\psi' \to \gamma \chi_{c2}$ can not match the data at all. We finally elimate this channel when fitting.

RESULTS& CONCLUSION

Channel	Without loops/keV	Fitted width/keV	
$\psi(3770) ightarrow \gamma \chi_{c0}$	167.1	201.8	
$\psi(3770) \rightarrow \gamma \chi_{c1}$	66.7	52.7	
$\psi(3770) ightarrow \gamma \chi_{c2}$	2.74	2.05	
$oldsymbol{\psi}' ightarrow oldsymbol{\gamma} oldsymbol{\chi}_{c0}$	29.9	33.6	
$\psi' ightarrow \gamma \chi_{c1}$	28.6	29.1	
$oldsymbol{\psi}' ightarrow oldsymbol{\gamma} \chi_{c2}$	20.1	20.0	

 Obviously the open charm effects play a important role in these E1 transition.

 $g_s = (0.93 \pm 0.54) \text{GeV}^{-3/2}$ in our fitting which is close to the number in Ref. [1].

This work shows the importance of including the open charm effects on these E1 transitions. We will try to include the S-D mixing properly in the future.

Thank you for your attention !

[1]G. Y. Chen and Q. Zhao, Phys. Lett. B 718 (2013) 1369