Recent results of charmonium decays from BESIII

平荣刚

(For the BESIII Collaboration) Institute of High Energy Physics, CAS

全国第十三届重味物理与CP破坏研讨会,兰州大学,2015年22-25日

Introduction

[GeV/c²]

MASS

• Vector charmonium data sets

Vector charmonium	Previous data	BESIII now	Goal
J/ψ	BESII: 58 M	1.2B(20×BESII)	10 B
ψ(3686)	CLEO: 28 M	0.5B(20×CLEO)	3 B
$\psi(3770)$	CLEO: 0.8 fb ⁻¹	2.9fb ⁻¹ (3.5×CLEO)	20 fb ⁻¹

- $\eta_c, \eta_c(2S), \chi_{cJ}$ are available via γ transition, and h_c available via pion transiton.
- charmonium physics
 - $\rho\pi$ puzzle, and violation of the 12% rule
 - non- $D\overline{D}$ decays of $\psi(3770)$
 - light hadron structure and properties
- rare decays: $J/\psi \to \gamma\gamma, \ \gamma\phi, \ \phi\pi^0$

$\psi(3770) \rightarrow \gamma \eta_c, \ \gamma \eta_c(2S) \rightarrow \gamma K_S^0 K \pi$

- If $\psi(3770)$ is assigned as $1^{3}D_{1}$ state, the radiative transitions $\psi(3770) \rightarrow \gamma \eta_{c}, \gamma \eta_{c}(2S)$ are supposed to be highly suppressed.
- High multipoles beyond the leading one could be contributed. $B(\psi(3770) \rightarrow \gamma \eta_c) = 6.3^{+8.4}_{-4.4} \times 10^{-4}$ PRD 84, 074005 (2011) $B(\psi(3770) \rightarrow \gamma \eta_c(2S)) = 6.7^{+7.2}_{-4.4} \times 10^{-5}$ BESIII: the 2.92 fb⁻¹ ψ " data set $--K_{s}^{0}K\pi\pi^{0}$ --- polynomial bkg (a) 🗕 data 10^{3} - data -----ψ(3686) tail ---- χ_{e1} Events / (0.005 GeV/c² $K_{S}^{0}K\pi(\gamma)$ Events / (0.01 GeV/c² 30 $\eta_{a}(2S)$ $K_{s}^{0}K\pi(\gamma)$ $K_{s}^{0}K\pi\pi^{0}$ 25 ···· ψ(3686) $K^0_s K \pi \pi^0$ --- w(3686) tail ---- $K_s^0 K \pi(\gamma)$ η_s(2S) signal

3.45

3.5

2.9

 $M_{K^0_s K \pi} \, (GeV/c^2)$

2.8

2.7

2015-7-22

3

Phys. Rev. D 89, 112005

3.1

3.2

3.6

 $M_{K^0_eK\pi}\,(GeV/c^2)$

3.65

3.7

3.55

Phys. Rev. D 89, 112005

 $\psi(3770) \rightarrow \gamma \eta_c, \ \gamma \eta_c(2S) \rightarrow \gamma K^0_S K \pi$

Quantity	η_c	$\eta_c(2S)$	χ_{c1}
N _{obs}	29.3 ± 18.2	0.4 ± 8.5	34.9 ± 9.8
N _{up}	56.8	16.1	
ϵ (%)	27.87	25.24	28.46
$\mathcal{B}(\psi(3770) \to \gamma X \to \gamma K^0_S K^\pm \pi^\mp) \; (\times 10^{-6})$	< 16	< 5.6	$8.51 \pm 2.39 \pm 1.42$
$\mathcal{B}(\psi(3770) \to \gamma X) ~(\times 10^{-3})$	< 0.68	< 2.0	$2.33 \pm 0.65 \pm 0.43$
$\mathcal{B}_{\text{CLEO}}(\psi(3770) \rightarrow \gamma X) \; (\times 10^{-3})$			$2.9\pm0.5\pm0.4$
$\Gamma(\psi(3770) \to \gamma X) \text{ (keV)}$	< 19	< 55	
Γ_{IML} (keV)	$17.14^{+22.93}_{-12.03}$	$1.82^{+1.95}_{-1.19}$	
Γ_{LQCD} (keV)	10 ± 11		

- Upper limites are set for the radiative transitions $\psi(3770) \rightarrow \gamma \eta_c, \gamma \eta_c(2S)$
- The upper limits for the Γ(ψ(3770) → γη_c/η_c(2S)) cover the theoretical predictions, but the upper limits for Γ(ψ(3770) → γη_c(2S)) is too high due to the large systematic uncertainties.

$(3770) \rightarrow \gamma \chi_{cl} \quad \text{with } \chi_{cl} \rightarrow \gamma J / \psi \rightarrow \gamma l^+ l^-$

- No significant non $D\overline{D}$ exclusive decays are established. How to understand the $\psi(3770)$ decay mechanisms and properties?
- If it contains additional light quarks or gluons, it may have large branching fractios decays into ligh hadrons.
- Light hadron transition or radiative transitions, e.g. $\pi \pi J / \psi$, $\pi J / \psi$, $\eta J / \psi$, and $\gamma \chi_{cl}$, can probe the $\psi(3770)$

		Radiative decays		
$\gamma \chi_{c2}$		< 9 × 10	$^{-4}$ CL=90%	211
$\gamma \chi_{c1}$	PDG2014	$(2.9 \pm 0.6) \times 10$)-3	253
$\gamma \chi_{c0}$		$(7.3 \pm 0.9) imes 10$)-3	341

• S - D mixing model: (PRD44,3562; PRD64,094002, PRD69,094019) $\Gamma(\psi(3770) \rightarrow \gamma \chi_{c1}): 59 \sim 183 \text{ KeV}$ Large uncertainties! $\Gamma(\psi(3770) \rightarrow \gamma \chi_{c2}): 3 \sim 24 \text{ KeV}$ 2015-7-22

 $\psi(3770) \to \gamma \chi_{cJ}$

arXiv:1504.07450v01

The analysis is based on the 2.92 fb⁻¹ ψ " data.
The χ_{cJ} are reconstructed with the decay χ_{cI} → γJ/ψ → γl⁺l⁻

Experiment/Theory	$\Gamma(\psi(3770) \to \gamma \chi)$ $J = 1$	$_{cJ}^{(keV)}$ J=2
This work	$67.5 \pm 4.1 \pm 6.7$	< 17.4
Ding-Qin-Chao [12]		
non-relativistic	95	3.6
relativistic	72	3.0
Rosner S - D mixing [13]		
$\phi = 12^{\circ} \ [13]$	73 ± 9	24 ± 4
$\phi = (10.6 \pm 1.3)^{\circ} [32]$	79 ± 6	21 ± 3
$\phi = 0^{\circ} \text{ (pure } 1^3 D_1 \text{ state) } [32]$	133	4.8
Eichten-Lane-Quigg [14]		
non-relativistic	183	3.2
with coupled-channel corr.	59	3.9
Barnes-Godfrey-Swanson [15]		
non-relativistic	125	4.9
relativistic	77	3.3

 $\mathcal{B}(\psi(3770) \to \gamma \chi_{c1}) = (2.48 \pm 0.15 \pm 0.23) \times 10^{-3},$ $\mathcal{B}(\psi(3770) \to \gamma \chi_{c2}) < 0.64 \times 10^{-3}$

Searches for isospin-violating transition $\chi_{c0,2} \rightarrow \pi^0 \eta_c$

- In quark model, the isospin-violating is broken due to the electromagnetic interaction or the up-down quark mass difference. The expected decay rates are very small.
- However, a larger isospin decay ratio is observed in charmonium transitions, e.g. $R=Br(\psi(2S) \rightarrow \pi^0 J/\psi)/Br(\psi(2S) \rightarrow \eta J/\psi)=0.374 \pm 0.072$, indicates the important role played by the nonperturbative effects. (PRL103,082003)
- Searches for the isospin-violating decay $\chi_{cJ} \rightarrow \pi^0 \eta_c$ gives insights in the isospin-violating mechanisms.
- QCD multipole expansion gives the relation: $Br(\chi_{c0} \to \pi^0 \eta_c) \approx Br(\chi_{c1} \to \pi^+ \pi^- \eta_c)$ (PRD86, 074033), and $Br(\chi_{c1} \to \pi^+ \pi^- \eta_c) \approx (2.22 \pm 1.24)\%$. (PRD 75, 054019)
- The analysis is based on the 106 million $\psi(2S)$ data set at the BESIII, and the η_c is constructed with the decay $\eta_c \to K_S^0 K^{\pm} \pi^{\mp}$.

Searches for isospin-violating transition $\chi_{c0,2} \rightarrow \pi^0 \eta_c$

- The peack near 3.12 GeV is due to the background $\psi(2S) \rightarrow \pi^0 \pi^0 J / \psi$.
- No significant η_c signals are observed, and upper limits are set.

• The comparison indicates that the QCD multipole expansion predicts that the branching fraction is 20 times of magnitude larger than our measurement

Search for C – violation decay $J/\psi \rightarrow \gamma\gamma, \gamma\phi \in \mathbb{S}$

- The *C*-parity violation is forbidden in the electromagnetic interatction, any observation of the $J/\psi \rightarrow \gamma\gamma$ decay indicates a new physics.
- Based on the 106 million $\psi(3686)$ data set, we use the decay $\psi(2S) \rightarrow \pi^+ \pi^- J / \psi$ to search for $J / \psi \rightarrow \gamma \gamma$
- Dominant backgrounds, $J/\psi \to \gamma \pi^0$, $\gamma \eta$, $\gamma \eta_c \to 3\gamma$, and $J/\psi \to 3\gamma$, are carefully studied with MC simulation. **PRD 90, 092002**

No C-violation decays were observed!

Search for OZI-suppressed decay $J/\psi \to \pi^0 \phi$ \Re

- The decay $J/\psi \rightarrow \phi \pi^0$ is highly suppressed dut to double OZI rule.
- The observation is helpful to understand the $\omega \phi$ mixing and SU(3) flavor symmetry breaking.
- The analysis is based on the 1.31 billion J/ ψ data sample, and the π^0 candidates are reconstructed with two photons
- The structure at the ϕ mass region is assumed due to the interference between the J/ $\psi \rightarrow \phi \pi^0$ and $K^+ K^- \pi^0$ decays.

Phys.Rev. D91,11, 112001 (2015)

• Two solutions are obtained.

Solution	$N^{\mathbf{sig}}$	δ	$2\Delta \log \mathcal{L}/N_f$	Z
Ι	838.5 ± 45.8	$-95.9^{\circ} \pm 1.5^{\circ}$	45.8/2	6.4σ
II	35.3 ± 9.3	$-152.1^\circ\pm7.7^\circ$	45.8/2	6.4σ

Branching fraction:

- I: $[2.94 \pm 0.16(\text{stat.}) \pm 0.16(\text{syst.})] \times 10^{-6}$
- II: $[1.24 \pm 0.33(\text{stat.}) \pm 0.30(\text{syst.})] \times 10^{-7}$

Search for OZI-suppressed decay $J/\psi \to \pi^0 \phi$

Nonet symmetry broken

$$\frac{B(\phi\pi^{0})}{B(\omega\pi^{0})} = \left(\frac{p_{\phi}}{p_{\omega}}\right)^{3} \frac{(r_{E} \tan \theta_{V} - 1/\sqrt{2})^{2}}{(r_{E} + \tan \theta_{V}/\sqrt{2})^{2}}$$

$$r_{E} = 1 \text{ (nonet symmetry)}$$

$$\theta_{V} = arc \tan(1/\sqrt{2}) \text{ (ideal } \omega - \phi \text{ mixing)}$$

$$(a) \text{ Nonet Symmetry (b)}$$

$$(b)$$

$$(b)$$

$$(c)$$

ideal mixing: $r_E - 1 = (21.0 \pm 1.6)\%$ or $(-16.4 \pm 1.0)\%$ (solution I) $(3.9 \pm 0.8)\%$ or $(-3.7 \pm 0.7)\%$ (solution II)

Nonet symmetry: $\phi_V = |\theta_V - \theta_V^{ideal}| = 4.97^\circ \pm 0.33^\circ$ (solution I)

 $=1.03^{\circ}\pm0.19^{\circ}$ (solution II)

quardratic mass formula: $\phi_V = 3.84^{\circ}$ (PDG)

fit to radiative transition: $3.34^{\circ} \pm 0.09^{\circ}$ (J. High Energy Phys. 0907,105)

Nonet asymmetry indication!

2015-7-22

Observation of the isospin-violating decay $J/\psi \rightarrow \phi \pi^0 f_0(980)$

- The nature of $f_0(980)$ is a long-standing puzzle.
- It has been interpreted as a $q\overline{q}$ state, a $K\overline{K}$ molecule, a glueball, and a four-quark state.
- Average values of f_0 (980) resonance parameters : M=980 ± 20 MeV, Γ =40 to 100 MeV.
- In J/ $\psi \to \gamma \eta (1405) \to \gamma \pi^0 f_0(980)$, measured $\Gamma = 9.5 \pm 1.1 \text{ MeV} (\text{PRL. } 108, 182001)$
- Not $a_0 f_0(980)$ mixing mechanism, it was identified as a triangle singularity mechanism (PRL108,081803)
- What about $f_0(980)$ in the decay J/ $\psi \rightarrow \phi \pi^0 f_0(980)$

Observation of J/ $\psi \rightarrow \phi \pi^0 f_0(980)$

PRD92,012007

- A simultaneous fit gave M=989.4 \pm 1.3MeV, Γ =15.3 \pm 4.7 MeV.
- Measured mass and width consistent with those measured in $J/\psi \rightarrow \gamma \pi^0 f_0(980)$.

•
$$\mathcal{B}(f_1 \to \pi^0 f_0 \to \pi^0 \pi^+ \pi^-) / \mathcal{B}(f_1 \to \pi^0 a_0^0 \to \pi^0 \pi^0 \eta) = (3.6 \pm 1.4)\%$$

$$\mathcal{B}(\eta(1405) \to \pi^0 f_0 \to \pi^0 \pi^+ \pi^-) / \mathcal{B}(\eta(1405) \to \pi^0 a_0^0 \to \pi^0 \pi^0 \eta) = (17.9 \pm 4.2)\%$$

• This analysis supports the argument that the nature of the resonances a_0 and f_0 as dynamically generated makes the amount of isospin breaking strongly dependent on the physical process.

 $\chi_{cI} \rightarrow \eta' K^+ K^-$

- Compared to J/ ψ and $\psi(3686)$ decays, relatively little is known about χ_{cJ} decays.
- Look for scalar states, e.g. f₀(1370), f₀(1500), and so on, and test the glueball-qqbar mixing relations (Int.J.Mod.Phys.27,1250135).

The schematic Feynman diagrams of $\chi_{c1} \rightarrow PS$ via three-gluon annihilations.

• Looking for $K_0^*(1430) \rightarrow \eta' K$

- Use 106 million $\psi(3686)$ decays
- η' is reconstructed with decays

 $\eta' \to \gamma \rho^0 \to \gamma \pi^+ \pi^- \pmod{I}$

 $\eta' \rightarrow \eta \pi^+ \pi^- \rightarrow \gamma \gamma \pi^+ \pi^- \text{ (mode II)}$

Process	$\mathcal{B}(\times 10^{-4})$
$\mathcal{B}(\chi_{c1} \to \eta' K^+ K^-)$	8.75 ± 0.87
$\mathcal{B}(\chi_{c2} \to \eta' K^+ K^-)$	1.94 ± 0.34

where (a) (b) for mode I, and (c) (d) for mode II

PRD 89, 074030	PRD	89,	074	030
----------------	-----	-----	-----	-----

Process	$\mathcal{B}(\times 10^{-4})$
$ \begin{array}{l} \chi_{c1} \rightarrow K_0^*(1430)^{\pm} K^{\mp}, \ K_0^*(1430)^{\pm} \rightarrow \eta' K^{\pm} \\ \chi_{c1} \rightarrow \eta' f_0(980), \ f_0(980) \rightarrow K^+ K^- \end{array} $	$\begin{array}{c} 6.41 \pm 0.57 \substack{+2.09 \\ -2.71} \\ 1.65 \pm 0.47 \substack{+1.32 \\ -0.56} \end{array}$
$ \begin{split} \chi_{c1} &\to \eta' f_0(1710), f_0(1710) \to K^+ K^- \\ \chi_{c1} &\to \eta' f_2'(1525), f_2'(1525) \to K^+ K^- \end{split} $	$0.71 \pm 0.22^{+0.68}_{-0.48} \\ 0.92 \pm 0.23^{+0.55}_{-0.51}$

17

$J/\psi \to p\overline{p}a_0(980)$

- The nature of a₀(980) and f₀(980) is a long-standing problem of physics
- The measurement of J/ψ→pp̄a₀ (980) will provide an additional constraint to any model describing a₀(980) formation and decays.
- χ PT provides a description of J/ $\psi \rightarrow$ NNMM process, yet to be test experimentally.

PRC **69**, 015201

• 225 million J/ ψ decays

PRD 90, 052009

$$J/\psi \to p\overline{p}a_0(980),$$
$$a_0(980) \to \pi^0 \eta$$

is observed for the first time.

- $Br(J/\psi \rightarrow p\overline{p}a_0(980) \rightarrow p\overline{p}\pi^0\eta) = (6.8 \pm 1.2 \pm 1.3) \times 10^{-5}.$
- Interference with N^* states is not taken into account.
- Comparison with $Br(J/\psi \rightarrow p\overline{p}\pi^+\pi^-)$ from the PDG shows preference $r_4=0.2$ in ChPT.

 $J/\psi \rightarrow Pe^+e^- (P = \eta !/\eta / \pi^0)$

 Electromagnetic decays are suggested as an important probe to reveal the structure of hadrons.

- Measurements of EM decays for ρ, ω, ϕ mesons have been performed at CMD2, CLOE and so on.
- The branching fractions and form factors for $\phi \to \eta e^+ e^-$, $\omega \to \pi^0 e^+ e^$ are consistent with VMD model prediction, but for decay $\omega \to \pi^0 \mu^+ \mu^-$, measured Λ^{-2} significantly deviates from VDM.

PRD 89, 092008

- Using 225 million J/ψ decays
- γ -conversion backgrounds from $J/\psi \rightarrow P\gamma$ are subtracted.
- **Backgrounds from** $J/\psi \rightarrow P\phi/\omega$

are subtracted.

Non-peaking backgrounds are carefully checked with **MC** simulation.

Signal yield and peaking BG.

Modes	N_S	N_B	ϵ
$\overline{J/\psi \to \eta' e^+ e^- (\eta' \to \gamma \pi^+ \pi^-)}$	983.3 ± 33.0	27.4 ± 1.0	24.8%
$J/\psi \to \eta' e^+ e^- (\eta' \to \pi^+ \pi^- \eta)$	373.0 ± 19.9	8.5 ± 0.3	17.6%
$J/\psi \to \eta e^+ e^- (\eta \to \pi^+ \pi^- \pi^0)$	84.2 ± 9.6	5.3 ± 0.3	14.9%
$J/\psi \to \eta e^+ e^- (\eta \to \gamma \gamma)$	235.5 ± 16.4	8.7 ± 0.3	22.7%
$J/\psi \to \pi^0 e^+ e^- (\pi^0 \to \gamma \gamma)$	39.4 ± 6.9	1.1 ± 0.1	23.4%

PRD 89, 092008

Mode	Branching fraction	Combined result	Theoretical prediction
$\overline{J/\psi \to \eta' e^+ e^- (\eta' \to \gamma \pi^+ \pi^-)}$	$(6.01 \pm 0.20 \pm 0.34) \times 10^{-5}$		
$J/\psi \rightarrow \eta' e^+ e^- (\eta' \rightarrow \pi^+ \pi^- \eta)$	$(5.51 \pm 0.29 \pm 0.32) \times 10^{-5}$	$(5.81 \pm 0.16 \pm 0.31) \times 10^{-5}$	$(5.66 \pm 0.16) \times 10^{-5}$
$J/\psi \rightarrow \eta e^+ e^- (\eta \rightarrow \pi^+ \pi^- \pi^0)$	$(1.12 \pm 0.13 \pm 0.06) \times 10^{-5}$		
$J/\psi \to \eta e^+ e^- (\eta \to \gamma \gamma)$	$(1.17 \pm 0.08 \pm 0.06) \times 10^{-5}$	$(1.16 \pm 0.07 \pm 0.06) \times 10^{-5}$	$(1.21 \pm 0.04) \times 10^{-5}$
$J/\psi \to \pi^0 e^+ e^- (\pi^0 \to \gamma \gamma)$	$(7.56 \pm 1.32 \pm 0.50) \times 10^{-7}$	$(7.56 \pm 1.32 \pm 0.50) \times 10^{-7}$	$(3.89^{+0.37}_{-0.33}) \times 10^{-7}$

- Measured branching fraction for $J/\psi \rightarrow \eta' e^+e^-$, ηe^+e^- are consistent with the VMD predictions.
- But for $J/\psi \rightarrow \pi^0 e^+e^-$, there is about 2.5 standard deviation from the VMD prediction.
- Further improvement of the theoretical calculation are needed.

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta$

- The search for unconventional states is one of the main interests in experimental particle physics.
- The X(1835) was observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ (PRL95, 262001)
- Possible interpretations include a ppbar bound state (EPJC 53, 413), a second radial excitation of the h' (PRD73, 014023), and a pseudo-scalar glueball (PRD74, 034019).
- In addition, $p\overline{p}$ threshold enhancement observed in J/ $\psi \rightarrow \gamma p\overline{p}$ (CPC34, 421) was determined to be state with J^{PC}=0⁻⁺, its mass and width consistent with *X*(1835).

Observation of X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

- The data is described with $X(1835) \rightarrow f_0(980)\eta$, $X(1560) \rightarrow f_0(980)\eta$, and direct 3-body decay.
- Data favors for 0^{-+} hypothesis for X(1835) and X(1560).
- Mass and width are measured:

X(1835): M=1844 ± 9(stat)⁺¹⁶₋₂₅(syst) MeV, Γ =192⁺²⁰₋₁₇(stat)⁺⁶²₋₄₃(syst) MeV

Summary

- By using BESIII data sets taken at J/ ψ , ψ (3686) and
- $\psi(3770)$ peak, we search for the radiative and rare decays:
- No significant decays of $\psi(3773) \rightarrow \gamma \eta_c, \gamma \eta_c(2S)$ are observed.
- The measurement of Br($\psi(3770) \rightarrow \gamma \chi_{c1}$) is improved.
- No significant decays for the isospin-violating transition $\chi_{c0/2} \rightarrow \pi^0 \eta_c$ are observed.
- The double OZI suppressed decay $J/\psi \to \pi^0 \phi$, and isospin violation decay $J/\psi \to \phi \pi^0 f_0(980)$ observed.
- The X(1835) identified with 0^{-+} observed in J/ $\psi \rightarrow \gamma K_S^0 K_S^0 \eta$. A more interesting light hadron decays of charmonium will come soon!