

Precision Study on *t*tH production

Zhang Yu

with Ma Wen-Gan, Zhang Ren-You and et, al.

2015-7-24@Lanzhou

Outline

- Introduction
- Details of the calculation
- Results
- Summary

Introduction

Background

• Discovery of Higgs boson 2012:

⇒ Standard Model completed no direct evidence for physics beyond SM

- Future tasks:
 - > precise investigation of Higgs boson
 - precise study of other SM processes
 - search for physics beyond SM
- Decent predictions require higher-order corrections

Automation of NLO QCD corrections

- Feynarts&Formcalc
- BLACKHAT
- NJET
- HELACNLO
- GOSAM
- OPENLOOPS
- MadGraph5_aMC@NLO

Relevance NLO Electroweak (EW) corrections

- Naively: $O(\alpha) \sim O(\alpha_s^2) \sim \text{few \%}$
- EW corrections can be enhanced:
 bigh operate scales E >> M
 - high energy scales, $E \gg M_W = Sudakov \log (\frac{E^2}{M_W^2})$
 - ⇒ corrections of several 10% for E ~ 1TeV tails of distributions
- Les Houches wishlist 2013: NNLO QCD and NLO EW for various processes desired

Automation of NLO EW corrections

- RECOLA
- GOSAM
- OPENLOOPS
- MadGraph5_aMC@NLO
- Feynarts&Formcalc

Main Higgs production channels

gluon-gluon fusion @ NNLO QCD+ EW

ttH @ NLO QCD+ EW

Existing results on ttH at NLO

• QCD corrections:

✓ L. Reina, S. Dawson, et.al. 2003

✓ W. Beenakker, S. Dittmaier, et.al 2003

parton-shower matching:

✓ R. Frederix , S. Frixione, et.al. 2011
✓ M.V. Garzelli, A. Kardos, et.al. 2011

EW corrctions: part of Les Houches wish list 2013
 ✓ Y. Zhang, W. Ma, et.al. 2014 (EW)
 ✓ S. Frixione, V. Hirschi, et.al. 2014,2015 (weak, EW)

Motivation

- probing the top-Higgs Yukawa coupling
- nontrivial study case for (automatized) calculation of EW NLO corrections
- part of Les Houches wish list 2013

Details of the calculation

Tree level

Sample diagrams: QCD, $O(\alpha_s \alpha^{1/2})$ and EW, $O(\alpha^{3/2})$

Η

Subprocess	$\mathcal{O}(\mathcal{M})$	$\mathcal{O}(\sigma)$
$gg \to t\bar{t}H$	$\alpha_s \alpha^{1/2}$	$\alpha_s^2 \alpha$
$q\bar{q} \to t\bar{t}H$	$\alpha_s \alpha^{1/2}, \alpha^{3/2}$	$\alpha_s^2 \alpha, \alpha^3$
$b\bar{b} \to t\bar{t}H$	$\alpha_s \alpha^{1/2}, \alpha^{3/2}$	$\alpha_s^2 \alpha, \alpha_s \alpha^2, \alpha^3$
$g\gamma \to t\bar{t}H$	$\alpha_s^{1/2} \alpha$	$\alpha_s \alpha^2$
$\gamma\gamma \to t\bar{t}H$	$\alpha^{3/2}$	α^3

q=u,d,c,s CKM matrix is set to be diagonal

g

للللك

	<u>_</u>	gg $q\bar{q}$		$q \bar{q}$	$b\bar{b}$			$g\gamma$	$\gamma\gamma$
\sqrt{s}		$\alpha_s^2 \alpha$	$\alpha_s^2 \alpha$	$lpha^3$	$\alpha_s^2 \alpha$	$\alpha_s \alpha^2$	$lpha^3$	$\alpha_s \alpha^2$	$lpha^3$
14	$\sigma_{tree}(pb)$	0.37178	0.12160	0.000828	0.0010382	-0.0015650	0.0033241	0.006196	$6 imes 10^{-6}$
	$\frac{\sigma_{tree}}{\sigma_{LO}}$ (%)	75.20	24.59	0.17	0.21	-0.32	0.67	1.25	0.001
33	$\sigma_{tree}(pb)$	2.9058	0.45500	0.003154	0.007844	-0.011778	0.027167	0.028225	$1.6 imes 10^{-5}$
	$\frac{\sigma_{tree}}{\sigma_{LO}}$ (%)	86.26	13.51	0.09	0.23	-0.35	0.81	0.84	0.0005
100	$\sigma_{tree}(pb)$	25.078	1.8325	0.012769	0.06237	-0.09333	0.2449	0.14016	$4.4 imes 10^{-5}$
	$\frac{\sigma_{tree}}{\sigma_{LO}}$ (%)	92.97	6.79	0.05	0.23	-0.35	0.91	0.52	0.0002

$$\sigma_{LO} = \sigma_0(\alpha_s^2 \alpha) = \sigma_0^{gg}(\alpha_s^2 \alpha) + \sum_q \sigma_0^{q\bar{q}}(\alpha_s^2 \alpha) + \sigma_0^{b\bar{b}}(\alpha_s^2 \alpha).$$

ttH at NLO

Tower of contributions to σ :

- $O(\alpha_s^3 \alpha)$: QCD corrections to QCD diagrams 2003
- O(α_s²α²): this talk
 ≻ EW corrections to QCD diagrams
 > QCD corrections to EW–QCD interferences
- Ο(α_sα³):

QCD corrections to EW diagrams

EW corrections EW–QCD to interferences

• $O(\alpha^4)$: EW corrections to EW diagrams

General setup

• G_{μ} scheme for electromagnetic coupling:

$$\alpha_{G_{\mu}} = \frac{\sqrt{2}G_{\mu}M_{\mathrm{W}}^2}{\pi} \left(1 - \frac{M_{\mathrm{W}}^2}{M_{\mathrm{Z}}^2}\right)$$

- massless light fermions
- 't Hooft–Feynman gauge
- $\Delta \sigma_{NLO}^{EW} = \sigma^{gg}(\alpha_s^2 \alpha^2) + \sum \sigma^{q\bar{q}}(\alpha_s^2 \alpha^2) + \sigma^{b\bar{b}}(\alpha_s^2 \alpha^2).$
- matrix elements with FeynArts/FormCalc
- loop integrals with LoopTools

$O(\alpha_s^2 \alpha^2)$ contributions for the gluon fusion

- $\Delta \sigma = \Delta \sigma_{virt} + \Delta \sigma_{real}$
- $\Delta \sigma_{virutal} \sim 2Re(\mathcal{M}^*_{tree}\mathcal{M}_{loop})$

UV divergent \implies canceled exactly after performing the **renormalization** procedure

IR divergent \implies canceled exactly with $\Delta \sigma_{real}$

• $\Delta \sigma_{real} \sim |\mathcal{M}_{real}|^2$

the two cutoff phase space slicing (TCPSS) method
 the dipole subtraction (**DS**) method

$O(\alpha_s^2 \alpha^2)$ contributions for $q\bar{q}$ annihilation

- $\Delta \sigma = \Delta \sigma_{virt} + \Delta \sigma_{real}$
- $\hat{\sigma}_{virt}^{q\bar{q}}(\alpha_s^2 \alpha^2)$ ~

 $\Big\{2Re\{\mathcal{M}_{0,g}^{q\bar{q}*}\mathcal{M}_{1,EW}^{q\bar{q}}\}+\Big]$

 $O(\alpha_s \alpha^{1/2})$

 $O(\alpha_s \alpha^{3/2})$

$$2Re\left\{\mathcal{M}_{0,Z/\gamma}^{q\bar{q}*}\mathcal{M}_{1,QCD}^{q\bar{q}}\right\}\right\}$$

- $\Delta \sigma_{real} = \Delta \sigma_{realr} + \Delta \sigma_{realg} + \Delta \sigma_{realq}$
- $O(\alpha_s^2 \alpha^{1/2})$

$O(\alpha_s^2 \alpha^2)$ contributions for $q\bar{q}$ annihilation

• real photon emission

real gluon emission

 $O(\alpha_s^{3/2} \alpha^{1/2})$

 $O(\alpha_s^{1/2} \alpha^{3/2})$

• real quark emission $q(p_1) + \gamma(p_2) \rightarrow t(p_3) + \overline{t}(p_4) + H(p_5) + q(p_6)$

 $q(p_1) + \gamma(p_2) \to t(p_3) + t(p_4) + H(p_5) + q(p_6),$ $q(p_1) + g(p_2) \to t(p_3) + \bar{t}(p_4) + H(p_5) + q(p_6),$

Х

Tree level

Sample diagrams: QCD, $O(\alpha_s \alpha^{1/2})$ and EW, $O(\alpha^{3/2})$

Η

Subprocess	$\mathcal{O}(\mathcal{M})$	$\mathcal{O}(\sigma)$
$gg \to t\bar{t}H$	$\alpha_s \alpha^{1/2}$	$\alpha_s^2 \alpha$
$q\bar{q} \to t\bar{t}H$	$\alpha_s \alpha^{1/2}, \alpha^{3/2}$	$\alpha_s^2 \alpha, \alpha^3$
$b\bar{b} \to t\bar{t}H$	$\alpha_s \alpha^{1/2}, \alpha^{3/2}$	$\alpha_s^2 \alpha, \alpha_s \alpha^2, \alpha^3$
$g\gamma \to t\bar{t}H$	$\alpha_s^{1/2} \alpha$	$\alpha_s \alpha^2$
$\gamma\gamma \to t\bar{t}H$	$\alpha^{3/2}$	α^3

q=u,d,c,s CKM matrix is set to be diagonal

g

للللك

$O(\alpha_s^2 \alpha^2)$ contributions for $b\overline{b}$ annihilation

 $O(\alpha_s \alpha^{1/2})$

 $O(\alpha_s \alpha^{3/2})$

Η

O(α^{3/2})

 $O(\alpha_{s}^{2} \alpha^{1/2})$

QCD corrections to EW–QCD interferences

Results

Result for total cross section

	σ _{LO} (pb)	δ(%)
13	0.39381(4)	-0.2
100	25.200(5)	-0.5

Distribution in p_T of top

- EW corrections sizeable for large p_T dominated by virtual corrections (Sudakov logarithms)
- subtracted real photonic corrections small and flat

Distribution in p_T of Higgs

- EW corrections –13% when p_T^H =0.8TeV for HC13 and 1.2TeV for HC100 dominated by virtual corrections (Sudakov logarithms)
- subtracted real corrections small (<4% for HC13 and 1% for HC100)

Distribution in invariant mass of top pair

EW corrections are positive near the threshold

Summary

Summary

- Automation of QCD/EW corrections
- EW corrections to pp→ttH
 > O(α_s²α²) corrections calculated
 (EW corrections to LO QCD diagrams,
 QCD corrections to LO EW-QCD interferences)
 > corrections to total cross section less than per-cent
 - corrections of more than ten per cent in high-energy tails of distributions from virtual Sudakov logarithms
 - real corrections small and stable

Backup

Distribution in p_T of lepton

 $pp \rightarrow t\bar{t}H \rightarrow W^+bW^-bH + X \rightarrow l^+l^-b\bar{b}\nu\bar{\nu}H + X$

Distribution in invariant mass of lepton pair

