

Charmed hadron decays **B€S**Ⅲ

Xiao-Rui Lyu (吕晓睿) University of Chinese Academy of Sciences (UCAS), Beijing (On behalf of the BESIII collaboration)

Outline

- Introduction to the BESIII experiment
- Selected results on charmed hadron decays:
 - \checkmark D decays (semi-)leptonically and form factors
 - ✓ D-Dbar mixing, $D^0 \rightarrow K\pi$ strong phase
 - $\checkmark \Lambda_{\rm c}$ decay rates
- **Summary**

The BEPCII Collider

Beam energy: 1.0 - 2.3 GeVPeak Luminosity: **Design:** $1 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ **Achieved:** $0.85 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$

Optimum energy: 1.89 GeV Energy spread: 5.16×10^{-4}

Circumference: 237 m

In 2015, BEPCII made successful test with top-up mode! *Beam energy measurement:* Using Compton backscattering technique. Accuracy up to 5×10⁻⁵

Energies of the BEPCII Collider

BESIII data samples above 4GeV

4100~4400 MeV: 0.5/fb coarse scan

BEPCII can reach here!

3850~4590 MeV: 0.5/fb fine scan

RC-SIII

- In 2015, we finished energy scan at 2000~3000 MeV
- In 2016, we will take 3/fb Ds data about 4170 MeV (about 5 times of CLEO-c data)

Machine luminosity is optimal near ψ" peak 全国第十三届重味物理和CP破坏研讨会, 兰州大学, 2015

<u>NIM A614, 345 (2010)</u> The BESIII Detector

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

Charm Physics

- ◆ Threshold production at 3.773, 4.03, 4.17 GeV, 4.6GeV $e^+e^- \rightarrow D\overline{D}, D_s D_s, D_s D_s^*, \Lambda_c^+ \Lambda_c^-$
- Double Tag techniques: (partial-)reconstruct both D mesons
- Charm events at threshold are very clean
 - Ratio of signal to background is optimum
 - Lots of systematic uncertainties cancellation while applying double tag method

Why they are important?

D leptonic and semi-leptonic decays are ideal window to probe for weak and strong effects

• Precision measurements of decay constants f_{D+} , f_{Ds+} , form factors $f_+^{D \to K(\pi)}(q^2)$ of semi-leptonic decays of D mesons will calibrate LQCD calculations at higher accuracy. Once they pass experimental tests, the precise LQCD calculations of f_D/f_B , f_{Ds}/f_{Bs} and form factors will be helpful for measurement in B decay

• Recent LQCD calculations on $f_{D(s)+}[0.5(0.5)\%]$, $f_{+}^{D \to K(\pi)}(0)$ [1.7(4.4)%] provide good chance to precisely measure the CKM matrix element $|V_{cs(d)}|$, which are important for the unitarity test of the CKM matrix and search for NP beyond the SM

D+ Leptonic Decays

In the SM:
$$\Gamma(D^+_{(s)} \to \ell^+ \nu_\ell) = \frac{G_F^2 f_{D^+_{(s)}}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D^+_{(s)}} \left(1 - \frac{m_\ell^2}{m_{D^+_{(s)}}^2}\right)^2$$

Bridge to precisely measure

- Decay constants f_{D(s)+} with input |V_{cd(s)}|^{CKMfitter}
- CKM matrix element |V_{cd(s)}| with input f^{LQCD}_{D(s)+}

Measurement of B[D⁺ \rightarrow µ⁺v], f_{D+} and |V_{cd}|

$e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$

2.92 fb⁻¹ data@ 3.773 GeV PRD89(2014)051104R

Comparisons of B[D⁺ \rightarrow $\mu^+ v_{\mu}$] and f_{D+}

D Semi-leptonic Decays

Bridge to precisely measure:

• Form factors $f^{D \rightarrow K(\pi)}(q^2)$ with input $|V_{cd(s)}|^{CKMfitter}$

Measurement of $B[D^0 \rightarrow K(\pi)^-e^+v]$

全国第十三届重味物理和GL被坏研讨会,兰州大学,2015

13

Comparison of B[D⁰ \rightarrow K(\pi)⁻e⁺v]

 $B[D^0 \rightarrow \pi^- e^+ \nu]$

Extracted Parameters of Form Factors

¹⁵ **15**

Measurement of f_{+}^{K(\pi)}(q^2)

Experimental data calibrate LQCD calculation

Measurement of f_{+}^{K(\pi)}(0)

Measurement of |V_{cs(d)}

Study of $D^+ \rightarrow K_L e^+ v$

It is expected that $K^0 - \overline{K}^0$ mixing can give rise to a clean signal of *CP* violation with magnitude of -3.3×10^{-3} level in semileptonic decay $D^+ \to K_{S(L)}e^+\nu_e$

$\overline{B}(D^+ \rightarrow K_L e^+ v) = (4.482 \pm 0.027 \pm 0.103)\%$

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}$$
$$\mathbf{A_{CP}}^{\mathbf{D}+\mathbf{K}\mathbf{L}\mathbf{e}+\mathbf{v}} = (-0.59 \pm 0.60 \pm 1.50)\%$$

Simultaneous fit to event density I(q²) with 2-par. series Form Factor

> K_L is probed by interactions with EMC and thus gets position information

> we infer K_L four-momentum from its position information and the constraint U_{miss} → 0

Study of $D^+ \rightarrow K^- \pi^+ e^+ v$

■ Fractions with >5 σ significance $f(D^+ \rightarrow (K^-\pi^+)_{K^{*0}(892)} e^+\nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$ $f(D^+ \rightarrow (K^-\pi^+)_{S-wave} e^+\nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$ ■ Measured parameters of $\overline{K}^*(892)$

$$\begin{split} m_{K^{*0}(892)} &= (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^2 \\ \Gamma_{K^{*0}(892)} &= (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^2 \\ r_{BW} &= (3.07 \pm 0.26 \pm 0.11) (\text{GeV}/c)^{-1} \end{split}$$

• Comparison of data and fit with S+P in D⁺ \rightarrow K⁻ π ⁺e⁺v

Model independent S-wave phase measurement

Form factors of D+→K*(892)e+v by SPD model

$$V(q^{2}) = \frac{V(0)}{1 - q^{2}/m_{V}^{2}}, \quad A_{1,2}(q^{2}) = \frac{A_{1,2}(0)}{1 - q^{2}/m_{A}^{2}}$$

$$M_{V/A} \text{ is expected to } M_{D^{*}(1-/+)}$$

$$m_{V} = (1.81^{+0.25}_{-0.17} \pm 0.02) \text{ GeV}/c^{2}$$

$$m_{A} = (2.61^{+0.22}_{-0.17} \pm 0.03) \text{ GeV}/c^{2}$$

$$A_{1}(0) = 0.573 \pm 0.011 \pm 0.020$$

$$r_{V} = V(0)/A_{1}(0) = 1.411 \pm 0.058 \pm 0.007$$

$$r_{2} = A_{2}(0)/A_{1}(0) = 0.788 \pm 0.042 \pm 0.008$$

Study of $D^+ \rightarrow K^- \pi^+ e^+ v$

- Events located in the K^{*0}(892) window [0.8,1] GeV/c², are used to measure the form factors by a Projective Weighting Technique [citation: CLEO collaboration, Phys. Rev. D 81, 112001 (2010)].
- Signal is assumed to be composed of K^{*0}(892) and a non-resonant S-wave.
- Helicity basis form factors include: P-wave related: H_{±,0}(q²) S-wave related: h₀(q²)
- Five weighted q² histograms are built.
 Weight is assigned to each event based on (q², cosθ_K, cosθ_e).
- Form factors are independently computed in each q^2 bin.
- The model-independent measurements are generally consistent with CLEO's report. And they are also consistent with the predicted trend based on the SPD model from amplitude analysis.

Model independent measurement of form factors in $D^+ \rightarrow \overline{K}^{*0}(892)e^+v$

Study of D⁺ $\rightarrow \omega e^+v$ and search for D⁺ $\rightarrow \phi e^+v$

QC inputs for Charm Physics

(**BESIII: 2.92 fb**⁻¹)

Strong Phase $\delta_{K\pi}$

Strong phase:

$$\frac{\left\langle \boldsymbol{K}^{-}\boldsymbol{\pi}^{+} \middle| \boldsymbol{\overline{D}}^{0} \right\rangle^{DCS}}{\left\langle \boldsymbol{K}^{-}\boldsymbol{\pi}^{+} \middle| \boldsymbol{D}^{0} \right\rangle^{CF}} \equiv -\boldsymbol{r}_{\boldsymbol{K}\boldsymbol{\pi}} \boldsymbol{e}^{-i\delta_{\boldsymbol{K}\boldsymbol{\pi}}}$$

Quantum correlation \rightarrow Interference \rightarrow access strong phase!

 $\langle K\pi | D_{CP\pm} \rangle = (\langle K\pi | D^0 \rangle \pm \langle K\pi | \overline{D^0} \rangle) / \sqrt{2} \implies \sqrt{2} A_{CP\pm} = A_{K\pi} \pm \overline{A_{K\pi}}$

• Measuring $\delta_{K\pi}$ from rate differences if using external $r_{K\pi}$ • Reconstructed modes:

- + Flavor tags: $K^-\pi^+$, $K^+\pi^-$
- + CP+ tags (5 modes): K^-K^+ , $\pi^+\pi^-$, $K_S^0\pi^0\pi^0$, $\pi^0\pi^0$, $\rho^0\pi^0$
- CP- tags (3 modes): K⁰_Sπ⁰, K⁰_Sη, K⁰_Sω

Strong Phase $\delta_{K\pi}$

Signal reconstruction:

- Single Tag (ST): CP tags
- Double Tag (DT) : $K\pi$ + CP Tag
- Kinematic variable: Beam Constrained Mass (M_{BC})
- ♦ Singal shape: σ⊗MC-truth
- Background shape: ARGUS function

 $\bullet Br(D_{CP\pm} \to K\pi) = \frac{n_{K\pi,CP\pm}}{n_{CP\pm}} \cdot \frac{\varepsilon_{CP\pm}}{\varepsilon_{K\pi,CP\pm}}$

- *n_{Kπ,CP±}* and *n_{CP±}* are event yields for DT and ST from M_{BC} fit
- $\varepsilon_{K\pi,CP\pm}$ and $\varepsilon_{CP\pm}$ are detection efficiencies of DT and ST from MC simulation

• Most systematics cancelled for ratio $\varepsilon_{CP\pm}/\varepsilon_{K\pi,CP\pm}$

BESIII results:

$$\mathcal{A}_{CP \to K\pi} = (12.7 \pm 1.3 \pm 0.7) \times 10^{-2}$$

(BESIII: 2.92 fb⁻¹)

Double Tags

PLB 734, 227 (2014)

 $(BESIII: 2.92 \text{ fb}^{-1})$

$\delta_{\mathrm{K}\pi} \operatorname{in} D \longrightarrow \mathrm{K}\pi$

• If we don't ignore the mixing effect • $2r_{K\pi} \cos \delta_{K\pi} + y = (1 + R_{WS}) \cdot A_{CP \to K\pi}$ • $R_{WS} \equiv \frac{\Gamma(D^0 \to K^+\pi^-)}{\Gamma(D^0 \to K^-\pi^+)} = r_{K\pi}^2 + r_{K\pi}y' + \frac{(x^2+y^2)}{2}$

External inputs from HFAG2013 and PDG

$$r_{K\pi}^{2} = 0.347 \pm 0.006\%, y = 0.66 \pm 0.09\%, R_{WS} = 0.380 \pm 0.005\%$$

CLEO-c results [Phys. Rev. D 86 (2012) 112001]					
$\cos \delta_{K\pi}$	=	$0.81\substack{+0.22+0.07\\-0.18-0.05}$			
$\cos \delta_{K\pi}$	=	$1.15\substack{+0.19+0.00\\-0.17-0.08}$	(globalfit)		

BESIII results:

 $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$

- The third error is due to the input parameters
- The statistical errors dominant the precision
- World best precision
- In 20 /fb BESIII data, precision of cos™k□ will reach ~0.04

y_{CP} measurement

We measure the y_{cP} using CP-tagged semi-leptonic D decays, which allows to access CP asymmetry in mixing and decays.

PLB 744, 339 (2015)

(BESIII: 2.92 fb⁻¹)

Single Tag decay rate (CP tags)

$$\mathbf{\bullet} \Gamma_{CP\pm} \mathbf{A}_{CP\pm} |^2 (\mathbf{1} \mp \mathbf{y})$$

 Double Tag decay rate (Flavor tags + CP tags)

$$+ \Gamma_{l;CP\pm} |A_l|^2 |A_{CP\pm}|^2$$

Neglect term y² or higher order

$$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{y}}}}}_{CP} \approx \frac{1}{4} \left(\frac{\Gamma_{l;CP+} \Gamma_{CP-}}{\Gamma_{l;CP-} \Gamma_{CP+}} - \frac{\Gamma_{l;CP-} \Gamma_{CP+}}{\Gamma_{l;CP+} \Gamma_{CP-}} \right)$$

Reconstructed modes:
 Flavor tags: Kev_e, Kμv_μ

- CP+ tags (3 modes): K^-K^+ , $\pi^+\pi^-$, $K_S^0\pi^0\pi^0$,
- ♦ CP- tags (3 modes): K⁰_Sπ⁰, K⁰_Sη, K⁰_Sω

Signal reconstruction:

Single tag yields extraction:

- ♦ Singal shape: σ⊗MC-truth
- Background: ARGUS function
- Kinematic variable: M_{BC}

Double tag yields extraction:

- ♦ Singal shape: σ⊗MC-truth
- Background: Polynomial
- $K\pi\pi^0$ background shape from data
- Kinematic variable:

$$\mathbf{U}_{\mathrm{miss}} = \mathbf{E}_{\mathrm{miss}} - \left| \vec{\mathbf{P}}_{\mathrm{miss}} \right|$$
 (≈0 for signals)

BESIII preliminary results:

 $y_{CP} = (-1.6 \pm 1.3 \pm 0.6)\%$

- Most precise measurement with QC charm mesons
- In the limit of no CP violation: y_{CP} = y

全国第十三届重味物理和CP破坏研讨会,兰州大学,2015

PLB 744, 339 (2015)

28

BESIII data taken

In 2014, BESIII took data above Λ_c pair threshold and run machine at 4.6GeV with excellent performance! This is a marvelous achievement of BES!

First time to systematically study charmed baryon at threshold!

Λ_{c}^{+} decay rates

More reliable to be treated in HQET than mesons as it consists of a heavy quark and a spin and isospin zero light diquark

- absolute BF's has large uncertainties
- semi-leptonic decay modes have not been fully explored; The only measured $BF(\Lambda_c \rightarrow \Lambda l^+ \nu_l)$ has large uncertainties of $\delta B/B \sim 16\%$
- no neutron modes have been measured

Absolute BF's of Λ_c^+ hadronic decays

- Absolute branching fractions (BF) of Λ_c^+ decays are still not well determined since its discovery 30 years ago
 - BFs of all the decay modes (~85%) are measured relative to $\Lambda_c^+ \rightarrow p K^- \pi^+$
 - − Charm counting → test SM
 - However, no completely model-independent measurements of the absolute BF of $\Lambda_c^+ \rightarrow p K^- \pi^+$ (from Argus and CLEO very old results) *uncertainties of BFs of* Λ_c^+ *decays are 25%~40% in PDG2014*
- Until Belle's first "model-independent" measurement: $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$ precision reaches to 4.7% [PRL113(2014)042002]
- However, measurement using the threshold pair-productions via e⁺e⁻ annihilations is unique: the most simple and straightforward

PDG2014

全国第十三届重味物理和CP破坏研讨会,兰州大学,2015

Total BF overflow?

Measurements of hadronic BFs

- Produced in the pair production $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$ at 4.6GeV;
 - kinematics does not allow additional particle produced along with the $\Lambda_c^+ \Lambda_c^-$ pair
 - fully reconstruct the pairs and take their yield ratios to measure the BFs: ratio of single tags (ST) and double tags (DT)
- 567/pb data consists of more than 100K Λ⁺_cΛ⁻_c pairs
 sensitivity of BF reaches to the level of 0.1%
- 12 hadronic modes are being measured at the same time based on a global fit [*Chinese Phys. C37(2013)106201*]

charge conjugate modes are implied in the following slides.

全国第十三届重味物理和CP破坏研讨会,兰州大学,2015

 Λ_c^{\pm} yields in data

Very clean backgrounds

Hadronic branching fraction results

• a least square global fitter: simultaneous fit to the all tag modes while constraining the total Λ_c pair number, taking into account the correlations C 37, 106201 (2013)

	BESIII prel.			_
Decay modes	global fit \mathcal{B}	PDG \mathcal{B}	Belle \mathcal{B}	-
pK_S	1.48 ± 0.08	1.15 ± 0.30		-
$pK^{-}\pi^{+}$	5.77 ± 0.27	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$	
$pK_S\pi^0$	1.77 ± 0.12	1.65 ± 0.50		
$pK_S\pi^+\pi^-$	1.43 ± 0.10	1.30 ± 0.35		
$pK^-\pi^+\pi^0$	4.25 ± 0.22	3.4 ± 1.0	$\sqrt{D(mk)}$	
$\Lambda \pi^+$	1.20 ± 0.07	1.07 ± 0.28		
$\Lambda \pi^+ \pi^0$	6.70 ± 0.35	3.6 ± 1.3	preci s	sion comparable with
$\Lambda \pi^+ \pi^- \pi^+$	3.67 ± 0.23	2.6 ± 0.7	Belle	's result
$\Sigma^0 \pi^+$	1.28 ± 0.08	1.05 ± 0.28		$\mathbf{H} (\mathbf{D} \mathbf{M} = +) $
$\Sigma^+\pi^0$	1.18 ± 0.11	1.00 ± 0.34	✓ BESI	If rate $B(pK \pi')$ is
$\Sigma^+\pi^+\pi^-$	3.58 ± 0.22	3.6 ± 1.0	small	er
$\Sigma^+ \omega$	1.47 ± 0.18	2.7 ± 1.0	J. Impr	avad presidions of the
			– 	oved precisions of the
only stat orrors				11 modes significantly
<u>UIII Stat. EIIUIS</u>				

BF of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

- $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ is a $c \rightarrow s l^+ \nu_l$ dominated process.
- Urgently needed for LQCD calculations.
- No direct absolute measurement for $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ available.

 $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (2.1 \pm 0.6)\%$ PDG 2014

scaling to (2.9±0.5)%, when taking the BELLE's B($pK^{-}\pi^{+}$) However, this is not a direct measurement.

- Theoretical predications for branching fraction of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ ranges from 1.4% to 9.2%.
- Thus, measuring B(Λ⁺_c → Λe⁺ν_e) will provide very important experimental information for

1) testing the theoretical predications for $\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e)$.

- 2) calibrating the LQCD calculations.
- 3) addition information for determining CKM elements.

BESIII Prel.: $B(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38 \pm 0.??)\%$

Statistics limited measurement.

Systematic error smaller than statistical

Best precision to date: twofold improvement

(2.9±0.5)%

What is more potentials at **BESIII**

- Is 4.6GeV the BEPCII's ultimate?
- How about to go to the XS peak @4635MeV
 ✓ Belle's ISR data has large uncertainties of ~25%
 ✓ reduce uncertainties of the XS line shapes
- Prospects of increased threshold data set (naively say x10 statistics)
 - ✓ the intermediate structures in three-body decays via dedicated PWA analysis
 - ✓ more SL modes: nlv, $\Lambda^* lv$, $\Sigma X lv$...
 - ✓ decay asymmetry parameters in Λ_c^+ hadronic weak decays, such as $\Lambda_c^+ \to BP$ and $\Lambda_c^+ \to BV$
 - ✓ searching for Λ_c^+ low rate decays and rare decays, such as weak radiative decay Λ_c^+ → $\gamma \Sigma^+$, FCNC Λ_c^+ → pl^+l^- , LNV
 - $\checkmark \quad \text{the spin-parity of } \Lambda_c^-$

Other released results

- 1st observation of SCSD: $D \rightarrow \omega \pi$

Decay mode	This work	PDG value
$D^+ \to \omega \pi^+$	$(2.74 \pm 0.58 \pm 0.17)$ 3×10^{-4}	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0 ightarrow \omega \pi^0$	$(1.05 \pm 0.41 \pm 0.09) \times 10^{-4}$	$< 2.6 imes 10^{-4}$ at 90% C.L.
$D^+ \to \eta \pi^+$	$(3.13 \pm 0.22 \pm 0.19) \times 10^{-3}$	$(3.53 \pm 0.21) \times 10^{-3}$
$D^0 o \eta \pi^0$	$(0.67 \pm 0.00 \pm 0.05) \times 10^{-3}$	$(0.68 \pm 0.07) imes 10^{-3}$

- D Rare/Fobidden Decays at BESIII

 $B(D0 \rightarrow \gamma\gamma) < 3.8 \times 10^{-6}$ compatible with BaBar result [PRD91 (2015) 11, 112015]

$\mathcal{B}(D^+ o) \setminus$	$[imes 10^{-6}] \ K^+ e^+ e^-$	$K^-e^+e^+$	$\pi^+ e^+ e^-$	$\pi^- e^+ e^+$
CLEO	3.0	ar 9.5	5.9	1.1
Babar	17mm	0.9	1.1	1.9
PDG	Pre 1.0	0.9	1.1	1.1
This work	1.2	0.6	0.3	1.2

- Ds \rightarrow η 'X and Ds \rightarrow η ' ρ + [arXiv:1506.08952]

```
\begin{array}{ll} -BF(D_{S}^{+} \rightarrow \eta' \ X) = & (8.8 \pm 1.8 \pm 0.5)\%, \ \text{consistent with} \\ PDG & = & (11.7 \pm 1.7 \pm 0.7)\% \ \text{within} \ ^{1}\sigma. \\ -BF(D_{S}^{+} \rightarrow \eta' \rho^{+})/BF(D_{S}^{+} \rightarrow K^{+}K^{-}\pi^{+}) = & 1.04 \pm 0.25 \pm 0.07 \ \text{or} \\ BF(D_{S}^{+} \rightarrow \eta' \rho^{+}) = & (5.8 \pm 1.4 \pm 0.4)\% \\ PDG & = & (12.5 \pm 2.2)\% \ \text{from PDG}, \\ \text{confirming the CLEO-c result,} \end{array}
```

Summary

- BESIII produces many fresh results on charm hadron decays
- BEPCII/BESIII will accumulate more data set @4.17 and 4.6GeV
- More precision measurement and search studies
- BESIII also opens a new door for the charmed baryon Λ_c^+
 - → low backgrounds and high detection efficiency
- Study tunes!

Thank you! 谢谢!

Comparisons of f_{D+}, f_{Ds+} and f_{D+}: f_{Ds+}

Taken from Gang Rong's talk at CKM2014

Precisions of the LQCD calculations of f_{D+}, f_{Ds+}, f_{D+}:f_{Ds} reach 0.5%, 0.5% and 0.3%, which are challenging the experiments

■ The experimentally measured and the theoretical expected f_{D+}, f_{Ds+}, f_{D+}:f_{Ds+} differ by about 2₅

	Experiments	Femilab Lattice+MILC (2014)		HPQCD (2012)		■ Imp
	Averaged	Expected	Δ	Expected	Δ	meas
f _{D+} (MeV)	203.9±4.7	212.6±0.4 ^{+1.0} -1.2	1.8 σ	208.3±3.4	0.8 σ	larger
f _{Ds+} (MeV)	256.9±4.4	249.0±0.3 ^{+1.1} -1.5	1.7σ	246.0±3.6	1.4 σ	expec
f _{D+} :f _{Ds+}	1.260±0.036	1.1712±0.0010 ^{+0.0029} -0.0032	2.5 σ	1.187±0.013	1.9 σ	
		全国第十三届重味物	理和CF	破坏研讨会,	兰州大	、学,2015

Improving measurement with larger data sample is expected at BESIII!

44

Estimation of Backgrounds in the Double Tag

By using MC-truth information of the K_L efficiency corrected $D\overline{D}$ MC samples, the double-tag D candidates can be divided into the following categories:

- Signal: tag-side matched and signal-side matched signal events
- **Background:**
- Bkg I: $D\overline{D}$ decays of which hadronic tag D is misreconstructed and non- $D\overline{D}$ processes. Its proportion varies from 1% to 12% according to the specific hadronic tag mode
- Bkg II: (~10%) $D^+ \rightarrow K_L e^+ \nu_e$ events of which K_L shower is mis-reconstructed.
- Entires Bkg III: $D^+ \rightarrow Xev_{\rho}$ non-signal events (~24%), which are from $D^+ \to \overline{K}^*(892)^0 e^+ v_e$ (41.9%), $D^+ \to K_S e^+ v_e$ $(41.2\%), D^+ \to \pi^0 e^+ v_e \ (10.2\%), D^+ \to \eta e^+ v_e \ (6.0\%) \ \text{and}$ $D^+ \rightarrow \omega e^+ v_{\rho} (0.7\%)$
- Bkg IV: $D^+ \rightarrow X \mu v_{\mu}$ events (~3%), consist of $D^+ \rightarrow$ $K_L \mu^+ v_\mu$ (65.2%), $D^+ \to \overline{K}^*$ (892)⁰ $\mu^+ v_\mu$ (23.3%) and $D^+ \to K_S \mu^+ v_\mu \ (11.5\%)$
- Bkg V: Non-leptonic D decay events (~3%), which are from $D^+ \to \overline{K}{}^0 \pi^+ \pi^0 (78\%)$ and $D^+ \to \overline{K}{}^0 K^* (892)^+ (22\%)$

In the determination of $B(D^+ \rightarrow K_L e^+ \nu_e)$, the peaking backgrounds consist of Bkg II~Bkg V. This estimation brings in 1.6% systematic 正是中都和好?破坏研讨会,

大学.2015

Composition of double-tag *D* **candidates**

Simultaneous Fit to Event Density $I(q^2)$

$$\frac{dn_{\text{observed}}}{dq^2} = AN_{\text{tag}}p^3(q'^2)|f_+(q'^2)|^2\epsilon(q'^2) \otimes \sigma(q'^2,q^2)$$
Series Expansion
$$f_+(q^2) = \frac{1}{P(q^2)\phi(q^2,t_0)}\sum_{k=0}^{\infty} a_k(t_0)[z(q^2,t_0)]^k$$
Becher and Hill PLB 633, 61 ('06)

Strong phase δ and γ/ϕ_3 in the CKM unitarity triangle

- *D* hadronic parameters for a final state $f: \frac{A(\overline{D}^0 \rightarrow f)}{A(D^0 \rightarrow f)} \equiv -r_D e^{-i\delta_D}$
- Charm mixing parameters: $x = \frac{\Delta M}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$
 - ★ Time-dependent WS $D^0 \rightarrow K^+ \pi^-$ rate ⇒ $y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi} = (0.72 \pm 0.24)\%$ (LHCb 2012)
 - $\delta_{K\pi}$: QC measurements from Charm factory
- γ/ϕ_3 measurements from $B \rightarrow D^{\theta} K$
 - + b \rightarrow u : γ/ϕ_3 = argV^{*}_{ub}
 - **\bullet** most sensitive method to constrain γ/ϕ_3 at present
 - GLW method (Gronau & London, PLB253, 483 (1991); Gronau & Wyler, PLB265, 172 (1991))
 - ADS method (Atwood, Dunetz & Soni, PRL78, 3257 (1997); PRD63, 036005 (2001))
 - GGSZ (Dalitz) method (Giri, Grossman, Soffer & Zupan, PRD68, 054018 (2003))
- GLW and ADS methods in $B \rightarrow D^{\theta} K$
 - D^0 to doubly Cabibbo suppressed decays $K^+\pi^-, K^+\pi^-\pi^0$
 - Decay rates:

$$\Gamma\left(B^{\pm} \rightarrow (f)_{D} K^{\pm}\right) \propto r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\left(\delta_{B} + \delta_{D} \pm \phi_{3}\right)$$

• r_D , δ_D : QC measurements from Charm factory • (r_B, δ_B, ϕ_3) 3 unknowns, 4 measurements