Spectra of mesons and baryons in Regge phenomenology

Ke-Wei Wei

魏科伟

Anyng Normal University (安阳师范学院)

2015年7月22日 兰州

Contents

- Motivation
- Mass relations and mass spectra
- Charm-bottom mesons
- Doubly and triply charmed baryons
- Doubly and triply bottom baryons
- Summary

Motivation

- Spectroscopy →interaction dynamics & structures atomic spectrum → atomic quantum theory nuclear spectrum → shell model, collective motion hadron spectrum → ? Important discovery
- Many mesons and baryons discovered recently: $B_c(2S)$ ATLAS PRL 113, 212004 $\Xi_b^*(5955)^-$ LHCb PRL 14, 062004

.

Gell-Mann-Okubo formula

M. Gell-Mann, Phys. Rev. 125, 1067 (1964) S. Okubo, Prog. Theor. Phys. 27, 949 (1962)

$$\begin{split} M_{\rho} + M_{\phi} &= 2M_{K^*} \\ 4M_K &= 3M_{\pi} + M_{\eta} \quad \twoheadrightarrow \quad 4M_K^2 = 3M_{\pi}^2 + M_{\eta}^2 \\ &\qquad (N+\Xi)/2 = (3\Lambda+\Sigma)/4, \\ \Omega - \Xi^* &= \Xi^* - \Sigma^* = \Sigma^* - \Delta, \end{split}$$

• Predicted the existence and mass of Ω^{-}

After *c* quark and *b* quark were found in 1970s, GMO formula was generalized to

$$2M_{D} = M_{cc} + M_{nn}, \quad 2M_{D_{s}} = M_{cc} + M_{ss},$$

$$2M_{B} = M_{bb} + M_{nn}, \quad 2M_{B_{s}} = M_{bb} + M_{ss}, \quad 2M_{B_{c}} = M_{bb} + M_{cc}.$$

These Eqs. do not agree with experiments, *e.g.*, for vector mesons,

$$2M_{D^*} > M_{J/\Psi} + M_{\rho}, \quad 2M_{B^*} > M_{\Upsilon} + M_{\rho}.$$

(4016) (3872) (10650) (10236)

In fact:

$$\frac{M_{i\bar{i}} + M_{j\bar{j}}}{2} < M_{i\bar{j}} < \sqrt{\frac{M_{i\bar{i}}^2 + M_{j\bar{j}}^2}{2}}$$

$$\frac{M_{iiq} + M_{jjq}}{2} < M_{ijq} < \sqrt{\frac{M_{iiq}^2 + M_{jjq}^2}{2}}$$

We can get a mass relation for mesons in a spin-parity multiplet:

$$\begin{split} M_{c\bar{b}}^2 &= \frac{1}{4} \left(M_{c\bar{c}}^2 + M_{b\bar{b}}^2 \right) + \frac{1}{8M_{n\bar{n}}^2} \left(4M_{n\bar{c}}^2 - M_{n\bar{n}}^2 - M_{c\bar{c}}^2 \right) \left(4M_{n\bar{b}}^2 - M_{n\bar{n}}^2 - M_{b\bar{b}}^2 \right) \\ &- \frac{1}{8M_{n\bar{n}}^2} \sqrt{\left(4M_{n\bar{c}}^2 - M_{n\bar{n}}^2 - M_{c\bar{c}}^2 \right)^2 - 4M_{n\bar{n}}^2 M_{c\bar{c}}^2} \sqrt{\left(4M_{n\bar{b}}^2 - M_{n\bar{n}}^2 - M_{b\bar{b}}^2 \right)^2 - 4M_{n\bar{n}}^2 M_{b\bar{b}}^2} \end{split}$$

For the pseudoscalar $1^{1}S_{0}$ meson multiplet: π , D, B, η_{c} , η_{b}

$B_{\rm c}(1^{1}S_{\rm 0})$	Exp.	Pre.		
Mass (MeV)	6275.6±1.1	6274.6±3.4		

Charm-bottom mesons

			i the bott		arm mosor	10 (III (
States	Pre.	Exp.[2]	[4]	[7]	[23]	[8]	[9]	[10]	[11]	[12]	[13]
$B_c (1 \ {}^1S_0)$	6274.6 ± 3.4	$6275.6{\pm}1.1$	6.264	6.270	6283 ± 79	6.263	6.270	6.253	6.264	6.247	6266
B_{c}^{*} (1 ${}^{3}S_{1}$)	6355 ± 4	_	6.356	6.355	$6356{\pm}80$	6.354	6.332	6.317	6.337	6.308	6314
B_{c2}^{*} (1 ${}^{3}P_{2}$)	$6798 \ ^{+9}_{-10}$	_	6.814	6.782	$6780{\pm}52$	6.781	6.762	6.743	6.747	6.773	6797
$B_{c1} \ (1 \ ^1P_1)$	$6777 \stackrel{+6}{_{-9}}$	_	_	6761	_	_	6749	6729	6736	6757	6725
$B_{c0}^{*}~(1\ ^{3}P_{0})$	6702 ± 22	-	_	6697	_	_	6699	6683	6700	6689	6525
$B_c \ (2 \ {}^1S_0)$	6836 ± 34	$6842{\pm}4\pm5^a$	-	6863	_	_	6835	6867	6856	6853	6866
$B_c^* \ (2 \ {}^3S_1)$	6912 ± 23	_	_	6895	_	6894	6881	6902	6899	6886	6891

The masses of the bottom-charm mesons (in units of MeV).

^aThe ATLAS Collaboration report recently [1].

Doubly and triply charmed baryons

 Ξ_{cc}^{+} MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
3518.9±0.9 OUR A	/ERAGE			
3518 ± 3	6			Σ^{-} nucleus ≈ 600 GeV
3519 ± 1	16	² MATTSON 0	2 SELX	Σ^{-} nucleus $\approx 600 \text{ GeV}$
significance of 4. ² MATTSON 02 cl events, a statisti The probability t	8 σ in <i>pD</i> + <i>H</i> aims "an exce cal significane hat the peak	< [—] events. ess of 15.9 events over ce of 6.3 σ" in the /	an expected $\kappa^+ \kappa^- \pi^+$	1.38 ± 0.13 events" for a ed background of 6.1 ± 0.5 invariant-mass spectrum. $.0 \times 10^{-6}$ to 1.1×10^{-4}

However, the J^P number has not been determined experimentally.

Moreover, it has not been confirmed by other experiments (notably by LHCb, BABAR, BELLE, and FOCUS).

Doubly and triply charmed baryons

Many light baryons and singly charmed baryons have been well established. (3 or 4 stars in Baryon Summary Table)

Therefore, we focus on searching mass relations which can express the mass of a doubly charmed baryon as a function of masses of the well established light baryons and singly charmed baryons.

$$\begin{split} M_{\Omega_{cc}^{*+}}^{2} &= \frac{2M_{\Omega_{c}^{*0}}^{2}\left(M_{\Omega^{-}}^{2} - 4M_{\Xi^{*0}}^{2} + 3M_{\Sigma^{*+}}^{2}\right) - M_{\Omega^{-}}^{2}\left(M_{\Omega^{-}}^{2} - 6M_{\Xi_{c}^{*+}}^{2} - 6M_{\Xi^{*0}}^{2} + 2M_{\Sigma^{*+}}^{2}\right) - \left(4M_{\Xi^{*0}}^{2} - M_{\Sigma^{*+}}^{2}\right)\left(2M_{\Xi_{c}^{*}}^{2} + 2M_{\Xi^{*0}}^{2} - M_{\Sigma^{*+}}^{2}\right) + 2\left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*0}}^{2} + M_{\Sigma^{*+}}^{2}\right) - \left(4M_{\Xi^{*0}}^{2} - M_{\Sigma^{*+}}^{2}\right)\left(2M_{\Xi_{c}^{*}}^{2} + 2M_{\Xi^{*0}}^{2} - M_{\Sigma^{*+}}^{2}\right) + \frac{2\left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*0}}^{2} + M_{\Sigma^{*+}}^{2}\right)^{2} - 4M_{\Omega_{c}^{*0}}^{2}\left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*0}}^{2} + M_{\Omega_{c}^{*0}}^{2}\right)}{2\left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*}}^{2} + 2M_{\Xi^{*0}}^{2} + M_{\Sigma^{*+}}^{2}\right)^{2} - 4M_{\Omega_{c}^{*0}}^{2}\left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*0}}^{2} + M_{\Omega_{c}^{*0}}^{2}\right) - \left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*0}}^{2} + M_{\Sigma^{*+}}^{2}\right) + \frac{2\left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*0}}^{2} + M_{\Sigma^{*+}}^{2}\right)^{2} - 4M_{\Omega_{c}^{*0}}^{2}\left(M_{\Omega^{-}}^{2} + 2M_{\Xi^{*0}}^{2} - M_{\Omega_{c}^{*0}}^{2}\right) + M_{\Omega^{*}}^{2} - 2M_{\Xi^{*0}}^{2} + M_{\Sigma^{*+}}^{2}\right) + \frac{2\left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*0}}^{2} + M_{\Sigma^{*+}}^{2}\right) - 4M_{\Omega_{c}^{*0}}^{2}\left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*0}}^{2} + M_{\Sigma^{*+}}^{2}\right) + 2\left(M_{\Omega^{-}}^{2} - 2M_{\Omega^{-}}^{2} + M_{\Omega^{*0}}^{2}\right) + 2\left(M_{\Omega^{-}}^{2} - 2M_{\Xi^{*0}}^{2}$$

Masses of the doubly and triply baryons

$J^{P} = \frac{1}{2}^{+}$	Ξ_{cc}^+	Ξ_{cc}^{++}	Ω_{cc}^+	
	35 19.1	351 9.5	3652.4	
$J^P = \frac{3}{2}^+$	Ξ_{cc}^{*+}	Ξ_{cc}^{*++}	$\mathbf{\Omega}_{cc}^{*+}$	Ω_{ccc}^{++}
	3694.6	3695.9	3808.9	4834.3

$$M_{\Omega_{cc}^{*+}} - M_{\Xi_{cc}^{*+}} \approx 3809 - 3695 = 114 \text{ MeV}$$
$$M_{\Omega_{cc}^{+}} - M_{\Xi_{cc}^{+}} \approx 3650 - 3520 = 130 \text{ MeV}$$
$$M_{\Omega_{cc}^{+}} - M_{\Xi_{cc}^{+}} \approx 0.4 \text{ O} 2 \text{ MeV}$$

 $M_{\Xi_{cc}^{++}} - M_{\Xi_{cc}^{+-}} = 0.4 \pm 0.3$ MeV <u>1.5 \pm 2.7</u> MeV, PLB **698**, 251 <u>2.3 \pm 1.7</u> MeV, PRD **78**, 073013

Table 1. The masses of the doubly charmed baryons lying on the Ω_{cc}^{*+} trajectory (in units of MeV).

The masses of the doubly charmed baryons $\Xi_{ac}^+, \Xi_{ac}^{++}$ and the orbital excited baryons lying on the Ξ_{ac}^{++} trajectory.

- <u>5</u>+

4047 4060 4047±19

4034.0+86.9

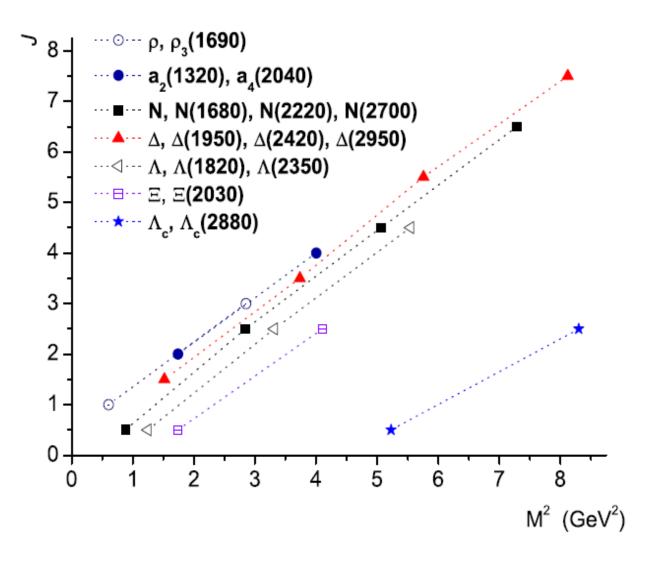
Ŧ

4267.6+108.8

					A DEC DECEMBER OF	a the transf that has the point of	and the many time to the total to
J^p	3+ 2	<u>5</u> -	7+	<u>9</u>	J ^P	$\frac{1}{2}^+$ (Ξ_{nn}^+ , Ξ_{nn}^{++})	3-
Pre.	$3808.9^{+36.3}_{-35.7}$	4058.4+59.7	4293.5+80.7	4516.3 ^{+99.8}	Pre.	3520.2 ^{+40.6} /3520.6 ^{+40.6} /39.8	3786.0+66.0
Exp. [1]					Exp. [1]	3518.9±0.9	
[2]	3876	4152	4230		[2]	3676	3921
[3]	3730	4134	4204		[3]	3478	3834
[4]	3808.4 ± 4.3		4313 ± 23		[4]	3518.9±0.9	
[5]	3872	4303			6	3620	3969
[6]	3760±170				6	3710±140	
I	3762±17				[7] [8]	3522±16 3642	3920
[7]					[9]	3511	1020
[8]	3765				(10)	3610±3	
[9]	3764				[11]	3510	
[10]	3850 ± 25				[12]	3635	
[11]	3746				[13]	3549±13±19±92	
[12]	3840±60				[14]	3660±70	
[13]	$3734\pm14\pm8\pm97$				[15]	3520	
[14]	3820 ± 80				[17]	3550±80	
[15]	3721				[20]	3524	
[16]	3797				[21]	3610±23±22	
[21]	$3822\pm20\pm22$				[22]	3558±39	
[22]	3773 ± 38				[23]	3627±12 3532	
[24]	3758				[24] [26]	3532	
[25]	3780 ± 160				[27]	3527	
[26]	$3765 \pm 43 \pm 17 \pm 5$				[28]	3520-2560	
[27]	3700				[29]	3513±23±24	
[30]	$3735\pm33\pm18\pm43$				[30]	3568±14±19±1	
	3810±60				[31]	4260±190	
[31]					[32]	3470±50	
[34]	3651-3782				[33]	3480±50	
[35]	3847				[34]	3478-3604, 3468-3583	
[36]	3800				[35]	3584, 3579	
[37]	3795				[36]	3557	
[38]	3690				[37]	3538 3480	
[39]	3710				[38] [39]	3519	
[40]	3770				[40]	3647	
[41]	3769						

Doubly and triply bottom baryons

-


	The masses of doubly and triply charmed baryons (in units of MeV).								
Ξ_{bb}^{0}	Ξ_{bb}^{-}	Ω_{bb}	Ξ_{bb}^{*0}	Ξ_{bb}^{*-}	Ω_{bb}^*	Ω_{bbb}			
10164.4	10166.8	10286.8	10319.2	10322.4	10437.0	14797.4			

$$\begin{split} M_{\Xi_{bb}^{0}} - M_{\Xi_{bb}^{-}} &= \underline{-2.4 \pm 2.0} \text{ MeV} \\ &= \underline{-6.3 \pm 1.7} \text{ MeV}, \text{ PLB 698, 251} \\ &= \underline{-5.3 \pm 1.1} \text{ MeV}, \text{ PRD 78, 073013} \end{split}$$

$$\begin{split} M_{\Xi_{cc}^{++}} - M_{\Xi_{cc}^{+}} &= \underline{0.4 \pm 0.3} \text{ MeV} \\ &= \underline{1.5 \pm 2.7} \text{ MeV}, \text{ PLB 698, 251} \\ &= \underline{2.3 \pm 1.7} \text{ MeV}, \text{ PRD 78, 073013} \end{split}$$

Regge phenomenology

- Regge phenomenology was derived from the analysis of the properties of the scattering amplitude in the complex angular momentum plane.(T. Regge, Nuovo Cim. 1959)
- In 1962, it was introduced to study hadron spectra by Chew and Frautschi. (PRL 8, 41)
- Regge theory is concerned with almost all aspects of strong interactions, including the particle spectrum, the forces between particles, and the high energy behavior of scattering amplitudes.
- One of the most distinctive features of Regge theory is the Regge trajectory by which the mass and the spin of a hadron are related.

We plot Regge trajectories for some mesons and baryons in the (J, M^2) plane.

The quasi-linear Regge trajectory is usually parameterized as Eq. (1)

$$J = a(0) + \alpha' M^2 \tag{1}$$

For meson, Regge slope and intercepts have the following relations: the additivity of intercepts $a_{i\bar{i}}(0) + a_{j\bar{j}}(0) = 2a_{i\bar{j}}(0)$ (2)

the additivity of inverse slopes
$$\frac{1}{\alpha'_{i\bar{i}}} + \frac{1}{\alpha'_{j\bar{j}}} = \frac{2}{\alpha'_{i\bar{j}}}$$
 (3)

Equations (2) and (3) were derived in a model based on the topological expansion and the *qq*-string picture of hadrons (QGSM) [*Kaidalov 1982*]. This model provides a microscopic approach to describe Regge phenomenology in terms of quark degrees of freedom.

For baryons, the additivity of intercepts and the additivity of inverse

slopes are written as $a_{iiq}(0) + a_{jjq}(0) = 2a_{ijq}(0)$ (4)

$$\frac{1}{\alpha'_{iiq}} + \frac{1}{\alpha'_{jjq}} = \frac{2}{\alpha'_{ijq}}$$
(5)

There are also relations about the factorization of slopes for mesons and baryons:

$$\alpha'_{i\bar{i}} \cdot \alpha'_{j\bar{j}} = {\alpha'_{i\bar{j}}}^2 , \qquad (6)$$

$$\alpha_{iiq}' \cdot \alpha_{jjq}' = {\alpha_{ijq}'}^2, \tag{7}$$

which follow from the factorization of residues of the *t*-channel poles.

Using Eqs. (1) and (2), we have Eq. (8)

$$\alpha'_{i\bar{i}}M_{i\bar{i}}^{2} + \alpha'_{j\bar{j}}M_{j\bar{j}}^{2} = 2\alpha'_{i\bar{j}}M_{i\bar{j}}^{2}$$

$$\frac{1}{\alpha'_{i\bar{i}}} + \frac{1}{\alpha'_{j\bar{j}}} = \frac{2}{\alpha'_{i\bar{j}}}$$
(8)
(3)

Combining the relations (3) and (8), we can get relations between the slope ratio and meson masses.

$$\frac{\alpha'_{j\bar{j}}}{\alpha'_{i\bar{i}}} = \frac{1}{2M_{j\bar{j}}^2} \times \left[(4M_{i\bar{j}}^2 - M_{i\bar{i}}^2 - M_{j\bar{j}}^2) + \sqrt{(4M_{i\bar{j}}^2 - M_{i\bar{i}}^2 - M_{j\bar{j}}^2)^2 - 4M_{i\bar{i}}^2 M_{j\bar{j}}^2} \right]$$
(9)

For baryons, one can have

$$\frac{\alpha'_{jjq}}{\alpha'_{iiq}} = \frac{1}{2M_{jjq}^2} \times \left[(4M_{ijq}^2 - M_{iiq}^2 - M_{jjq}^2) + \sqrt{(4M_{ijq}^2 - M_{iiq}^2 - M_{jjq}^2)^2 - 4M_{iiq}^2 M_{jjq}^2} \right]$$

b-baryons Quadratic mass equalities

For mesons, from Eqs. (2) and (3), we can redefined Regge slope and Regge intercept as the following:

$$a_{i\bar{j}}(0) = a_{n\bar{n}}(0) - \lambda_i - \lambda_j,$$
$$\frac{1}{\alpha'_{i\bar{j}}} = \frac{1}{\alpha'_{n\bar{n}}} + \gamma_i + \gamma_j,$$

where $\lambda_i = a_{n\bar{n}}(0) - a_{n\bar{i}}(0), \ \gamma_i = \frac{1}{\alpha'_{n\bar{i}}} - \frac{1}{\alpha'_{n\bar{n}}}.$

For baryons, from Eqs. (4) and (5), we can redefined Regge slope and Regge intercept as the following:

$$a_{ijq}(0) = a_{nnn}(0) - \lambda_i - \lambda_j - \lambda_q,$$
$$\frac{1}{\alpha'_{ijq}} = \frac{1}{\alpha'_{nnn}} + \gamma_i + \gamma_j + \gamma_q,$$
where $\lambda_i = a_{nnn}(0) - a_{nni}(0), \ \gamma_i = \frac{1}{\alpha'_{nni}} - \frac{1}{\alpha'_{nnn}}.$

To evaluate the deviation of Relations (13) and (16), from the equalities that would be obtained by changing the signs of inequalities to equal signs, we introduce a parameter δ , which is denoted by δ_{ij}^{m} for mesons,

$$\begin{split} \delta_{ij}^{m} &= M_{i\bar{i}}^{2} + M_{j\bar{j}}^{2} - 2M_{i\bar{j}}^{2} \\ &= (\alpha_{n\bar{n}}^{\prime} M_{n\bar{n}}^{2} + 2\lambda_{i})(\frac{1}{\alpha_{n\bar{n}}^{\prime}} + 2\gamma_{i}) + (\alpha_{n\bar{n}}^{\prime} M_{n\bar{n}}^{2} + 2\lambda_{j})(\frac{1}{\alpha_{n\bar{n}}^{\prime}} + 2\gamma_{j}) \\ &- 2(\alpha_{n\bar{n}}^{\prime} M_{n\bar{n}}^{2} + \lambda_{i} + \lambda_{j})(\frac{1}{\alpha_{n\bar{n}}^{\prime}} + \gamma_{i} + \gamma_{j}) \end{split}$$

$$= 2(\lambda_i - \lambda_j)(\gamma_i - \gamma_j).$$

and
$$\delta_{ij}^{b}$$
 for baryons,

$$\delta_{ij}^{b} = M_{iiq}^{2} + M_{jjq}^{2} - 2M_{ijq}^{2}$$

$$= (\alpha'_{nnn}M_{nnn}^{2} + 2\lambda_{i} + \lambda_{q})(\frac{1}{\alpha'_{nnn}} + 2\gamma_{i} + \gamma_{q}) + (\alpha'_{nnn}M_{nnn}^{2} + 2\lambda_{j} + \lambda_{q})(\frac{1}{\alpha'_{nnn}} + 2\gamma_{j} + \gamma_{q})$$

$$- 2(\alpha'_{nnn}M_{nnn}^{2} + \lambda_{i} + \lambda_{j} + \lambda_{q})(\frac{1}{\alpha'_{nnn}} + \gamma_{i} + \gamma_{j} + \gamma_{q})$$

$$= 2(\lambda_{i} - \lambda_{j})(\gamma_{i} - \gamma_{j}).$$
(31)
From Eq. (31), we can see that δ_{ij}^{b} is independent of q .

$$\begin{array}{l} (A) \mbox{ For the } \frac{3}{2}^+ \mbox{ multiplet, considering the difference of u-quark and d-quark, Eqs. (54) can be re written as follow: (A0) When $i = u, j = d, q = u, d, s, c, b, \\ \hline \\ \frac{3}{ud}^+ = M_{\Delta^++}^2 + M_{\Delta^0}^2 - 2M_{\Delta^+}^2 = M_{\Delta^+}^2 + M_{\Delta^-}^2 - 2M_{\Delta^0}^2 = M_{\Sigma^+}^2 + M_{\Sigma^{+-}}^2 - 2M_{\Sigma^{+0}}^2 = M_{\Sigma^{\pm}+}^2 + M_{\Sigma^{\pm}0}^2 - 2M_{\Sigma^{\pm}}^2 = M_{\Sigma^{\pm}+}^2 + M_{\Sigma^{\pm}0}^2 - 2M_{\Sigma^{\pm}}^2 = M_{\Sigma^{\pm}+}^2 + M_{\Sigma^{\pm}0}^2 - 2M_{\Sigma^{\pm}0}^2 = M_{\Sigma^{\pm}+}^2 + M_{\Sigma^{\pm}0}^2 - 2M_{\Sigma^{\pm}0}^2 = M_{\Sigma^{\pm}+}^2 + M_{\Omega_{c}^{\pm}0}^2 - 2M_{\Sigma^{\pm}0}^2 = M_{\Sigma^{\pm}+}^2 + M_{\Omega_{c}^{\pm}0}^2 - 2M_{\Xi^{\pm}0}^2 = M_{\Sigma^{\pm}}^2 + M_{\Omega_{c}^{\pm}-}^2 - 2M_{\Xi^{\pm}0}^2 = M_{\Sigma^{\pm}0}^2 + M_{\Omega_{c}^{\pm}-}^2 - 2M_{\Xi^{\pm}0}^2 = M_{\Omega^{\pm}0}^2 + M_{\Omega_{c}^{\pm}-}^2 - 2M_{\Xi^{\pm}0}^2 + M_{\Omega_{c}^{\pm}-}^2 + M_{\Omega_{c}^{\pm}-}^2 - 2M_{\Xi^{\pm}0}^2 + M_{\Omega_{c}^{\pm}-}^2 - 2M_{\Xi^{\pm}0}^2 + M_{\Omega_{c}^{\pm}-}^2 + M_{\Omega_{c}^{\pm}-}^2 - 2M_{\Xi^{\pm}0}^2 + M_{\Omega_{c}^{\pm}-}^2 + M_{\Omega_{c}^{\pm}-}^2 - 2M_{\Xi^{\pm}0}^2 + M_{\Omega_{c}^{\pm}-}^2 + M_{\Omega_{c}^{\pm}-}^2 + M_{\Omega_{c}^{\pm}-}^2 - 2M_{\Xi^{\pm}0}^2 + M_{\Omega_{c}^{\pm}-}^2 + M_{\Omega$$$

$$(A5) \text{ When } i = s, j = b, q = u, d, s, c, b,$$

$$\delta_{sb}^{\frac{3}{2}^{+}} = M_{\Xi^{*0}}^{2} + M_{\Xi^{*0}_{bb}}^{2} - 2M_{\Xi^{*0}_{bb}}^{2} - 2M_{\Xi^{*0}_{bb}}^{2}$$

$$\delta_{cb}^{\overline{2}} = M_{\Xi_{cc}^{*++}}^2 + M_{\Xi_{bb}^{*0}}^2 - 2M_{\Xi_{bc}^{*+}}^2 = M_{\Xi_{cc}^{*+}}^2 + M_{\Xi_{bc}^{*-}}^2 - 2M_{\Xi_{bc}^{*0}}^2 = M_{\Omega_{cc}^{*+}}^2 + M_{\Omega_{bc}^{*0}}^2 = M_{\Omega_{bc}^{*+}}^2 + M_{\Omega_{bc}^{*0}}^2 - 2M_{\Omega_{bcc}^{*0}}^2 = M_{\Omega_{bcc}^{*+}}^2 + M_{\Omega_{bcc}^{*0}}^2 - 2M_{\Omega_{bcc}^{*+}}^2 + M_{\Omega_{bcc}^{*0}}^2 - 2M_{\Omega_{bcc}^{*0}}^2 = M_{\Omega_{bcc}^{*+}}^2 + M_{\Omega_{bcc}^{*+}}^2 + M_{\Omega_{bcc}^{*+}}^2 - 2M_{\Omega_{bcc}^{*+}}^2 + M_{\Omega_{bcc}^{*+}}^2 + M_{\Omega_{bcc}^{*+}}^2 - 2M_{\Omega_{bcc}^{*+}}^2 + M_{\Omega_{bcc}^{*+}}^2 + M_{\Omega$$

We can have

$$(M_{\Omega_{cc}^{*+}}^2 - M_{\Xi_{cc}^{*++}}^2) + (M_{\Xi^{*0}}^2 - M_{\Sigma^{*+}}^2) = (M_{\Omega_c^{*0}}^2 - M_{\Sigma_c^{*++}}^2);$$
(1k)

$$(M_{\Omega_{cc}^{*+}}^2 - M_{\Xi_{cc}^{*+}}^2) + (M_{\Xi^{*-}}^2 - M_{\Sigma^{*-}}^2) = (M_{\Omega_c^{*0}}^2 - M_{\Sigma_c^{*0}}^2).$$
(11)

$$(M_{\Omega_{bb}^{*-}}^2 - M_{\Xi_{bb}^{*0}}^2) + (M_{\Xi^{*0}}^2 - M_{\Sigma^{*+}}^2) = (M_{\Omega_b^{*-}}^2 - M_{\Sigma_b^{*+}}^2);$$
(1m)

$$(M_{\Omega_{bb}^{*-}}^2 - M_{\Xi_{bb}^{*0}}^2) + (M_{\Xi^{*-}}^2 - M_{\Sigma^{*-}}^2) = (M_{\Omega_{b}^{*-}}^2 - M_{\Sigma_{b}^{*-}}^2).$$
(1n)

$$(M_{\Omega_{cbb}^{*0}}^2 - M_{\Xi_{bb}^{*0}}^2) + (M_{\Xi_{cc}^{*++}}^2 - M_{\Sigma_{c}^{*++}}^2) = (M_{\Omega_{bcc}^{*+}}^2 - M_{\Sigma_{b}^{*+}}^2);$$
(10)

$$(M_{\Omega_{cbb}^{*0}}^2 - M_{\Xi_{bb}^{*-}}^2) + (M_{\Xi_{cc}^{*+}}^2 - M_{\Sigma_{c}^{*0}}^2) = (M_{\Omega_{bcc}^{*+}}^2 - M_{\Sigma_{b}^{*-}}^2);$$
(1p)

$$(M_{\Omega_{cbb}^{*0}}^2 - M_{\Omega_{bb}^{*-}}^2) + (M_{\Omega_{cc}^{*+}}^2 - M_{\Omega_{c}^{*0}}^2) = (M_{\Omega_{ccb}^{*+}}^2 - M_{\Omega_{b}^{*-}}^2).$$
(1q)

(B.) Similarly, for the $\frac{1}{2}^+$ multiplet, we can express $\delta_{ij}^{\frac{1}{2}^+}$ as follow: (B0) When i = u, j = d, q = u, d, s, c, b, $\delta^{\frac{1}{2}^+} - M^2 + M^2 - 2M^2 - M^2 + M^2 - 2M^2 - 2M^2 + M^2 - 2M^2$

$$\delta_{ud}^2 = M_{\Sigma^+}^2 + M_{\Sigma^-}^2 - 2M_{\Sigma^0}^2 = M_{\Sigma_c^{++}}^2 + M_{\Sigma_c^0}^2 - 2M_{\Sigma_c^{+}}^2 = M_{\Sigma_b^{+-}}^2 + M_{\Sigma_b^{--}}^2 - 2M_{\Sigma_b^{--}}^2.$$

(B1) When i = u, d, j = s, q = u, d, s, c, b,

$$\begin{split} \delta_{us}^{\frac{1}{2}^{+}} &= M_{\Sigma_{c}^{+}}^{2} + M_{\Omega_{c}^{0}}^{2} - 2M_{\Xi_{c}^{\prime}}^{2} = M_{\Sigma_{b}^{+}}^{2} + M_{\Omega_{b}^{-}}^{2} - 2M_{\Xi_{b}^{\prime}}^{2} \\ \delta_{ds}^{\frac{1}{2}^{+}} &= M_{\Sigma_{c}^{0}}^{2} + M_{\Omega_{c}^{0}}^{2} - 2M_{\Xi_{c}^{\prime}}^{2} = M_{\Sigma_{b}^{-}}^{2} + M_{\Omega_{b}^{-}}^{2} - 2M_{\Xi_{b}^{\prime}}^{2} \end{split}$$

$$\begin{split} \text{B6}) \text{ When } i = c, \ j = b, \ q = u, d, s, c, b, \\ \delta_{cb}^{\frac{1}{2}^+} = M_{\Xi_{cc}}^2 + M_{\Xi_{bb}}^2 - 2M_{\Xi_{bc}}^2 = M_{\Xi_{cc}}^2 + M_{\Xi_{bb}}^2 - 2M_{\Xi_{bc}}^2 = M_{\Omega_{cc}}^2 + M_{\Omega_{cc}}^2 - 2M_{\Omega_{bb}}^2. \\ \delta_{ub,d}^{\frac{1}{2}^+} + \delta_{db,u}^{\frac{1}{2}^+} = M_{N^+}^2 + M_{\Xi_{bb}}^2 - 2(\frac{3M_{\Lambda_b}^2 + M_{\Sigma_b}^2}{4}) + M_{N^0}^2 + M_{\Xi_{bb}}^2 - 2(\frac{3M_{\Lambda_b}^2 + M_{\Sigma_b}^2}{4}). \\ (M_{\Omega_{bb}}^2 - M_{\Xi_{bb}}^2) + (M_{\Xi_0}^2 - M_{\Sigma_+}^2) = (M_{\Omega_b}^2 - M_{\Sigma_b}^2); \\ (M_{\Omega_{bb}}^2 - M_{\Xi_{bb}}^2) + (M_{\Xi^-}^2 - M_{\Sigma^-}^2) = (M_{\Omega_b}^2 - M_{\Sigma_b}^2). \\ \delta_{ub,s}^{\frac{1}{2}^+} + \delta_{sb,u}^{\frac{1}{2}^+} = (M_{\Omega_{bb}}^2 + M_{\Xi_{bb}}^2) + (M_{\Xi^0}^2 + M_{\Sigma^+}^2) - (3M_{\Xi_b}^2 + M_{\Xi_{bb}}^2); \\ \delta_{ub,s}^{\frac{1}{2}^+} + \delta_{sb,d}^{\frac{1}{2}^+} = (M_{\Omega_{bb}}^2 + M_{\Xi_{bb}}^2) + (M_{\Xi^-}^2 + M_{\Sigma^-}^2) - (3M_{\Xi_b}^2 + M_{\Xi_{bb}}^2). \end{split}$$

Summary

- The mass relations obtained from Regge phenomenology are suitable to describe the existing hadron spectra with high accurcy.
- We numerically prove that the factorization of slopes is wrong for heavy mesons.
- We support that $\Xi_{cc}(3520)^+$ is the ground baryon with $J^P = \frac{1}{2}^+$.
- The mass of $a_0(1450)$ is too high to be the 1^3P_0 state.
- The mass relations and the predictions may be useful for the discovery and the J^P assignment of the unobserved states.

Thank you for your attentions !