

Heavy Flavor Physics at CMS

王太勇(北京大学)

dayong.wang@pku.edu.cn 第十三届重味物理和CP破坏研讨会

兰州,2015.7.22

CMS Detector

SILICON TRACKER Pixels (100 x 150 µm²) ~66M channels $\sim 1m^2$ Microstrips (80-180µm) ~200m² ~9.6M channels

> **CRYSTAL ELECTROMAGNETIC** CALORIMETER (ECAL) ~76k scintillating PbWO₄ crystals

PRESHOWER

Silicon strips ~16m² ~137k channels

STEEL RETURN YOKE ~13000 tonnes

marvelous

for HF

studies

Flexible trigger Large silicon tracker

Strong magnetic field Broad acceptance

SUPERCONDUCTING SOLENOID carrying ~18000 A

Total weight : 14000 tonnes **Overall diameter** : 15.0 m **Overall length** : 28.7 m Magnetic field : 3.8 T

Niobium-titanium coil

HADRON CALORIMETER (HCAL) Brass + plastic scintillator ~7k channels

FORWARD **CALORIMETER** Steel + quartz fibres ~2k channels

MUON CHAMBERS

250 Drift Tube & 480 Resistive Plate Chambers Barrel: Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

Dayong Wang

Measured σ(pp→bbX) cross-section (at 7 TeV):

- CMS (28.1 ± 2.4 ± 2.0 ± 3.1) μb (pT (B)>5 GeV and $|\eta|$ <2.4)
 - [Nucl.Phys. B864 (2012) 341-381]
- LHCb (75.3 ± 5.4 ± 13.0) μ b (2< η <6)
 - [Phys.Rev.Lett.106:252001,2011]
- Each experiment: O(10¹⁰)/fb bb pairs on tape
 - BaBar and Belle: data sample of ~10⁹ B B pairs.

Selected topics with Recent Results from CMS-BPH

- Spectroscopy: Y(4140), CPV
 - IHEP
- Production: polar/prod xs, media
 - PKU, IHEP
- Rare decays: B->mumu
- Property: b->sll angular analysis
 - PKU

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

CMS Search in the J/ $\psi \phi$ Mass Spectrum

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11026 PLB 734 (2014) 261

Observation of Peaks in the J/ $\psi \varphi$ Mass Spectrum in B Decays

The $\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$ is used to investigate the possible structures

 $\Delta m > 1.568$ GeV region is excluded to avoid background from Bs $\rightarrow \psi(2S)\phi \rightarrow J/\psi \pi^+\pi^-\phi$ decays

- CMS observed a J/ψφ structure at 4148MeV with a significance greater than 5σ confirms the existence of Y(4140) from CDF
 - CDF Y(4140): m=4143.4^{+2.9}-3.0 (stat) \pm 0.6 (syst), Γ =15.3^{+10.4}-6.1(stat) \pm 2.5(syst) MeV
- Evidence for a second structure at ~4314MeV in the same mass spectrum
- Later D0 also confirmed Y(4140) with a significance of 3σ

$B_s^0 \rightarrow J/\psi f_0(980)$: analysis strategy

The decay $B_s^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)f_0(\rightarrow \pi^+\pi^-)$ is:

- useful to study the CPV phase ϕ_s by measuring the lifetime of the CP-odd part of B_s^0 meson
- sensitive to NP: many NP scenarios predict enhanced values of ϕ_s : $\phi_s = \phi_s^{SM} + \phi_s^{NP}$
- useful to study f₀ (980) structure (tetraquark system?)

Analysis target:

$$R_{f_0/\phi} = \frac{BF(B_s^0 \rightarrow J/\psi f_0(980); f_0(980) \rightarrow \pi^+ \pi^-)}{BF(B_s^0 \rightarrow J/\psi \phi; \phi \rightarrow K^+ K^-)}$$

where many uncertainties cancel out:

• b quark production Xsection

•
$$BF(J/\psi \rightarrow \mu^+ \mu^-)$$

- integrated luminosity
- tracking efficiency and muon ID

Experimentally:
$$R_{f_0/\phi} = \frac{N_{f_0}}{N_{\phi}} \times \frac{\varepsilon_{\phi}}{\varepsilon_{f_0}} \quad \text{where} \quad \begin{cases} N_{(f_0,\phi)} = \text{ observed yield of } B_s^0 \to J/\psi(f_0,\phi) \\ N_{(f_0,\phi)} = \text{ detection efficiency of } B_s^0 \to J/\psi(f_0,\phi) \end{cases}$$

 $\left[c \right]$

 $B_s^0 \rightarrow J/\psi f_0$: results ($\sqrt{s} = 7TeV$)

Result (using 2011 data) with 873 ±49 signal events:

$$R_{f_0/\phi} = 0.140 \pm 0.013(\text{stat}) \pm 0.018(\text{syst})$$

Systematics' source	Uncertainty (%)
Fit model	2.1
f ₀ mass window width	6.4
MC simulation (f_0 natural width)	8.6
Decay model in MC generation	6.2

- This measurement is consistent with
 - theoretical prediction [PRD 79 (2009) 074024]
 - previous measurements
- It is the most precise measurement of the ratio to date!

Quarkonium polarization

 Polarization is measured through the angular decay distribution of the quarkonium decaying into two muons

$$W(\cos\vartheta,\varphi|\vec{\lambda}) = \frac{3/(4\pi)}{(3+\lambda_{\vartheta})}(1+\lambda_{\vartheta}\cos^2\vartheta+\lambda_{\varphi}\sin^2\vartheta\cos2\varphi+\lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi)$$

where $\lambda_{\vartheta}, \lambda_{\phi}, \lambda_{\vartheta\phi}$ are the polarization parameters

- Angular decay distribution is measured with respect to a certain reference frame
 - center-of-mass helicity HX (polar axis z_{HX} ≈ direction of quarkonium momentum)
 - Collins-Soper CS (z_{cs} ≈ direction of relative velocity of colliding particles)
 - perpendicular helicity PX ($z_{PX} \perp z_{CS}$)

Quarkonium polarization measurements

- CMS measured λ_9 , λ_{ϕ} , $\lambda_{9\phi}$ and $\tilde{\lambda}$ in three different reference frames (HX, CS, PX) for the J/ ψ , ψ (2S), Y(1S), Y(2S) and Y(3S) mesons
- As a function of transverse momentum, p_T , and dimuon rapidity, |y|
- The non-prompt term (B decays) is subtracted in the $\psi(nS)$ cases

Y(nS) polarization in the HX frame, |y| < 0.6

• Crystal Ball function for signal, Exponential function for background;

J/ψ and $\psi(2S)$ mass spectrum

with standard cuts, in $12 < p_T^{J/\psi} < 15 GeV/c$ and $0.9 < |y^{J/\psi}| < 1.2$ (middle), $8.0 < p_T^{J/\psi} < 9.0 GeV/c$ and $|y^{J/\psi}| < 1.2$ (right).

CMS AN-2010/138, CMS PAS BPH-10-002, 10-014, EPJC 71,1575,2011, Phys.Rev.D83:112004,2011

(standard cuts)

Shuang Guo from PKU, Presentation at HQL2010, Paris

S-wave quarkonium production cross sections

Extraction of yields through unbinned maximum likelihood fits to invariant mass and decay length

Details in CMS-PAS-BPH-14-001 and CMS-PAS-BPH-12-006

3.7

pp

3.8

200

150

100

50

3.4

ψ(2S)

|v| < 0.3

Signal region

3.5

3.6

25 < p_ < 27.5 GeV

Dayong Wang

Prompt ψ(nS) production cross section

- Measurements were made as a function of p_T in four bins of dimuon rapidity as well as integrated in rapidity (|y| < 1.2)
- Prompt J/ ψ and ψ (2S) cross sections up to p_T around 100 GeV

P-wave quarkonium production

- χ states are measured through their radiative decays to S-wave
 quarkonia with the photon converting into an e⁺e⁻ pair
- Excellent χ mass (*6 MeV, $|y_{\mu\mu}|<1$ or $|\eta_{\gamma}|<1)$ and conversion vertex resolutions
- Yield extraction through unbinned maximum likelihood fits

Relative production rate of P-wave states

- Prompt χ_{c2}/χ_{c1} and $\chi_{b2}(1P)/\chi_{b1}(1P)$ cross section ratios seem to be rather flat with p_T
- Prompt χ_{c2}/χ_{c1} ratio: Care is needed regarding the assumed polarizations; they can significantly change the result

Dayong Wang

- > First separate measurement, in HI collisions, of the relative $CMS-PAS HIN-12-007 CMS-PAS HIN-12-007 CMS-PAS HIN-12-014 suppression of <math>\Upsilon(2S)$ and $\Upsilon(3S)$ excited states wrt to the ground state.
- Suppression pattern as expected in the sequential melting scenario.
- > Double ratio indicates $\Upsilon(2S)$ is ~ five times more suppressed than $\Upsilon(1s)$.
- > Measured centrality dependence of $\Upsilon(1S)$ and $\Upsilon(2S) R_{AA}$.

B mesons reco'd from collisions involving ions for 1st time

$B_s^0 \rightarrow \mu^+ \mu^-$ CMS can do it quite well

LHCb:Phys. Rev. Lett. 111 (2013) 101805

CMS&LHCb: "deep" combination

BR($B^{0} \rightarrow \mu^{+}\mu^{-}$) = (3.9^{+1.6}_{-1.4}) x 10⁻¹⁰ (6.2 σ significance) BR($B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$) = (2.8^{+0.7}_{-0.6}) x 10⁻⁹ (3.0 σ significance^{*})

*Feldman Cousin

$B_s^0 \rightarrow \mu^+ \mu^-$ History: 30 years

Future projection

- Extrapolations using Phase I/II detector setups and L1 triggers
- Invariant mass resolution from full GEANT4 simulation
- Restrict analysis to barrel region

- Rare FCNC decays are loop-suppressed in the Standard Model (SM)
- New heavy particles in SM extensions can appear in competing diagrams can affect B and angular distributions

$$\mathcal{H}_{\mathrm{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\mathrm{tb}} V_{\mathrm{tq}}^* \sum_{i} \underbrace{\mathcal{C}_i \mathcal{O}_i}_{i} + \underbrace{\mathcal{C}'_i \mathcal{O}'_i}_{i} + \sum \frac{c}{\Lambda_{\mathrm{NP}}^2} \mathcal{O}_{\mathrm{NP}} \qquad \begin{array}{ll} i = 1, 2 & \text{Tree} \\ i = 3 - 6, 8 & \text{Gluon penguin} \\ i = 7 & \text{Photon penguin} \\ i = 9, 10 & \text{EW penguin} \\ i = S, P & (\text{Pseudo)scalar penguin} \end{array}$$

- Model independent description in effective field theory
- Wilson coeff. $C_i^{(\prime)}$ encode short-distance physics, $\mathcal{O}_i^{(\prime)}$ corr. operators

 B→ Kµ⁺µ[−] and B→ K^{*}µ⁺µ[−] proceed dominantly through penguin and box diagrams.

- Integrating out the short distance dynamics \rightarrow Wilson Coefficients:
 - C7 electromagnetic
 - C_9 semi-leptonic vector
 - C₁₀ semi-leptonic axial vector
- Observables depend on four-momentum transferred to dimuon, q^2 .

 B→ Kµ⁺µ[−] and B→ K^{*}µ⁺µ[−] proceed dominantly through penguin and box diagrams.

- Integrating out the short distance dynamics \rightarrow Wilson Coefficients:
 - C7 electromagnetic
 - C_9 semi-leptonic vector
 - C₁₀ semi-leptonic axial vector
- Observables depend on four-momentum transferred to dimuon, q^2 .

Decay parameters for $B \rightarrow K^{*0} \mu^+ \mu^-$

Decay is characterized by 3 angular variables

 $\frac{1}{\mathrm{d}\Gamma/dq^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2}$

$$= \frac{9}{32\pi} \left| \frac{3}{4} (1 - F_{\rm L}) \sin^2 \theta_K + F_{\rm L} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\rm L}) \sin^2 \theta_K \cos^2 \theta_K \right|^2$$

- $F_{\rm L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi$
- $+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$
- $+ S_6 \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$

+ $S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$,

 One of the interesting parameter is muon forward-backward asymmetry (A_{FB}) which is sensitive to new physics

 B_d^0

 θ_K

A tour of the analysis

□ Reject candidate events having the di-muon mass compatible with J/ψ or $\psi' \rightarrow$ these events are used for the normalization and cross-check purpose

 \Box Fit in bins of q^2 to the $K\pi\mu\mu$ mass and two angular variables (θ_ℓ, θ_K) to

- ► estimate F_S and A_S in the $B^0 \to K^{*0} J/\psi$ channel
- \blacktriangleright measure F_L and A_{FB} in the signal sample

□ Determine the differential branching fraction, normalized w.r.t. $B^0 \rightarrow K^{*0}J/\psi$

Results on $d\mathcal{BF}/dq^2$ and F_L

Statistical uncertainties are shown by the inner error bars, while the outer ones give the total uncertainties including systematic

- SM predictions as a function of q^2
- the same after rate average over q^2 bins
- ► Reliable predictions do not exist for the intermediate region between the J/ψ and ψ' resonances (10.09 < q^2 < 12.86 GeV²)
- No significant deviations with respect to the SM

PLB 727 (2013) 77

Muon forward-backward asymmetry

Comparison: 7TeV results

- CMS uncertainties are better than CDF, Belle, BaBar but not as good as LHCb (LHCb statistics: ~1 fb⁻¹)
- CMS measurements are the second best

BaBar: Phys. Rev. D **79** (2009) 031102 Belle: Phys. Rev. Lett. **103** (2009) 171801 CDF: Phys. Rev. Lett. **108** (2012) 081807 LHCb: Phys. Rev. Lett. **108** (2012) 181806

Dayong Wang

2012 Data Results

Combined results 7/8TeV

Dayong Wang

We are back and more robust

- The early analysis team was setup to take advantage of first Run II data and deliver fast physics results
- Focus on :
 - Inclusive b-hadron cross section measurement @13 TeV
 - Exclusive b-hadron cross section measurement @13 TeV
 - - S-wave quarkonia cross section measurement @13 TeV
- Exploit the "low-PU" run unprescaled single-muon trigger to perform these measurements down to zero pT

keep tuned

Thanks for your attention

extra slides...

Dayong Wang

CPV in $B_s^0 \rightarrow J/\psi \phi$: a tiny effect sensitive to NP

When $B_s^0 \& \overline{B}_s^0$ decay to a *CP* eigenstate (as in flavor-blind $B_s^0 \rightarrow J/\psi \phi$ (f_0)) the weak phase ϕ_s arises from the interference between direct decays & decays with mixing (B mesons mix via box diagrams)

[PRD 84 (2011) 033005]

Theoretically clean decay mode: tiny CPV ruled by $\phi_s^{SM} \approx -2\beta_s = -2 \arg(-V_{ts}V_{tb}^* / V_{cs}V_{cb}^*) \approx -0.0363^{+0.0016}_{-0.0015} rad$

Sensitivity to NP in mixing: many NP scenarios predict enhanced values of $\phi_{
m s}$

 $J/\psi\phi$ final state : admixture of CP-odd and CP-even eigenstates ... to be disentangled by angular analysis (3 angles)

> The differential decay rate for $B_s^0 \rightarrow J/\psi \phi$ can be expressed as :

$$\frac{d^{4}\Gamma(B_{s}(t))}{d\Theta dt} = \sum_{i=1}^{10} O_{i}(\alpha, t) \cdot g_{i}(\Theta)$$

Time-dependent Angular-dependent

 $b_i \& d_i$ proportional to $\sin \phi_s \& \cos \phi_s$

Dayong Wang

$B_s^0 \rightarrow J/\psi \phi$: analysis strategy

CMS: quarkonium detection performance vs. ATLAS/LHCb

These are the details of the extrapolations made in order to find the inputs to the toy experiments for the Phase- 2 3000 fb⁻¹ scenario:

Barrel only (muon $|\eta| < 1.4$) Muon efficiency & fate rate: the same as 8 TeV analysis Uncertainty on B+ normalization channel: 3% Uncertainty of the peaking backgrounds: 10% Uncertainty of the semileptonic backgrounds: 20% Uncertainty of the f_s/f_u ratio: 5% Trigger & PU performance: 35% reduction of efficiency on signal and normalization channel

30% reduction of efficiency on backgrounds

As written in slide 4, in addition to these extrapolations, the invariant mass resolution coming from the full Geant4 simulation of the Phase- 2 CMS detector is used (≈ 28 MeV)

Multiple analyses and joint measurements

- ✓ FCNC process b->sl+l- to probe NP: BR
- ✓ resonance search & studies
- ✓ Angular measurement: FL, A_{FB}
- ✓ Isospin asymmetry A_I
- ✓ CP asymmetry A_{CP}

Isospin asymmetry (A₁):

CP asymmetry (A_{CP}):

 $A_{\rm I} = \frac{\Gamma(B^0 \to K^{(*)0}\mu^+\mu^-) - \Gamma(B^+ \to K^{(*)+}\mu^+\mu^-)}{\Gamma(B^0 \to K^{(*)0}\mu^+\mu^-) + \Gamma(B^+ \to K^{(*)+}\mu^+\mu^-)}$ $\mathcal{A}_{CP} = \frac{\Gamma(\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-) - \Gamma(B^0 \to K^{*0}\mu^+\mu^-)}{\Gamma(\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-) + \Gamma(B^0 \to K^{*0}\mu^+\mu^-)}$ $\mathcal{A}_{CP} = \frac{\Gamma(B^- \to K^-\mu^+\mu^-) - \Gamma(B^+ \to K^+\mu^+\mu^-)}{\Gamma(B^- \to K^-\mu^+\mu^-) + \Gamma(B^+ \to K^+\mu^+\mu^-)}$

 $\mathcal{A}_{CP} = \frac{\Gamma}{\Gamma(B^- \to K^- \mu^+ \mu^-) + \Gamma(B^+ \to K^+ \mu^+ \mu^-)}$ Majorana neutrino study with conjugate channel: K-mu+mu+ Rk measurement

