Rare B decay in $\mathcal{F}-S U(5)$ Model

Wang Wenyu
With Li Tianjun, Wang Xiao-Chuan, Xiong Zhao-hua

@LANZhou 2015. 06
Beiding University of Technology

OUTLINE:

(1) Introduction to $\mathcal{F}-S U(5)$ model;
(2) Physics around the TeV scale;
(3) Implication on B physics:

- Effective Hamiltonian;
- Analysis on Rare B decays.
(9) Numerical results;
(3) Summary.

Why $\mathcal{F}-S U(5)$ model ?

Why $\mathcal{F}-S U(5)$ model ?

- Why SUSY ?
- Solve hierarchy problem;
- Dark matter candidate;
- Gauge coupling unification;
- ...

Why \mathcal{F}-SU(5) model ?

- Why SUSY ?
- Solve hierarchy problem;
- Dark matter candidate;
- Gauge coupling unification;
- ...
- However, in the supersymmetric $S U(5)$ models which give the gauge coupling unification,
- Doublet-triplet splitting problem;
- Dimension-five proton decay problem;
- Hierarchy between GUT and string.

Why \mathcal{F}-SU(5) model ?

- Why SUSY ?
- Solve hierarchy problem;
- Dark matter candidate;
- Gauge coupling unification;
- ...
- However, in the supersymmetric $S U(5)$ models which give the gauge coupling unification,
- Doublet-triplet splitting problem;
- Dimension-five proton decay problem;
- Hierarchy between GUT and string.
- In the Flipped $S U(5) \times U(1)_{X}$ models, these problem can be solved through the missing partner mechanism.
- The testable can be constructed from the free fermionic string constructions at the Kac-Moody level one and locally from the F-theory model building.
- There is no Landau pole problem in Flipped $S U(5) \times U(1)_{X}$ models.

String-scale gauge coupling unification

Figure: Two-loop string-scale gauge coupling unification for the simple flipped $S U(5) \times U(1)_{X}$ model and Split-SUSY. (from hep-ph/0610054)

Golden Strip in No-Scale, No-Parameter \mathcal{F}-SU(5) Model.

Figure: The Golden Strip of Correlated Gaugino, and Vector-like Mass In No-Scale, No-Parameter \mathcal{F}-SU(5) model, (from arxiv: 1009.2981)

- The vector-like particles can be observed at the Large Hadron Collider (LHC), proton decay is within the reach of the future Hyper-Kamiokande and Deep Underground Science and Engineering Laboratory (DUSEL) experiments.

Rich phenomenology on low energy processes,

Since $\mathcal{F}-S U(5)$ model is very different from the other simple SM extensions in quark sector, and the 3×3 SM-like quark mixing matrix is now replaced by a 5×5 one which is no longer unitary, and there exists the tree-level $\bar{s} b Z$ interaction, the model has rich phenomenology on low energy processes:

- Precsion electro-weak observables such as U, S, T and R_{b}, R_{c};
- Rare B decays induced by the flavor changing neutral current (FCNC) only occur at loop level in the SM and then are sensitive to new physics.
- $B \rightarrow X_{s} \gamma$
- $B \rightarrow X_{s} \ell^{+} \ell^{-}(\ell=e, \mu)$
- $B_{s} \rightarrow \mu^{+} \mu^{-}$
- $B_{s} \rightarrow \ell^{+} \ell^{-} \gamma$
- ...

The model:

The quantum numbers for the additional vector-like particles under the $S U(5) \times U(1)_{X}$ gauge symmetry are

$$
\begin{aligned}
& X F=(\mathbf{1 0}, \mathbf{1}), \overline{Y F}=(\overline{\mathbf{1 0}},-\mathbf{1}), \\
& X f=(\mathbf{5}, \mathbf{3}), \overline{Y f}=(\overline{\mathbf{5}},-\mathbf{3}), \\
& X l=(\mathbf{1},-\mathbf{5}), \overline{Y l}=(\mathbf{1}, \mathbf{5})
\end{aligned}
$$

It is obvious that $X F, \overline{Y F}, X f, \overline{Y f}, X l$, and $\overline{Y l}$ are standard vector-like particles with contents as follows

$$
\begin{aligned}
& X F=\left(X Q, X D^{c}, X N^{c}\right), \overline{Y F}=\left(Y Q^{c}, Y D, Y N\right), \\
& X f=\left(X U, X L^{c}\right), \overline{Y f}=\left(Y U^{c}, Y L\right), \\
& X l=X E, \overline{Y l}=Y E^{c} .
\end{aligned}
$$

Under the $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ gauge symmetry, the quantum numbers for the extra vector-like particles are

$$
\begin{aligned}
& X Q=\left(\mathbf{3}, \mathbf{2}, \frac{\mathbf{1}}{\mathbf{6}}\right), Y Q^{c}=\left(\overline{\mathbf{3}}, \mathbf{2},-\frac{\mathbf{1}}{\mathbf{6}}\right) \\
& X U=\left(\mathbf{3}, \mathbf{1}, \frac{\mathbf{2}}{\mathbf{3}}\right), Y U^{c}=\left(\overline{\mathbf{3}}, \mathbf{1},-\frac{\mathbf{2}}{\mathbf{3}}\right) \\
& X D=\left(\mathbf{3}, \mathbf{1},-\frac{\mathbf{1}}{\mathbf{3}}\right), Y D^{c}=\left(\overline{\mathbf{3}}, \mathbf{1}, \frac{\mathbf{1}}{\mathbf{3}}\right) \\
& X L=\left(\mathbf{1}, \mathbf{2},-\frac{\mathbf{1}}{\mathbf{2}}\right), Y L^{c}=\left(\mathbf{1}, \mathbf{2}, \frac{\mathbf{1}}{\mathbf{2}}\right) \\
& X E=(\mathbf{1}, \mathbf{1},-\mathbf{1}), Y E^{c}=(\mathbf{1}, \mathbf{1}, \mathbf{1}) \\
& X N=(\mathbf{1}, \mathbf{1}, \mathbf{0}), Y N^{c}=(\mathbf{1}, \mathbf{1}, \mathbf{0})
\end{aligned}
$$

At the GUT scale the superpotential is given by

$$
\begin{aligned}
W_{G U T} & =Y_{i j}^{D} F_{i} F_{j} h+Y_{i j}^{U \nu} F_{i} \bar{f}_{j} \bar{h}+Y_{i j}^{E} \bar{l}_{i} \bar{f}_{j} h+\mu h \bar{h}+Y_{k j}^{N} \phi_{k} \bar{H} F_{j} \\
& +Y_{j}^{\prime D} X F F_{j} h+Y_{j}^{\prime U \nu} X F \overline{f_{j}} \bar{h}+Y_{i}^{\prime U_{i}} F_{i} \overline{X f f} \bar{h}+Y_{j}^{\prime E} \overline{X l} \bar{f}_{j} h \\
& +Y_{j}^{\prime{ }_{j} \bar{l}_{j} \overline{X f} h+Y_{k}^{\prime N} \phi_{k} \bar{H} X F+Y^{2 D} X F X F h+Y^{\prime 2 D} \overline{Y F Y F} \bar{h}} \\
& +Y^{2 U \nu} X F \overline{X f} \bar{h}+Y^{\prime 2 U \nu} \overline{Y F} Y f h+Y^{2 E} \overline{X l X f} h+Y^{\prime 2 E} Y l Y f \bar{h} \\
& +M_{j}^{1} F_{j} \overline{Y F}+M_{j}^{2} \bar{f}_{j} Y f+M_{j}^{3} \bar{l}_{j} Y l \\
& +M^{4} X F \overline{Y F}+M^{5} \overline{X f} Y f+M^{6} \overline{X l} Y l .
\end{aligned}
$$

The first line is the SSM superpotential, the second line is the Yukawa mixing terms between the SM fermions and vector-like particles, the third and fourth lines are the SM-like superpotential for vector-like multiplets, and the fifth and sixth lines are bilinear mass terms.

After the $S U(5) \times U(1)_{X}$ gauge symmetry breaking down to the SM gauge symmetry, we obtain the superpotential as follows

$$
\begin{aligned}
& W_{E W}=\left(Y_{i j}^{D}-Y_{j i}^{D}\right)\left(D^{c}\right)_{i} Q_{j} \cdot H_{d}+Y_{i j}^{U \nu} U_{j}^{c} Q_{i} \cdot H_{u}-Y_{i j}^{U \nu} N_{i}^{c} L_{j} \cdot H_{u} \\
& -\quad Y_{i j}^{E} E_{i}^{c} L \cdot H_{d}-Y_{j}^{D}\left(X D^{c} Q_{j} \cdot H_{d}+D_{j}^{c} X Q \cdot H_{d}\right)+Y_{{ }_{j}}^{U \nu} U_{j}^{c} X Q \cdot H_{u} \\
& -\quad Y_{j}^{\prime} U \nu X N^{c} L \cdot H_{u}+Y_{i}^{\prime \prime}{ }^{U \nu} X U^{c} Q \cdot H_{u}-Y_{i}^{\prime \prime} \nu^{\nu} N_{i}^{c} X L \cdot H_{u}-Y_{j}^{\prime} E E^{c} L \cdot H_{d} \\
& -\quad Y_{j}{ }^{E} E_{j}^{c} X L \cdot H_{d}-2 Y^{2 D} X D^{c} X Q \cdot H_{d}-2 Y^{\prime 2 D} Y D Y Q^{c} \cdot H_{u} \\
& +Y^{2 U \nu} X U^{c} X Q \cdot H_{u}-Y^{2 U \nu} X N^{c} X L \cdot H_{u}-Y^{\prime 2 U \nu} Y U Y Q^{c} \cdot H_{d} \\
& +\quad Y^{\prime 2 U \nu} Y N Y L^{c} \cdot H_{d}-Y^{2 E} X E^{c} X L \cdot H_{d}-Y^{\prime 2 E} Y E Y L^{c} \cdot H_{u} \\
& -2 M_{j}^{1}\left[D_{j}^{c} Y D+Q \cdot Y Q^{c}+N_{j}^{c} Y N\right]+M_{j}^{2}\left[U^{c} Y U+L \cdot Y L^{c}\right]+M_{j}^{3} E_{j}^{c} Y E \\
& -2 M^{4}\left[X D^{c} Y D+X Q \cdot Y Q^{c}+X N^{c} Y N\right]+M^{5}\left[X U^{c} Y U+X L \cdot Y L^{c}\right] \\
& +\quad M^{6} X E^{c} Y E \text {. }
\end{aligned}
$$

At low energy scale, the sparticles decouple rapidly when M_{S} increases, thus we will concentrate on the contributions from new vector-like quark multiplets $X U, Y U^{c}, X D$, and $Y D^{c}$ in our study.

The down-type quark mass matrix is
$M_{D}=\left(\begin{array}{ccccc}\left(Y_{11}^{D}+Y_{11}^{D}\right) v_{d} & \left(Y_{12}^{D}+Y_{21}^{D}\right) v_{d} & \left(Y_{13}^{D}+Y_{31}^{D}\right) v_{d} & Y^{\prime D} v_{d} & -2 M_{1}^{1} \\ \left(Y_{21}^{D}+Y_{1 D}^{D}\right) v_{d} & \left(Y_{22}^{D}+Y_{22}^{D}\right) v_{d} & \left(Y_{23}^{D}+Y_{32}^{D}\right) v_{d} & Y^{\prime D} v_{d} & -2 M_{2}^{1} \\ \left(Y_{31}^{D}+Y_{13}^{D}\right) v_{d} & \left(Y_{32}^{D}+Y_{23}^{D}\right) v_{d} & \left(Y_{33}^{D}+Y_{33}^{D}\right) v_{d} & Y^{\prime D} v_{d} & -2 M_{3}^{1} \\ Y^{\prime} D v_{d} & Y^{\prime D} v_{d} & Y^{\prime D} v_{d} & 2 Y^{2 D} v_{d} & -2 M^{4} \\ 2 M_{1}^{1} & 2 M_{2}^{1} & 2 M_{3}^{1} & 2 M^{4} & -2 Y^{\prime 2 D} v_{u}\end{array}\right)$,
and the up-type quark matrix is

$$
M_{U}=\left(\begin{array}{ccccc}
Y_{11}^{U \nu} v_{u} & Y_{21}^{U \nu} v_{u} & Y_{31}^{U \nu} v_{u} & Y^{\prime U \nu} v_{u} & M_{1}^{2} \\
Y_{12}^{U} \nu v_{u} & Y_{22}^{U} \nu v_{u} & Y_{32}^{U} v_{u} & Y^{\prime U \nu} v_{u} & M_{2}^{2} \\
Y_{13}^{U} \nu v_{u} & Y_{23}^{U} \nu v_{u} & Y_{33}^{U} \nu v_{u} & Y^{\prime U} \nu v_{u} & M_{3}^{2} \\
Y^{\prime U} \nu v_{u} & Y^{\prime U} \nu v_{u} & Y^{M U} v_{u}^{U} v_{u} & Y^{2 U \nu} v_{u} & M^{5} \\
-2 M_{1}^{1} & -2 M_{2}^{1} & -2 M_{3}^{1} & -2 M^{4} & Y^{\prime 2 U \nu} v_{d}
\end{array}\right)
$$

where v_{u} and v_{d} are the vacuum expectation values (VEVs) for H_{u} and H_{d}. These two matrixes can be diagonalized by unitary matrices U and V,

$$
\begin{aligned}
& V_{d}^{\dagger} M_{D} U_{d}=\operatorname{diag} .\left[m_{d}, m_{s}, m_{b}, m_{d_{x}}, m_{d_{y}}\right], \\
& V_{u}^{\dagger} M_{U} U_{u}=\operatorname{diag} .\left[m_{u}, m_{c}, m_{t}, m_{u_{x}}, m_{u_{y}}\right] .
\end{aligned}
$$

$$
V_{\mathrm{CKM}}^{i j}=\sum_{m=1}^{4} U_{u}^{* m i} U_{d}^{m j}
$$

The Feynman Rule:

Charged W boson, Goldstone boson, and charged Higgs boson with quarks $\overline{u_{l}} d_{j} \chi^{+}(\chi=W, G, h)$ and for Z boson $\overline{d_{j}} d_{l} Z$

$$
\begin{align*}
& i \frac{g}{\sqrt{2}} \gamma^{\mu}\left[g_{L}^{\chi}(l, j) P_{L}+g_{R}^{\chi}(l, j) P_{R}\right], \quad(\chi=W, Z), \tag{1}\\
& i \frac{g}{\sqrt{2}}\left[g_{L}^{\chi}(l, j) P_{L}+g_{R}^{\chi}(l, j) P_{R}\right], \quad(\chi=G, h), \\
g_{L}^{W}(i, j)= & \sum_{m=1}^{4} U_{u}^{* m i} U_{d}^{m, j}, \quad g_{R}^{W}(i, j)=V_{u}^{* 5 i} V_{d}^{5 j}, \\
g_{L}^{Z}(i, j)= & -\frac{1}{\sqrt{2} \cos \theta_{W}}\left[\left(1-\frac{2}{3} \sin ^{2} \theta_{W}\right) \delta^{i j}-U_{d}^{* 5 i} U_{d}^{5 j}\right], \\
g_{R}^{Z}(i, j)= & -\frac{1}{\sqrt{2} \cos \theta_{W}}\left[-\frac{2}{3} \sin ^{2} \theta_{W} \delta^{i j}+V_{d}^{* 5 i} V_{d}^{5 j}\right], \\
g_{L}^{G}(i, j)= & \left(\sum_{k, m=1}^{4} Y_{k m}^{U \nu} V_{u}^{* k i} U_{d}^{m j}+2 Y^{\prime 2 D} V_{u}^{* 5 i} U_{d}^{5 j}\right) \frac{v_{u}}{m_{W}}, \\
g_{R}^{G}(i, j)= & -\left(\sum_{k, m=1}^{4}\left(Y_{m k}^{D}+Y_{k m}^{D}\right) V_{d}^{* k j} U_{u}^{m i}-2 Y^{\prime U \nu} V_{d}^{* 5 j} U_{d}^{5 i}\right) \frac{v_{d}}{m_{W}}, \\
g_{L}^{h}(i, j)= & \left(\sum_{k, m=1}^{4} Y_{k m}^{U \nu} V_{u}^{* k i} U_{d}^{m j}+2 Y^{\prime 2 D} V_{u}^{* 5 i} U_{d}^{5 j}\right) \frac{v_{d}}{m_{W}}, \\
g_{R}^{h}(i, j)= & \left(\sum_{k, m=1}^{4}\left(Y_{m k}^{D}+Y_{k m}^{D}\right) V_{d}^{* k j} U_{u}^{m i}-2 Y^{\prime U \nu} V_{d}^{* 5 j} U_{d}^{5 i}\right) \frac{v_{u}}{m_{W}} .
\end{align*}
$$

We can see that the TeV -scale $\mathcal{F}-S U(5)$ model has two points for rich physics to be explored:

- Since the quark mass matrices are not the same as two Higgs doublet model (2HDM) or the Minimal Supersymmetric Standard Model (MSSM), the loop-level FCNC will be changed by the Yukawa interactions, and then may change the prediction of process $b \rightarrow s \gamma$ significantly.
- The last terms in above Equations, which we call the "tail terms", will cause the tree-level FCNC processes induced by $b \rightarrow s \ell^{+} \ell^{-}$and then the stringent constraints on the model parameter space will be expected.

Implication on B physcs: the Hamiltionian

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10}\left[C_{i}(\mu) O_{i}(\mu)+C_{i}^{\prime}(\mu) O_{i}^{\prime}(\mu)\right]
$$

in which the operators in SM are:

$$
\begin{aligned}
O_{1} & =\left(\bar{s}_{i} c_{j}\right)_{V-A}\left(\bar{c}_{j} b_{i}\right)_{V-A} \\
O_{2} & =(\bar{s} c)_{V-A}(\bar{c} b)_{V-A} \\
O_{3} & =(\bar{s} b)_{V-A} \sum_{q}(\bar{q} q)_{V-A} \\
O_{4} & =\left(\bar{s}_{i} b_{j}\right)_{V-A} \sum_{q}\left(\bar{q}_{j} q_{i}\right)_{V-A} \\
O_{5} & =(\bar{s} b)_{V-A} \sum_{q}(\bar{q} q)_{V+A} \\
O_{6} & =\left(\bar{s}_{i} b_{j}\right)_{V-A} \sum_{q}\left(\bar{q}_{j} q_{i}\right)_{V+A} \\
O_{7} & =\frac{e}{8 \pi^{2}} m_{b} \bar{s}_{i} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b_{i} F_{\mu \nu} \\
O_{8} & =\frac{g}{8 \pi^{2}} m_{b} \bar{s}_{i} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) T_{i j}^{a} b_{j} G_{\mu \nu}^{a} \\
O_{9} & =(\bar{s} b)_{V-A}(\bar{l} l)_{V} \\
O_{10} & =(\bar{s} b)_{V-A}(\bar{l} l)_{A}
\end{aligned}
$$

New operators and the implication

The chirality-flipped operators O_{i}^{\prime} are obtained from O_{i} by the replacement $\gamma_{5} \rightarrow-\gamma_{5}$ in quark current.

- CKM matrix is replaced by a 5×5 matrix

$$
V_{\mathrm{CKM}}^{i j}=\sum_{m=1}^{4} U_{u}^{* m i} U_{d}^{m j}
$$

In our analysis we take a reasonable assumption that the deviation from unitary is not large.

- The effective coefficient $C_{9}^{e f f}\left(\mu_{b}\right)$ have the same as the SM.
- The coefficient of operator $O_{2}^{\prime}=(\bar{s} c)_{V+A}(\bar{c} b)_{V-A}$, is proportional to the elements of quark mixing matrix $V_{u}^{5 j}$ or $U_{d}^{5 i} . C_{9}^{\prime, e f f}\left(\mu_{b}\right)$ receives contributions mainly from the tree-level diagrams,
- For $b \rightarrow s \gamma$, the new contributions mainly come from the new type Yukawa interactions, and for $b \rightarrow s \ell^{+} \ell^{-}$, the new contributions mainly arise from the new operators $O_{9,10}^{\prime}$.
- The Wilson coefficient C_{7} at the matching scale is

$$
\begin{aligned}
C_{7} & =\frac{1}{V_{t b} V_{t s}^{*}} \sum_{i=1}^{5}\left\{A\left(x_{i}\right) g_{L}^{W *}(i, 2) g_{L}^{W}(i, 3)-B\left(x_{i}\right) \frac{m_{W}}{m_{b}} g_{L}^{W *}(i, 2) g_{R}^{G}(i, 3)\right. \\
& +g_{L}^{G *}(i, 2)\left[C\left(x_{i}\right) g_{L}^{G}(i, 3)-\frac{m_{u_{i}}}{m_{b}} D\left(x_{i}\right) g_{R}^{G}(i, 3)\right] \\
& \left.+\frac{x_{i}}{y_{i}} g_{L}^{h *}(i, 2)\left[C\left(y_{i}\right) g_{L}^{h}(i, 3)-\frac{m_{u_{i}}}{m_{b}} D\left(y_{i}\right) g_{R}^{h}(i, 3)\right]\right\}
\end{aligned}
$$

- The Wilson coefficient $C_{9}, C_{10}, C_{9}^{\prime}$, and C_{10}^{\prime} at the matching scale is

$$
\begin{aligned}
C_{9}= & \frac{P\left(x_{t}\right)-Q\left(x_{t}\right)}{\sin ^{2} \theta_{W}}+4 Q\left(x_{t}\right) \\
& -\frac{2 \pi}{\alpha_{e m}} \frac{U_{d}^{* 52} U_{d}^{53}}{V_{t b} V_{t s}^{*}}\left(\frac{1}{4}-\sin ^{2} \theta_{W}\right) \\
& +\frac{1}{V_{t b} V_{t s}^{*}}\left\{\sum_{i=3}^{5}\left[R\left(x_{i}\right) g_{L}^{W *}(i, 2) g_{L}^{W}(i, 3)+S\left(x_{i}\right) g_{R}^{G *}(i, 2) g_{L}^{G}(i, 3)\right]\right. \\
& +\sum_{i=1}^{5} \frac{m_{W}}{m_{u}} T\left(x_{i}\right)\left[g_{L}^{W *}(i, 2) g_{L}^{G}(i, 3)+g_{R}^{G *}(i, 2) g_{L}^{W}(i, 3)\right] \\
& \left.\left.+\frac{x_{i}}{y_{i}} S\left(y_{i}\right) g_{R}^{h *}(i, 2) g_{L}^{h}(i, 3)\right]\right\}+\frac{4}{9} . \\
C_{10}=- & \frac{P\left(x_{t}\right)-Q\left(x_{t}\right)}{\sin ^{2} \theta_{W}}+\frac{2 \pi}{\alpha_{e m}} \frac{1}{4} \frac{U_{d}^{* 52} U_{d}^{53}}{V_{t b} V_{t s}^{*}}, \\
C_{9}^{\prime}= & \left(\frac{1}{4}-\sin ^{2} \theta_{W}\right) \frac{2 \pi}{\alpha_{e m}} \frac{V_{d}^{* 52} V_{d}^{53}}{V_{t b} V_{t s}^{*}}, \\
C_{10}^{\prime}= & -\frac{2 \pi}{\alpha_{e m}} \frac{1}{4} \frac{V_{d}^{* 52} V_{d}^{53}}{V_{t b} V_{t s}^{*}} .
\end{aligned}
$$

- The contributions from loop diagrams to $C_{9,10}^{\prime}$ can be neglected safely.

Calculation of Branching ratios:

(1) $B \rightarrow X_{s} \gamma$

$$
\operatorname{Br}\left(B \rightarrow X_{s} \gamma\right)=\operatorname{Br}^{\mathrm{ex}}\left(B \rightarrow X_{c} e \overline{\nu_{e}}\right) \frac{\left|V_{t s}^{*} V_{t b}\right|^{2}}{\left|V_{c b}\right|^{2}} \frac{6 \alpha}{\pi f(z)}\left|C_{7}^{e f f}\left(\mu_{b}\right)\right|^{2}
$$

(2) $B \rightarrow X_{s} \ell^{+} \ell^{-}$

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d s} & =\frac{G_{F}^{2} m_{b}^{5}}{768 \pi^{5}} \alpha_{e m}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}(1-s)^{2}\left(1-\frac{4 r}{s}\right)^{1 / 2} \\
& \times\left\{4\left|C_{7}^{e f f}\right|^{2}\left(1+\frac{2}{s}\right)+\left(\left|C_{9}^{e f f}\right|^{2}+\left|C_{9}^{\prime}\right|^{2}\right)(1+2 s)\right. \\
& \left.+\left(\left|C_{10}\right|^{2}+\left|C_{10}^{\prime}\right|^{2}\right)(1+2 s)+12 \operatorname{Re}\left(C_{7}^{e f f} C_{9}^{e f f *}\right)\right\}
\end{aligned}
$$

where $s=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2} / m_{b}^{2}$.
(3) $B_{s} \rightarrow \mu^{+} \mu^{-}$

$$
\begin{equation*}
\Gamma\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\kappa \frac{\alpha_{e m}^{2} G_{F}^{2}}{16 \pi^{3}}\left|V_{t b} V_{t s}^{*}\right|^{2} f_{B_{s}}^{2} m_{B_{s}} m_{\mu}^{2}\left|C_{10}-C_{10}^{\prime}\right|^{2}, \tag{2}
\end{equation*}
$$

where $f_{B_{s}}$ is the decay constant for B_{s} determined by $\langle 0| \bar{q} \gamma_{\mu} \gamma_{5} b\left|B_{q}\right\rangle=-i f_{B_{q}} p_{\mu}$.
(1) $B_{s} \rightarrow \ell^{+} \ell^{-} \gamma$

$$
\begin{equation*}
\frac{d \Gamma}{d s}=\left|\frac{\alpha_{e m}^{3 / 2} G_{F}}{4 \sqrt{6 \pi}} V_{t b} V_{t s}^{*}\right|^{2} \frac{m_{B_{s}}^{7}}{(2 \pi)^{3}} s(1-s)^{3}\left[|K|^{2}+|L|^{2}+|M|^{2}+|N|^{2}\right], \tag{3}
\end{equation*}
$$

where $s=p^{2} / m_{B_{s}}^{2}$ is normalized dileptonic mass squraed, and

$$
\begin{align*}
K & =\frac{1}{m_{B_{s}}^{2}}\left\{\left[C_{9}^{e f f}\left(\mu_{b}\right)+C_{9}^{\prime}\right] G_{1}\left(p^{2}\right)-2 C_{7}^{e f f}\left(\mu_{b}\right) \frac{m_{b}}{p^{2}} G_{2}\left(p^{2}\right)\right\} \\
L & =\frac{1}{m_{B_{s}}^{2}}\left\{\left[C_{9}^{e f f}\left(\mu_{b}\right)-C_{9}^{\prime}\right] F_{1}\left(p^{2}\right)-2 C_{7}^{e f f}\left(\mu_{b}\right) \frac{m_{b}}{p^{2}} F_{2}\left(p^{2}\right)\right] \\
M & =\frac{C_{10}+C_{10}^{\prime}}{m_{B_{s}}^{2}} G_{1}\left(p^{2}\right), \quad N=\frac{C_{10}-C_{10}^{\prime}}{m_{B_{s}}^{2}} F_{1}\left(p^{2}\right) \tag{4}
\end{align*}
$$

with G_{i} and F_{i} being the form factors.

Numerical results:

As the first glance on B physics in $\mathcal{F}-S U(5)$ model, we focus on the implication of mass scale of the vector-like quark on B physics, this will give us the most important information of the model. Thus in the numerical study we scan the mass $m_{u_{x}}$ in the range $180 \mathrm{GeV} \sim 2000 \mathrm{GeV}$, and $m_{u_{y}}$ in the range $40 \sim 60 \mathrm{GeV}$ heavier than $m_{u_{x}}$.
(1) The constraints on CKM matrix element measurements are not from rare B decays but from tree-level B decays.

Table: The CKM matrix elements constrained by the tree-level B decays.

	absolute value	relative error	direct measurement from
$V_{u d}$	0.97418 ± 0.00027	0.028%	nuclear beta decay
$V_{u s}$	0.2255 ± 0.0019	0.84%	semi-leptonic K-decay
$V_{u b}$	0.00393 ± 0.00036	9.2%	semi-leptonic B-decay
$V_{c d}$	0.230 ± 0.011	4.8%	semi-leptonic D-decay
$V_{c b}$	0.0412 ± 0.0011	2.7%	semi-leptonic B-decay
$V_{t b}$	>0.74		(single) top-production

(1) we use the following bounds on the rare B decays

$$
\begin{aligned}
& \operatorname{Br}\left(b \rightarrow c e \bar{\nu}_{e}\right)=(10.74 \pm 0.16) \times 10^{-2} \\
& \operatorname{Br}\left(\bar{B} \rightarrow X_{s} \gamma\right)=(3.06 \pm 0.23) \times 10^{-4} \\
& \operatorname{Br}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)=(4.5 \pm 1) \times 10^{-6} \\
& \operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<4.5 \times 10^{-9}(95 \% C . L .) .
\end{aligned}
$$

(2) We scan the two parameters randomly and choose two typical points $\left(\tan \beta=2, \quad m_{h^{+}}=3000 \mathrm{GeV}\right)$ and $\left(\tan \beta=40, \quad m_{h^{+}}=500 \mathrm{GeV}\right)$ for the demonstration.

Figure: Comparison of $B \rightarrow X_{s} \gamma$ versus $m_{u_{x}}$ in the $\mathcal{F}-S U(5)$ model (red cross) and 2HDM (green triangle).

- C_{7} determined in both $\mathcal{F}-S U(5)$ model and 2HDM will approach to the SM value when the charged Higgs boson is much heavier than EW scale. Nevertheless, the contributions from the fourth and fifth generation up-type vector-like quarks in 2HDM can be suppressed by small $V^{5 i}$ and $V^{4 i}$ due to the unitarity condition of 5×5 matrix;
- Because the summed indices are only from 1 to 4 in the $\mathcal{F}-S U(5)$ model, the unitary condition of the CKM matrix can not be maintained. When the vector-like particle mass approaches to the charged Higgs boson mass, the suppression from 5×5 CKM mixing matrix will be released and then the non-decoupling effects will be sizable. In fact, the non-decoupling effects are a very special part of the $\mathcal{F}-S U(5)$ model at EW scale and can be tested at the LHC and other B physics detectors.

Figure: Branching ratios of $B \rightarrow X_{s} \gamma, B_{s} \rightarrow \mu^{+} \mu^{-}$versus $B \rightarrow X_{s} \ell^{+} \ell^{-}$ in the \mathcal{F} - $S U(5)$ model.

Figure: Branching ratio of $B_{s} \rightarrow \ell^{+} \ell^{-} \gamma$ with the combined constraints from $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \mu^{+} \mu^{-}$. Red cross stands for the type inputs $\left(\tan \beta=2, \quad m_{h^{+}}=3000 \mathrm{GeV}\right)$ and green triangle for $\left(\tan \beta=40, \quad m_{h^{+}}=500 \mathrm{GeV}\right)$ in the $\mathcal{F}-S U(5)$ model, respectively.

Summary

The quark mass spectra, Feynman rules, the new operators in low energy effective theory and the correspondence Wilson coefficients, etc in the $\mathcal{F}-S U(5)$ model are studied:
(1) There exists the $\bar{s} b Z$ interaction at tree level, and the Yukawa interactions are changed. The new operators O_{9}^{\prime} and O_{10}^{\prime} must be introduced in effective Hamiltonian.
(2) The effects of vector-like quarks on rare B decays such as $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{s} \ell^{+} \ell^{-}$do not decouple in some allowed parameter space, especially when the vector-like quark mass is comparable to the charged Higgs boson mass.
(3) Under the constraints from $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{s} \ell^{+} \ell^{-}$, there exist scenarios in the model the latest measurement for $B_{s} \rightarrow \mu^{+} \mu^{-}$can be explained naturally, and the branching ratio of $B_{s} \rightarrow \ell^{+} \ell^{-} \gamma$ can be up to $(4 \sim 5) \times 10^{-8}$.

Thank you!

