LHCb highlights & prospects

谢跃红, 华中师范大学

重味物理和CP破坏研讨会 兰州•2015年7月22-25日

Outline

- LHCb experiment
- LHCb highlights
- Upgrade and future prospects
- China@LHCb
- Conclusions

LHCb experiment

A single arm forward detector

Excellent tracking, vertexing and particle identification

Runl data taking

Low and stable instantaneous luminosity

- $\Box \mathcal{L} \sim 4 \times 10^{32} \text{ cm}^2 \text{s}^{-1}$
- Factor 2 larger than design luminosity
- □ Average pile-up rate ~ 2
- pp primary vertex reconstructed well

LHCb run-I data $> 1 \text{ fb}^{-1} \text{ for } 2011 > 2 \text{ fb}^{-1} \text{ for } 2012$

- Efficient data taking @ LHCb \geq □ Efficiency ~ 90 %
- Results based on 2 magnet configurations

Major physics program

Beautiful... Rare Decays

Leptonic, electroweak, radiative decays Lepton flavour and number violating decays

> B decays to Charmonia Lifetimes, φ_s, ΔΓ_s of B-mesons Amplitude analyses 华中师大谢跃红任召集人 B decays to Open Charm

> > **Charmless B decays**

Semileptonic B decays

QCD, Electroweak and Exotica

t-quark,W, Z production and asymmetries Search for the exotic particles

B hadrons and Quarkonia

Quarkonia production and properties Potentially exotic quarkonia (X, Y, Z) Production and spectroscopy of b-hadrons

清华大学杨振伟任召集人

Charm Physics

Mixing, CP-violation, rare decays of charm Charm production and spectroscopy

and charming!

LHCb highlights

Probes of NP in B mixing

NP in B_s mixing?

SM contribution

NP contribution

$$\phi_s$$
 in $B_s \rightarrow J/\psi \phi$, $J/\psi \pi^+ \pi^-$

$$\phi_s = \phi_M - 2\phi_D$$

$$A_{\rm CP} \equiv \frac{\Gamma\left(\overline{B}_s^0 \to f\right) - \Gamma\left(B_s^0 \to f\right)}{\Gamma\left(\overline{B}_s^0 \to f\right) + \Gamma\left(B_s^0 \to f\right)} = \eta_f \sin\phi_s \sin(\Delta m_s t)$$

good flavour tagging and time resolution needed

Similar probe for B_d : sin2 β in $B_d \rightarrow J/\psi K_S$

ϕ_s result

 ϕ_s - $\Delta\Gamma_s$ world average

LHCb: [PRL 114 (2015) 041801] $\phi_s = -0.058 \pm 0.049 \pm 0.006$ rad

SM: (ignore penguin) $\phi_s = -0.036 \pm 0.001$ rad

SM-like result. Need improved precision in RUN II to look for sub-leading NP effect

Understanding the effect of penguin contribution in decay becomes crucial

Penguin pollution

Penguin effect controlled using SU(3) flavour symmetry

> SU(3) partners with $d \leftrightarrow s$

B_s→J/ψφ: b→ccs B_d→J/ψρ: b→ccd $\Delta 2\beta = 2\beta^{J/\psi\rho} - 2\beta^{J/\psi K_{S}^{0}} = -0.9 \pm 9.7^{+2.8}_{-6.3}$ degrees. δ_P≈-εΔ2β, lδ_Pl < 0.018 rad@95%CL [Phys. Lett. B742 (2015) 38]

$sin2\beta$

LHCb precision approaches that of B factories No tension with SM prediction anymore

$b \rightarrow sl^+l^-$ transition

FCNC processes where SM contribution is suppressed NP effect could be sizeable

$B_{s/d} \rightarrow \mu^+ \mu^-$

SM prediction

 $\begin{array}{lll} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &=& (3.66 \pm 0.23) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &=& (1.06 \pm 0.09) \times 10^{-10} \end{array}$

Sensitive to NP in scalar sector

 $B_s → \mu^+\mu^$ first observation 6.2σ significance

 $B_d \rightarrow \mu^+ \mu^$ first evidence 3.0 σ significance

Consistent with SM within 2.3σ .

NP model killing

Run II and upgrade goals

- Br(B_s $\rightarrow \mu^{+}\mu^{-})$ /Br(B_d $\rightarrow \mu^{+}\mu^{-})$ (powerful test of MFV)
- $B_s \rightarrow \mu^+ \mu^-$ effective lifetime
- CP violation in $B_s \rightarrow \mu^+ \mu^-$

$$\mathsf{B} \rightarrow \mathsf{K}^{*0} \ \mu^+ \mu^-$$

 $B^0 \to K^{*0}~l^+l^-$ described by three angles $(\theta_K,\,\theta_l,\,\Phi$) and di-muon mass squared, q^2 :

$$\frac{1}{\mathrm{d}(\Gamma+\Gamma)/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\bar{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1-F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big]$$

Observables: A_{FB}, S_i, F_L

$B \rightarrow K^{*0} \mu^+ \mu^-$ update

LHCb-CONF-2015-002

Basically consistent with SM, except S₅...

17

 $B \rightarrow K^{*0} \mu^+ \mu^-$ update: P_5'

theoretically clean variable

$$P_5' = \frac{S_5}{\sqrt{F_L(1-F_L))}}$$

1fb⁻¹ PRL 111(2014)191801

3fb⁻¹ LHCb-CONF-2015-002

Tension with SM prediction confirmed (3.7σ)

Theoretical interpretation

Or

New physics effect? e.g. Z' Gauld et al., JHEP 1401 (2014) 069

Unexpected hadronic effect? e.g. huge charm effects

Altmannshofer, Straub, arXiv:1503.06199

Lepton universality observables may help $\rightarrow R_{K}$

R_{K}

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)}$$

SM lepton universality: $R_k = 1$ within O(10⁻³)

- hardly affected by hadronic uncertainty
- Experimental Challenge: bremsstrahlung effect

R_{K} result

Phys. Rev. Lett. 113 (2014) 151601

 $R_K = 0.745^{+0.090}_{-0.074}$ (stat) ± 0.036 (syst)

Consistent with SM within 2.6 σ

Angular observables in $B^+ \rightarrow K^+ I^+ I^-$

NP effects in R_K and angular observables are correlated Gauld et al., JHEP 0712 (2007) 040

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_l} = \frac{3}{4} (1 - F_\mathrm{H})(1 - \cos^2\theta_l) + \frac{1}{2}F_\mathrm{H} + A_\mathrm{FB}\cos\theta_l$$

Angular analysis of $B^+ \rightarrow K^+ \mu^+ \mu^-$

1fb^{-1} result Consistent with SM prediction of $R_{K} \cong 1 \& F_{H} \sim 0$ JHEP 1405 (2014) 082

More precise measurement needed Angular analysis of $B^+ \rightarrow K^+e^+e^-$ desirable

 $B^0 \rightarrow D^{*+} \tau^- \nu$

$B^0 \rightarrow D^{*+}\tau^-\nu$ partial reconstruction

Leptonic mode: $\tau \rightarrow \mu \nu_{\tau} \overline{\nu}_{\mu}$

Kinematic variables estimated assuming

$$(p_B)_z = \frac{m_B}{m_{
m reco}} (p_{
m reco})_z$$

m_{miss}: invariant mass of the invisible pass part E_{μ}^{*} : μ energy in B rest frame q²: squared 4-momentum of $\tau \nu$

LHCb R(D*) result

$$\begin{split} \mathbf{V}_{ub} \\ \frac{|V_{ub}|^2}{|V_{cb}|^2} = \frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \overline{\nu}_\mu)_{q^2 > 15 \text{ } GeV^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu)_{q^2 > 7 \text{ } GeV^2}} (R_{FF} \text{ } form factor ratio 5\% \text{ } uncertainty \text{ } on |V_{ub}| \end{split}$$

Partial reconstruction

$$m_{\rm corr} = \sqrt{m_{h\mu}^2 + p_\perp^2} + p_\perp$$

Signal: 17687 ± 733

Normalization: 34255 ± 571

LHCb V_{ub} result

Using PDG exclusive average of $IV_{cb}I$

$$|V_{ub}| = (3.27 \pm 0.15_{exp} \pm 0.17_{theory} \pm 0.06_{|Vcb|}) \times 10^{-3}$$

arXiv:1504.01568

Consistent with other exclusive measurements

Can also do $B_s \rightarrow K\mu\nu$ and $B_s \rightarrow Ds\mu\nu$

Right-handed current?

 $\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V^L_{ub} (\bar{u}\gamma_\mu P_L b + \epsilon_R \bar{u}\gamma_\mu P_R b) (\bar{\nu}\gamma^\mu P_L l) + h.c.$

Right-handed current disfavored

Z(4430)⁻

- Observed by BELLE but not confirmed by Babar
- LHCb confirmed it (13.9 σ), determined J^P=1⁺

PRL 112, 222002 (2014)

Argand diagram confirming resonance behavior

Z(4430) implication

Four quark bound state is a promising explanation of Z(4430).

What about 5 quarks?

We've got some!

请关注张黎明的报告!

Upgrade and future prospects

LHCb time line

Year	Energy	Int. Lumi.				
2010	7 TeV	37 pb ⁻¹				
2011	2.76TeV	71 pb ⁻¹				
2011	7 TeV	1.0 fb ⁻¹				
2012	8 TeV	2.2 fb ⁻¹				
2013	LHC splig	ce renair				
2014						
2015	13 TeV					
2016	25 ns bunch	>5 fb ⁻¹				
2017	crossing					
2018	LHCb up	grade				
2019						
2020	5 fb⁻¹/year					
2021						
2022		iungrado				
2023						
2024	•					

Key challenges: face increases

- Luminosity
- Energy
- Radiation
- Occupancy
- Data acquisition
- New triger, tracking & particle Identification systems

- take what we are missing so far
- 2011&12 experience: better projections
- Operate at luminosities up to L=2*10³³ cm⁻² s⁻¹ (10x design)
- Expected annual physics yield:
 - Increase x5 in decays with muons
 - Increase at least x10 in hadronic channels
 - Collect ~50 fb⁻¹ over 10 years

Trigger upgrade

- Full 40MHz readout (1MHz for current detector)
- Hardware trigger (L0) becomes optional and tunable
- HLT performs full reconstruction using sub -detector information
- Output increased from 4-5KHz to 20KHz

Tracking system

VELO upgrade

- Higher granularity: silicon strips \rightarrow pixels
- Reduced material
- Enlarged acceptance

Vertexing performance much better

Downstream tracker

Current detector IT: silicon strips (50 µm resolution) OT: straw drift tubes (200 µm resolution)

Upgrade: need to handle high occupancy Scintillating Fibre Tracker Readout by SiPMT (60-100 µm resolution)

Tracking performance

RICH upgrade

- Overall structure unchanged
- Replace photon detectors with MaPMTs
- Remove aerogel in RICH1

Hadron PID performance close to current one

Muon system upgrade

M1 will be removed

Deal with high flux in innermost part of M2

Anode-pad triple-GEM detectors for the R1 regions, MWPCs for the external regions.

Muon performance

Excellent muon-id performance retained μ efficiency above 90% $\pi \rightarrow \mu$ mis-identification rate below 5%

Upgrade TDRs

CERN-LHCC-2011-001

CERN-LHCC-2013-021

CERN-LHCC-2012-007

CERN-LHCC-2014-001

CERN-LHCC-2013-001

Physics potential of upgrade

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B^0_s \to J/\psi \ f_0(980)) \ (rad)$	0.068	0.035	0.012	~ 0.01
	$A_{ m sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B^0_s \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	~ 7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV}^2/c^4)$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	${\cal B}(B^0 o \mu^+\mu^-)/{\cal B}(B^0_s o \mu^+\mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
triangle	$\gamma(B^0_s \to D^{\mp}_s K^{\pm})$	17°	11°	2.0°	negligible
angles	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	-
CP violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1	-

- Before the upgrade (8 fb⁻¹)
- After the upgrade (50 fb⁻¹)
- Theory uncertainty (as far as we know today)

The extrapolations assume:

- Precisions scale as VL.
- Gain ×2 on fully hadronic decays removing L0 trigger.
- HLT and analysis performance as in Run I
- Backgrounds as in Run I.

Key CP measurements

 γ measurement

4

Rare decays

Lots of new opportunities

- •CP violation in $B_s^{} \rightarrow \mu^+\mu^-$, $B_s^{} \rightarrow \phi\mu^+\mu^-$
- •Precise measurement of $B_s \rightarrow \phi \gamma$ lifetime
- •Precise $B^+ \rightarrow K^+I^+I^-$ angular analysis

The plan

	LHC era	HL-LHC era			
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2020-22)	Run 4 (2025-28)	Run 5+ (2030+)	
3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹	

Where we are now

Physics run at 13 TeV started on 3 June 2015

$50ns \rightarrow 25ns$ bunch crossing planned in August

	July	Aug					Sep							
Wk	27	28	29	30	31	32		33	34	35	36	37	38	39
Мо	29	6	13	20	27		3	10	17	24	31	7	14	21
Tu			\mathbf{X}			*						MD 2		
We	Leap second 1	In the state		MD 1							TS2			
Th		with 50	ns beam					Inte	nsity ramp- h 25 ns bea	up m		Jeune G		
Fr														
Sa					1									
Su														

Some mass peaks in Run II

China@LHCb

China@LHCb

Over 1100 members, 68 institutes, 16 countries

中国单位(17 members)

清华大学,华中师范大学,中国科学院大学

主要研究方向和代表性成果

CP violation & new physics search: ϕ_s measurement Hadron production & exotic states: pentaquark discovery, B_c physics

显著度

中国组成员担任两个物理工作组召集人

探测器升级

中国组将参加对Scintillating Fiber Tracker 的升级,主要从事:相关电子 学部件的设计、生产和检测,寻迹软件的开发

中国组重要成果:φ_s精确测量

 ϕ_s - $\Delta\Gamma_s$ world average

B。混合角的世界最精确测量

严格限制了新物理的藏身之处

LHCb关于正反物质性质差异的研究取得新进展

现行理论认为,宇宙大爆炸产生了几乎等量的物质和 反物质.由于物质和反物质在微观性质上存在一定的差异 (物理学上称为"电荷共轭-字称对称性破缺",简称CP破 坏),宇宙经过长时间的演化,形成我们今天观测到的由正 物质组成的世界.

欧洲大型强子对撞机(LHC)是目前世界上最大、能量 最高的粒子加速器.大型强子对撞机底夸克实验(LHCb)是 LHC上的4个主要探测器之一,它的主要物理目标是测量 在b和c强子中的CP破坏和稀有衰变现象.最近,LHCb实验 利用2011~2012年期间采集的数据对B,介子混合角ø,进行 了世界最精确的测量(图1),这标志着对正反物质性质差异 的研究取得重要进展.作为该课题组的负责人之一,华中 师范大学谢跃红教授与课题组中其他数十名科研人员共同 完成了相关的理论研究和数据分析,相关研究结果于2015 年2月在Physical Review Letter杂志上发表.

值. CDF, D0, ATLAS, CMS等高能实验都利用这个过程对 ø,进行了测量, 但测量精度相当有限. 谢跃红等人曾利用 2011年的LHCb数据得到了精度约为 0.1 rad的e,测量结果.

中国组重要成果:五夸克态的发现

Latest news

CERN's LHCb experiment reports observation of exotic pentaquark particles 清华大学所在国际合作组取得新突破

五夸克态,确实存在!

2015年07月15日07:17 来源:人民网-人民日报 🔤手机看新闻

打印 网摘 纠错 商城 分享 推荐 🔀人民微博 🚮 🙀关注 字号 🛨 🚍

原标题:五夸克态,确实存在!

本报北京7月14日电(赵婀娜、丁乐)14日,欧洲核子研究中心大型强子对撞机 上的LHCb实验组宣布:在实验中观测到由五夸克组成的重子态,首次确认五夸克态的 存在。这项研究由清华大学和美国雪城大学的研究人员,以及LHCb国际合作组成员共 同完成。

Conclusions

- Many excellent new results from LHCb
 - Discovery: pentaquark states!
 - Precision measurements: CPV, rare decays
 - Unexpected: semileptonic results
- Basic picture is SM-like, with a few puzzles to be understood: P₅', R_K, R(D*)
 - Improving measurement precision
 - Better control of hadronic uncertainties
- LHCb Run-II and upgrade will be crucial & exciting
- China is playing a increasingly important and visible role at LHCb

Backup slides

LHCb升级与SuperB比较

Observable	SM	Ultimate	Present	Future	Future	Future
class of observables)	prediction	th. error	result	(S)LHCb	SuperB	Other
$ V_{us} [K \to \pi \ell \nu]$	input	$0.1\%_{(\text{Latt})}$	0.2252 ± 0.0009	-	-	
$ V_{cb} [\times 10^{-3}] [B \to X_c \ell \nu]$	input	1%	40.9 ± 1.1	-	$1\%_{\mathrm{excl}}, 0.5\%_{\mathrm{incl}}$	
$ V_{ub} [\times 10^{-3}][B \to \pi \ell \nu]$	input	$5\%_{(Latt)}$	4.15 ± 0.49	-	$3\%_{\text{excl}}, 2\%_{\text{incl.}}$	
$\gamma \qquad [B \to DK]$	input	$< 1^{\circ}$	$(70^{+27}_{-30})^{\circ}$	0.9°	1.5°	
$S_{B_d \to \psi K}$	2β	$\lesssim 0.01$	0.671 ± 0.023	0.0035	0.0025	
$S_{B_s \to \psi \phi, \psi f_0(980)}$	$2\beta_s$	$\lesssim 0.01$	-0.002 ± 0.087	0.008	-	
$S_{[B_s \to \phi \phi]}$	$2\beta_s^{eff}$	$\lesssim 0.05$	-	0.03	-	
$S_{[B_1 \rightarrow K^{*0} \overline{K^{*0}}]}$	$2\beta_s^{eff}$	$\lesssim 0.05$	-	0.02	-	
$S_{[B, \rightarrow \phi K^0]}$	$2\beta^{eff}$	≤ 0.05	-	0.03	0.02	
$S_{[B_{a} \rightarrow K^{0} \pi^{0} \alpha]}$	0	$\lesssim 0.05$	-0.15 ± 0.20	-	0.02	
$S_{[B_{d} \rightarrow K_{S}^{[n+j]}]}$	0	< 0.05	-	0.02	-	
$A_{CP}(b \to s\gamma)$	< 0.01	~ 0.01	-0.012 ± 0.028	-	0.004	
$A_{CP}(b \to (s+d)\gamma)$	$\sim 10^{-6}$	-	-0.060 ± 0.060	-	0.02	
A_{dr}^{d} [×10 ⁻³]	-0.5	0.1	-5.8 ± 3.4	0.2	4	
$A_{cr}^{s} [\times 10^{-3}]$	2.0×10^{-2}	$< 10^{-2}$	-2.4 ± 6.3	0.2	~ 0.6	
$\mathcal{B}(B \to \tau \nu)[\times 10^{-4}]$	1	5%Latt	(1.14 ± 0.23)	-	$\frac{4-5\%}{4-5\%}$	
$\mathcal{B}(B \to \mu\nu)[\times 10^{-7}]$	4	5%Latt	< 13	-	2 - 3%	
$\mathcal{B}(B \to D\tau\nu)[\times 10^{-2}]$	1.02 ± 0.17	5%Latt	1.02 ± 0.17	[under study]	2%	
$\mathcal{B}(B \to D^* \tau \nu) [\times 10^{-2}]$	1.76 ± 0.18	5%Latt	1.02 ± 0.11 1.76 ± 0.17	[under study]	2%	_
$\frac{\mathcal{B}(B_{\star} \rightarrow \mu^{+}\mu^{-})[\times 10^{-9}]}{\mathcal{B}(B_{\star} \rightarrow \mu^{+}\mu^{-})[\times 10^{-9}]}$	3.2	5%Latt	< 4.2	0.15		
$B(B_{r,d} \rightarrow \mu^+ \mu^-)$	0.29	$\sim 5\%$	-	$\sim 35\%$	-	•
$a_0(A^{FB}_{s,a} \rightarrow \mu^{-}\mu^{-})$ [GeV ²]	4.26 ± 0.34			2%	[under study]	
$40(11_{B\to K^*\mu^+\mu^-})[000, 1]$	1.20 ± 0.01			0.04	[under study]	
$A_{T}(B \rightarrow K^{+}\mu^{+}\mu^{-})$	$< 10^{-3}$			0.04	[under study]	
$A_{\rm CP}(B \to K^+\mu^+\mu^-)$	< 10 °	1.007	- 10	0.5%	1%	
$B \to K \nu \nu [\times 10^{\circ}]$	4	10%Latt	< 10	-	0.7	
$ q/p _{D-\text{mixing}}$		< 10 °	0.91 ± 0.17	O(1%)	2.7%	
ϕ_D dir ()(07)	$\lesssim 0.1\%$			$O(1^{\circ})$	1.4	
$a_{CP}^{CP}(\pi\pi)(\%)$	$\lesssim 0.3$		0.20 ± 0.22	0.015	[under study]	
$a_{CP}^{CP}(KK)(\%)$	$\lesssim 0.3$		-0.23 ± 0.17	0.010	[under study]	
$\frac{a_{\rm CP}^{\circ}(\pi\pi\gamma, KK\gamma)}{\mathcal{R}(\gamma)^{1/2}}$	$\lesssim 0.3\%$		- 11	[under study]	[under study]	
$\mathcal{B}(\tau \to \mu \gamma) [\times 10^{-1}]$	0		< 44	-	2.4	
$\mathcal{B}(\tau \to 3\mu)[\times 10^{-10}]$	0		< 210(90% CL)	1-80	2	0.1.000
n(-1)	0		< 0.4(0007 CT)			U.1 MEG
$\mathcal{B}(\mu \to e\gamma)[\times 10^{-12}]$	0		< 2.4(90% CL)		$\begin{cases} \sim 0.01 \\ 0.01 \end{cases}$	PSI-future
$\mathcal{D}(\mathbf{N}, \mathbf{N})$	0		≤ 4.9 · · 10−12		(~ 0.01)	Project X
$\mathcal{B}(\mu N \to eN)(Il)$	0		$< 4.3 \times 10^{-12}$		10-16	^{°°} PRISM
$\mathcal{B}(\mu N \to eN)(Al)$	0		-		10 10 COM	ET, Mu2e
$P(T_{2}^{+}) + - (10^{-11})$	~ ~	00	17 o±115		~ 10	J% NA62
$\mathcal{B}(\mathbf{K}^{+} \to \pi^{+} \nu \nu) [\times 10^{-11}]$	8.5	8%	$17.3_{-10.5}$		$\begin{cases} \sim 5 \\ \sim 7 \end{cases}$	% ORKA
					$\zeta \sim \frac{2\%}{100}$	Project X
$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) [\times 10^{-11}]$	2.4	10%	< 2600		$\begin{cases} \sim 100 \\ -2 \\ \sim 100 \\ -2 \\ \sim 100 \\ $	7% KOTO
D = 0 + -	1 4 10-11	200	10-11		$\zeta \sim 5\%$	Project X
$\mathcal{B}(K_L \to \pi^{\circ} e^+ e^-)_{SD}$	1.4×10^{-11}	30%	$ < 28 \times 10^{-11}$		$\sim 10\%$	Project X

LHCb升级后在B_s介子的C P破坏和稀有衰变的研究中 普遍具有优良性能

SuperB具有对含中微子模 态的衰变、辐射衰变、V_{ub}的 较强研究能力

Trigger

Level-0 Trigger: hardware

- use calorimeters and muon system
- > select high- p_T particles ✓ $p_T(\mu) > O(1)$ GeV/c ✓ $p_T(h,e,\gamma) > O(3)$ GeV/c

High-Level Trigger: software
 HLT1: add VELO information

 impact parameter and lifetime
 HLT2: global event reconstruction
 exclusive & inclusive selections

Trigger efficiency: ~90% for dimuon events ~30% for multibody hadronic final states