Recent developments in the theory of quarkonia production

北京大学

全国第十三届重味物理和CP破坏研讨会 LZU, Jul. 23th, 2015

Heavy quarkonium

- > Heavy quarkonium, a non-relativistic QCD system:
- a) Constituent quarks are heavy quark-antiquark pair (J/
 - $\psi \psi', \chi_{cJ}, \Upsilon(nS), \chi_{bJ}(nP) \cdots$)

LZU, Jul. 23, 2015

- b) Relative momentum between the quark pair is small Charmonium: $v^2 \approx 0.3$ Bottomonium: $v^2 \approx 0.1$
- c) A simple system: could be similar to a QED bound state, like hydrogen

Multiple well-separated scales :

Production: a way to study hadronization and QGP

马滟青.北京大学

Factorization and hadronization models

Short distance and long distance parts. Hadronization followed by production of an off-shell heavy quark pair.

> Approximation: on-shell pair + hadronization

Different assumptions/treatments on how the heavy quark pair becomes a heavy quarkonium: different factorization models

$$\sigma_{AB\to H+X} = \sum_{n} \int_{n} d\Gamma_{(Q\bar{Q})_{n}} \left[\frac{d\hat{\sigma}(Q^{2})}{d\Gamma_{(Q\bar{Q})_{n}}} \right] F_{(Q\bar{Q})_{n}\to H} (p_{Q}, p_{\bar{Q}}, P_{H})$$

马滟青.北京大学

Historical review of quarkonium production

0. 1974 Discovery of J/ψ

E598 Collaboration (1974) SLAC-SP-017 Collaboration (1974)

1. 1974 - CSM and CEM

Color Singlet Model: fine until 1994, ψ' surplus Einhorn, Ellis (1975), Chang (1980), Berger, Jone (1981), ...

Color Evaporation Model: wrong for ratio Fritzsch (1977), Halzen (1977), ...

- 2. 1994 NRQCD
 - > 1994-2004 NRQCD@LO Bodwin, Braaten, Lepage, 9407339, ...
 - $\sqrt{}$ Self consistent, explain ψ' surplus
 - \times Polarization puzzle, double charmonium, ...
 - > 2005-2014 NRQCD@NLO Zhang, Gao, Chao, 0506076, ...
 - $\sqrt{}$ B-factories and hadron colliders, separately
 - > Very high p_T , low p_T region, plain NRQCD fails
- 3. 2014 -

High p_T : collinear factorization, SCET

Collins, Soper (1982) Kang, Qiu, Sterman, 1109.1520 Fleming, Leibovich, Mehen, Rothstein 1207.2578 Kang, YQM, Qiu, Sterman, 1401.0923, ...

Low p_T : CGC+NRQCD

Kang, YQM, Venugopalan, 1309.7337 Qiu, Sun, Xiao, Yuan, 1310.2230 YQM, Venugopalan , 1408.4075 YQM, Venugopalan, Zhang, 1503.07772

马溯青.北京大学

It was proved that both CSM and CEM are special cases in NRQCD framework.

Bodwin, Braaten, Lee, 0504014

4/27

Outline

马滟青,北京大学

I. NLO NRQCD: success and failure

II. Collinear factorization: large p_T

III. CGC+NRQCD: small p_T

χ_{cJ} @hadron colliders: a successful example

NRQCD framework:

$$d\sigma_H = \sum_{\kappa} d\hat{\sigma}^{\kappa} \langle \mathcal{O}_{\kappa}^H \rangle$$

 $\succ \chi_{cJ} \text{ production: } d\sigma_{\chi_{cJ}} \approx d\hat{\sigma}_{3P_{I}^{[1]}} \langle O\left({}^{3}P_{0}^{[1]}\right) \rangle + (2J+1)d\hat{\sigma}_{3S_{1}^{[8]}} \langle O\left({}^{3}S_{1}^{[8]}\right) \rangle$

- $d\hat{\sigma}$: can be calculated pertubatively
- $\langle O\left({}^{3}P_{0}^{[1]}\right) \rangle$: can be determined by potential model
- $\langle O({}^{3}S_{1}^{[8]}) \rangle$: a number, the only free parameter, fit Tevatron data $d\sigma_{\chi_{c2}}/d\sigma_{\chi_{c1}}$

马滟青.北京大学

YQM, Wang, Chao, 1002.3987

 χ_{cI} @hadron colliders: predictions

Comparison with new data

ATLAS, 1404.7035

Perfect agreement!

马滟青,北京大学

J/ψ @hadron colliders

> Polarization@NLO NRQCD:

- Results depend on the treatment of the 3 CO LDMEs
- Our ${}^{1}S_{0}^{[8]}$ dominant mechanism can explain data

See Han Hao's talk for more details

马滟青.北京大学

Problems with NLO NRQCD

> High p_T : large corrections for some channels

> Low p_T : different behavior from data

马滟青,北京大学

NLO NRQCD: summary

- Most puzzles can be understood qualitatively
 - Including J/ψ polarization puzzle, although under debating
- > It can not provide a good quantitative description for data at very high p_T region
- > Can not describe low p_T region data
- Other methods are needed for these extreme regions

马溯青.北京大学

马滟青,北京大学

I. NLO NRQCD: success and failure

II. Collinear factorization: large p_T

III. CGC+NRQCD: small p_T

Collinear factorization for high p_T production

> When $p_T \gg m$, power expansion first: $1/p_T$

Large $\log(p_T/m)$: can be resumed by solving evolution equation

Leading power: collinear factorization, single parton fragmentation
Collins, Soper (1982)

Collins, Soper (1982) Braaten, Yuan, 9303205 Nayak, Qiu, Sterman, 0509021

> NLP: important for heavy quarkonium produciton

Kang, Qiu, Sterman, 1109.1520

> A rigorous collinear factorization method up to NLP

Kang, YQM, Qiu, Sterman, 1401.0923 Kang, YQM, Qiu, Sterman, 1411.2456

马冲青.北京大学

Collinear factorization approach

Ideas:

Factorization correct to all order

Qiu, Sterman (1991) Kang, YQM, Qiu, Sterman, 1401.0923

马滟青,北京大学

Factorization formalism and evolution

Factorization formalism:

Kang, YQM, Qiu, Sterman, 1401.0923

$$\begin{aligned} d\sigma_{A+B\to H+X}(p_T) &= \sum_{f} d\hat{\sigma}_{A+B\to f+X}(p_f = p/z) \otimes D_{H/f}(z, m_Q) & \text{produce pair at } 1/m_Q \\ &+ \sum_{[Q\bar{Q}(\kappa)]} d\hat{\sigma}_{A+B\to [Q\bar{Q}(\kappa)]+X}(p(1\pm\zeta)/2z, p(1\pm\zeta')/2z) & \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q) \\ &+ \mathcal{O}(m_Q^4/p_T^4) & \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q) \\ &+ \mathcal{O}(m_Q^4/p_T^4) & \text{produce pair at } 1/p_T \end{aligned}$$

$$\kappa = v, a, t \text{ for spin, and } 1, 8 \text{ for color.}$$

 \succ Independence of the factorization scale: $\frac{1}{a}$

$$\frac{d}{d\ln(\mu)}\sigma_{A+B\to HX}(P_T) = 0$$

Evolution equations at NLP:

$$\frac{d}{d\ln\mu^2} \mathcal{D}_{H/f}(z, m_Q, \mu) = \sum_j \frac{\alpha_s}{2\pi} \gamma_{f \to j}(z) \otimes \mathcal{D}_{H/j}(z, m_Q, \mu) \\ + \frac{1}{\mu^2} \sum_{[Q\bar{Q}(\kappa)]} \frac{\alpha_s^2}{(2\pi)^2} \Gamma_{f \to [Q\bar{Q}(\kappa)]}(z, \zeta, \zeta') \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q, \mu) \\ \frac{d}{d\ln\mu^2} \mathcal{D}_{H/[Q\bar{Q}(c)]}(z, \zeta, \zeta', m_Q, \mu) = \sum_{[Q\bar{Q}(\kappa)]} \frac{\alpha_s}{2\pi} K_{[Q\bar{Q}(c)] \to [Q\bar{Q}(\kappa)]}(z, \zeta, \zeta') \\ \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q, \mu)$$

马滟青.北京大学

Predictive power

Calculation of short-distance hard parts in pQCD:

Power series in α_s , without large logarithms LO is now available for all partonic channels

Kang, YQM, Qiu, Sterman, 1411.2456

> Calculation of evolution kernels in pQCD:

Power series in α_s , without large logarithmsKang, YQM, Qiu, Sterman, 1401.0923LO is now available for both mixing kernels and pairevolution kernels of all spin states of heavy quark pairs

> Universality of input fragmentation functions at μ_0 :

Complicated: different quarkonium states require different input distributions!

马漉青.北京大学

Modeling: apply NRQCD to the input distributions at initial scale

NLO is now available for all channels

LZU, Jul. 23, 2015

YQM, Zhang, Qiu, 1311.7078 YQM, Zhang, Qiu, 1401.0524 YQM, Zhang, Qiu, 1501.04556

First application: reproducing NRQCD

YQM, Qiu, Sterman, Zhang, 1407.0383

LP+NLP comparing with NLO NRQCD

Large p_T : outlook

> The collinear factorization framework is ready to use

Solving the double parton evolution equations

Resummation of $log(p_T/m)$, better convergence

Calculating hard parts to NLO

Before resummation, potentially can reproduce NNLO NRQCD

A full global analysis, based on collinear factorization formalism including NLP and evolution

A lot of works to be done!

马滟青 北京大学

Outline

马滟青,北京大学

I. NLO NRQCD: success and failure

II. Collinear factorization: large p_T

III. CGC+NRQCD: small p_T

Low p_T quarkonium production

马滟青,北京大学

- > Small p_T region
- \square When $p_T \ll m_H$, fixed order gives
 - $\frac{d\sigma}{dp_T} \propto \frac{1}{p_T}$, while data goes to zero
- □ Far from understood
- Dominate the total cross section

Small p_T v.s. small x

马溯青.北京大学

- Sudakov double logarithm Berger, Qiu, Wang, 0404158 Sun, Yuan, Yuan, 1210.3432
 - **D** Sudakov resummation of $\log^2(p_T/m_H)$ is needed at small p_T regime
 - **D** This resummation itself is still hard to explain the J/ψ data
- > Why $\log^2(p_T/m_H)$ resummation is not enough?

Total cross section is free of $\log(p_T/m_H) \stackrel{\frown}{\in}$

- Total cross section goes to negative at high energy
- Fixed order NRQCD fails to explain the data

Small-x effect can be important

LZU, Jul. 23, 2015

The only large logarithm is log(x)

CGC effective field theory

Color Glass Condensate

McLerran, Venugopalan, 9309289

马滟青.北京大学

- ♦ A tool to deal with small-*x* physics
- An effective field theory of QCD: separate x < x₀ configuration from x > x₀
 configuration
- ♦ For small-*x* configuration: large saturation scale, perturbatively calculable
- ♦ For large-*x* configuration: $\Delta t^+ \sim \frac{1}{k^-} = \frac{2k^+}{k_\perp^2} \sim x$, life time of parton is long,

determined before the collision, randomly distributed, CGC average

\Diamond JIMWLK evolution: guarantees the separation point x_0 independence

CGC+NRQCD

> NRQCD factorization:

Kang, YQM, Venugopalan, 1309.7337 Qiu, Sun, Xiao, Yuan, 1310.2230

Control the formation of quarkonium from $Q\bar{Q}$ -pair

$$d\sigma_H = \sum_{\kappa} d\hat{\sigma}^{\kappa} \langle \mathcal{O}^H_{\kappa} \rangle$$

Via many channels, both CS and CO

> CGC: production of $c\bar{c}$ -pair

- **Over State State**
- **Small** *x* resummation is accounted by solving JIMWLK or BK evolution equations

马溯青.北京大学

Scope of application:

- High energy p+A or p+p collision
- Quarkonium produced in forward rapidity region

LO and higher order

> LO formula can only describe small p_T region data!

No final state radiation

LZU, Jul. 23, 2015

♦ Correct only if initial state radiation dominate (p_T can not be much larger than the saturation scale)

马冲青.北京大学

> NLO calculation is needed for CGC+NRQCD formula to give a consistent description of full p_T region

J/ψ **@p+p:** p_T dependence

YQM, Venugopalan, 1408.4075

\succ Agree with all small p_T data

- RHIC data at central rapidity: agreement is not very good
- As expected: CGC+NRQCD is good for small x and forward rapidity
- ✓ Evolution of peaks agree!
- At moderate *p_T* region, smoothly matches with pQCD calculation:
 NLO NRQCD

 J/ψ production at all p_T region can be described now!

马滟青.北京大学

J/ψ @p+A: p_T dependence

马滟青.北京大学

YQM, Venugopalan, Zhang, 1503.07772

> Agree with all small p_T data, similar to p+p case

- ✓ Evolution of peaks agree!
- At moderate *p_T* region, smoothly matches with pQCD calculation:
 NLO NRQCD
 - J/ψ production at all p_T region can be described

 R_{pA} : p_T and y dependence

Agreement with data

马滟青,北京大学

✓ R_{pA} → 1 at $p_T \approx 9$ GeV at LHC and $p_T \approx 4$ GeV at RHIC, both agree

CGC+NRQCD: outlook

- > Good description for J/ψ production at p+p and p+A collisions
- > Apply for other quarkonium states is possible

Plenty of data at LHC

> NLO calculation in CGC framework is important and needed!!

马溯青.北京大学

Thank you!

CGC+CEM

Fujii, Gelis, Venugopalan, 0603099 Fujii, Watanabe, 1304.2221 Ducloue, Lappi, Mantysaari, 1503.02789

≻ CEM:

♦ A fixed fraction to become J/ψ if the invariant mass of $c\bar{c}$ -pair is below the *D*-meson threshold

$$\frac{d\sigma_{J/\psi}}{d^2\boldsymbol{p}_{\perp}dy} = F_{J/\psi} \int_{4m_c^2}^{4m_D^2} dM^2 \frac{d\sigma_{c\bar{c}}}{dM^2 d^2 \boldsymbol{p}_{\perp}dy}$$

> CGC: production of $c\bar{c}$ -pair

- **Output** Using CGC to calculate gluon distribution
- **Small** *x* resummation is accounted by solving JIMWLK or BK evolution equations

马溯青.北京大学

CGC+CEM: p+p

Bad agreement:

Fujii, Watanabe, 1304.2221

马滟青,北京大学

LZU, Jul. 23, 2015

mil

CGC+CEM: p+A

Bad agreement:

Fujii, Watanabe, 1304.2221

LZU, Jul. 23, 2015

2

CGC+CEM: R_{pA}

are also shown. Within our uncertainties, both the model based on shadowing only and the coherent energy loss approach are able to describe the data, while the CGC-based prediction overestimates the observed suppression. None of these models include a suppression related to the break-up of the $c\overline{c}$ pair.

LZU, Jul. 23, 2015

马滟青.北京大学

CGC+CEM: improved

马滟青,北京大学

Ducloue, Lappi, Mantysaari, 1503.02789

- Using the collinear "hybrid" frame work
- Introduce impact-parameter-dependent initial condition
- Marginally describe data

Parameters for p+p

An approximation for quadrupole

YQM, Venugopalan, 1408.4075

$$\begin{aligned} Q_{x_{\perp}x'_{\perp}y'_{\perp}y_{\perp}} &\approx D_{x_{\perp}-x'_{\perp}}D_{y'_{\perp}-y_{\perp}} - D_{x_{\perp}-y'_{\perp}}D_{x'_{\perp}-y_{\perp}} + D_{x_{\perp}-y_{\perp}}D_{x'_{\perp}-y'_{\perp}} \\ &+ \frac{1}{2}(D_{x_{\perp}-y'_{\perp}}D_{x'_{\perp}-y_{\perp}} - D_{x_{\perp}-y_{\perp}}D_{x'_{\perp}-y'_{\perp}}) \end{aligned}$$

 $\times (D_{\mathbf{x}_{\perp}'-\mathbf{y}_{\perp}}-D_{\mathbf{y}_{\perp}'-\mathbf{y}_{\perp}}+D_{\mathbf{y}_{\perp}'-\mathbf{x}_{\perp}}-D_{\mathbf{x}_{\perp}'-\mathbf{x}_{\perp}})$

- ✓ Self-consistent: exact when any two adjacent positions coincide
- Checked: a good approximation to the quadrupole

> **Dipole distributions:**

LZU, Jul. 23, 2015

- Dipole distribution at initial scale ($x = x_0 = 0.01$): using MV model
- Allbacete, Dumitru, Fujii, Nara,1209.2001 • All parameters are fixed from fits to the HERA DIS data
- $R_p = 0.48$ fm to match with collinear PDF at large x

> NRQCD CO matrix elements

• Taken from fitting high p_T data Chao,YQM,Shao,Wang,Zhang,1201.2675

马滟青.北京大学

J/ψ @ p+p: \sqrt{S} dependence

马滟青.北京大学

Good agreement with data

♦ Worst agreement with RHIC data at central rapidity

CS contribution is found to be only 10%

♦ Large p_{\perp} : suppressed by $\frac{1}{p_{T}^{2}}$

LZU, Jul. 23, 2015

 \diamond Small p_{\perp} : suppressed by phase space

J/ψ @ p+p: y dependence

Good agreement with data

马滟青,北京大学

Over Stage Control Worst agreement with RHIC data at central rapidity

J/ψ @ p+A: y dependence

马滟青,北京大学

Good agreement with data

♦ Worst agreement with RHIC data at central rapidity

Parameters for p+A

YQM, Venugopalan, Zhang, 1503.07772

- \succ Two free parameters: $Q_{s0,A}$ and R_A
- > Self-consistent condition: $R_{pA} \rightarrow 1$ at high p_T limit

$$R_{pA} = \frac{d\sigma_{pA}}{A \times d\sigma_{pp}} \stackrel{\text{high } p_{\perp}}{\longrightarrow} \frac{R_A^2}{AR_p^2} \frac{\widetilde{\mathcal{N}}_{Y_A}^A(\boldsymbol{p}_{\perp})}{\widetilde{\mathcal{N}}_{Y_p}^A(\boldsymbol{p}_{\perp})} \approx \frac{R_A^2}{AR_p^2} \frac{Q_{s0,A}^{2\gamma}}{Q_{s0,p}^{2\gamma}} = 1$$

 $\circ \gamma = 1$ in MV model, $Q_{s0,p}$ and R_p are known from p+p case

$$\succ Q_{s0,A}^2 = N \times Q_{s0,p}^2$$

Dusling, Gelis, Lappi, Venugopalan, 0911.2720

马滟青.北京大学

- ♦ Fitting HERA DIS data, $N \approx 3$ for $\gamma = 1.113$, and $N \approx 1.5$ for $\gamma = 1$
- \diamond Set N = 2 as a tentative choice

> Many uncertainties can be cancelled in the ratio

$$R_{pA} = \frac{d\sigma_{pA}}{A \times d\sigma_{pp}}$$

> Calculate R_{pA} for each NRQCD channel

 \diamond Combining curves of all channels to provide the prediction for J/ψ

马滟青.北京大学

 R_{pA}

Oracle Results are independent of NRQCD matrix elements

 R_{pA} calculated in this way is almost parameter-independent