SL decays of B meson, R(D) and R(D*) anomaly

肖振军,南京师范大学物科院

HFCPV-2015, July 21-25, 兰州大学

- 1. B -> D* Iv decays, R(D) and R(D*) anomaly
- 2、New measurements from Belle and LHCb
- 3、R(D) and R(D*), the pQCD prediction
- 4. Summary

1. $B \rightarrow D^{(*)}$ Iv decays, R(D) and R(D*) anomaly

SemiLeptonic B/B_s **decays**

BABAR measurements:
 PRL 109, 101802 (2012);
 Evidence for an Excess of
 B \to D^(*) \tau \nu Decays

$$W^{-}/H^{-}_{\bar{v}_{\tau}} < \stackrel{ au^{-}}{\bar{v}_{\tau}} \\ B\{rac{b}{\bar{q}} - \frac{c}{\bar{q}}\}D^{(*)}$$

$$\begin{aligned} \mathcal{R}(D) &\equiv \quad \frac{\mathcal{B}(B \to D\tau^- \bar{\nu}_\tau)}{\mathcal{B}(B \to D l^- \bar{\nu}_l)} = 0.440 \pm 0.072, \\ \mathcal{R}(D^*) &\equiv \quad \frac{\mathcal{B}(B \to D^* \tau^- \bar{\nu}_\tau)}{\mathcal{B}(B \to D^* l^- \bar{\nu}_l)} = 0.332 \pm 0.030, \end{aligned}$$

SM predictions are:

 $R(D) = 0.297 \pm 0.017,$ $R(D^*)=0.252 \pm 0.003$ 3.4σ deviation from SM(HQET) ! Some authors, however, try to understand the measured R(D^(*)) in SM:

- In RQ model[10] (MPL A27,1250183(2012));
- By using the FFs computed in lattice QCD [8] (PRL 109, 071802(2012));
- By maximally employing the experimental information on the relevant FFs from the data of $B \rightarrow Dl\bar{\nu}_l$ [18] (hep-ph1301.1167).

But they all failed to explain the BaBar's $R(D^{(*)})$ anomaly.

- Semileptonic decays of B/Bs decays with T lepton in the final state are sensitive to charged Higgs
- The ratios of the branching ratios R(D) and R(D*) are both theoretically and experimentally clean !

BaBar's anomaly of R(D), R(D*) are very hot topics since May 2012 !

◆ J.P.~Lees, et al. BABAR Collab., PRL 109, 101802 (2012); 引用已经超过200次!

2. New measurements from Belle and LHCb

T.Kuhr, talk given at FPCP 2015; M.Huschel, ph.D Thesis, 2015.01
$$\begin{split} R &= 0.375^{+0.064}_{-0.063} \pm 0.026 \\ R^* &= 0.293^{+0.039}_{-0.037} \pm 0.015 \; . \end{split}$$

Belle, 1507.03233v2 [hep-ex];

LHCb: 1506.08614

Measurement of the ratio of branching fractions $\mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_{\mu})$

R(D*)=0.336±0.027±0.030

The LHCb collaboration

Abstract The branching fraction ratio $\mathcal{R}(D^*) \equiv \mathcal{B}(\overline{B}^0 \rightarrow D^{*+}\tau^- \overline{\nu}_{\tau})/\mathcal{B}(\overline{B}^0 \rightarrow D^{*+}\mu^- \overline{\nu}_{\mu})$ is measured using a sample of proton-proton collision data corresponding to 3.0 fb⁻¹ of

Belle new results using its full data:

- --- Tag B determines charge and momenta of signal B
- --- All remaining particles must come from signal B
- --- Not possible at hadron colliders

BaBar + Belle, T. Kuhr, FPCP2015, May 2015, Japan

◆ C.Bozzi, talk given at B2Tip, Crakow, 2015.04.17

$B \rightarrow D^* \tau \nu$ at LHCb

- Experimentally challenging due to additional neutrino(s)
- Two tau decay modes being studied:

leptonic: $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ 3-prong: $\tau \rightarrow 3\pi (\pi^0) \nu_{\tau}$

Main backgrounds: partially reconstructed B decays

- D*(*)μν, D*3πX, D*D(s)(*)X...

- use isolation criteria (MVA) and/or τ flight length
- Find and fit distributions which differentiate signal and background.

• C.Bozzi, talk given at B2Tip, Crakow, 2015.04.17 $B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$

- Doing semileptonic physics without leptons in the final state!
- The $B \rightarrow D^* \tau v$ decay, with $\tau \rightarrow 3\pi(\pi^0)$ leads to a $D^* 3\pi(X)$ final state
- Nothing is more common than this final state in a typical B decay
- $Br(B \rightarrow D^* 3\pi(X)) / Br(B \rightarrow D^* \tau \nu; \tau \rightarrow 3\pi(\pi^0) \nu)_{SM} \sim 100$
- Suppress with *inverted vertex topology*

C.Bozzi, talk given at B2Tip, Crakow, 2015.04.17;
 G.Ciezarek, talk given at FPCP 2015, May 2015;
 R.Aaij et al., LHCb Collab. 1506.08614

 $B \rightarrow D^* \tau v$ at LHCb

R(D*)=0.336±0.027±0.030

- Decays with taus in the final state look promising. For $B \rightarrow D^* \tau v$:
 - Leptonic mode: same level of precision (~10%) as B Factories
 - − 3-prong mode: aiming at statistical precision at the 5% level. Current limitation due to the large error (11% PDG 2014) on the normalisation $Br(B^0 \rightarrow D^*3\pi)$. New measurement needed!
- $B \rightarrow D^* \tau \nu$: First measurement of any $B \rightarrow \tau X$ decay at a hadron collider
 - Consistent with past measurements, competitive precision
 - Agreement with SM at 2.1σ level

LHCb, Measurements of R(D*), 1506.08614 [hep-ex]

3. R(D) and R(D^{*}), pQCD predictions

3.1 R(D) and R(D*) in the pQCD approach

Y.Y. Fan, W.F. Wang, S. Cheng, and Z.J. Xiao
 Chin.Sci.Bull. 59 (2014) 125; 1301.6246 [hep-ph]

First SM interpretation for BaBar's anomaly!

Chin. Sci. Bull. (2014) 59(2):125–132 DOI 10.1007/s11434-013-0049-9 csb.scichina.com www.springer.com/scp

Article

High-Energy Physics

Semileptonic decays $B \rightarrow D^{(*)} lv$ in the perturbative QCD factorization approach

Ying-Ying Fan \cdot Wen-Fei Wang \cdot Shan Cheng \cdot Zhen-Jun Xiao

Received: 23 November 2013/Accepted: 29 November 2013/Published online: 2 January 2014 © Science China Press and Springer-Verlag Berlin Heidelberg 2013 Differential decay rates for B meson decays:

The blue curve: pQCD predictions; The red curve: The HQET predictions;

Similar but with a little difference !

FIG. 2. The q^2 -dependence of $d\Gamma/dq^2$ for $B \to D^{*+}l^-\bar{\nu}_1$ with $l = e, \mu, \tau$ in the pQCD approach (the solid curves), or in the HQET (the short-dashed curves). Here $q_{\text{max}}^2 = 10.69 \text{ GeV}^2$.

Table: pQCD predictions for BRs of $B \rightarrow D^{(*)}\tau^-\bar{\nu}_{\tau}$ and $B \rightarrow D^{(*)}I^-\bar{\nu}_{l}$ decays where I^- stands for e^- or μ^- . The WA from PDG 2012 [25], and BaBar measured values in Refs. [1, 26, 27].

Channel	pQCD(%)	PDG(%)[25]	BaBar(%)
$\bar{B}^0 \rightarrow D^+ \tau^- \bar{\nu}_{ au}$	$1.07^{+0.44}_{-0.34}$	1.1 ± 0.4	1.01 ± 0.22
$ar{B}^0 o D^+ I^- ar{ u}_I$	$2.51^{+1.17}_{-0.86}$	$\textbf{2.18} \pm \textbf{0.12}$	2.15 ± 0.08
$B^- ightarrow D^0 au^- ar u_ au$	$1.17^{+0.47}_{-0.38}$	0.77 ± 0.25	$\textbf{0.99} \pm \textbf{0.23}$
$B^- ightarrow D^0 I^- ar{ u}_I$	$2.71^{+1.26}_{-0.93}$	$\textbf{2.26} \pm \textbf{0.11}$	2.34 ± 0.14
$\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau}$	$1.67^{+0.48}_{-0.46}$	1.5 ± 0.5	1.74 ± 0.23
$ar{B}^0 o D^{*+} l^- ar{ u}_l$	$5.56^{+1.83}_{-1.62}$	4.95 ± 0.11	$\textbf{4.69} \pm \textbf{0.34}$
$B^- ightarrow D^{*0} au^- ar u_ au$	$1.82^{+0.52}_{-0.50}$	$\textbf{2.04} \pm \textbf{0.30}$	1.71 ± 0.21
$B^- ightarrow D^{*0} I^- ar{ u}_I$	$6.03^{+1.97}_{-1.75}$	5.70 ± 0.19	5.40 ± 0.22

Table: The pQCD predictions for the six R(X)-ratios, other SM predictions [2, 4, 5], and the measured values.

Ratio	pQCD	SM [2]	SM[4]	SM[5]	BaBar [1]
$R(D^0)$	$0.432^{+0.021}_{-0.024}$				0.429 ± 0.097
$R(D^+)$	$0.426^{+0.025}_{-0.022}$				0.469 ± 0.099
$R(D^{*0})$	$0.302^{+0.011}_{-0.016}$				0.322 ± 0.039
$R(D^{*+})$	$0.300^{+0.012}_{-0.015}$				0.355 ± 0.044
$\mathcal{R}(D)$	0.429 ± 0.028	0.296	0.316	0.315	8.440 ± 0.072
$\mathcal{R}(D^*)$	$0.301^{+0.012}_{-0.015}$	0.252		0.260	0.332 ± 0.030

(iii) For the four isospin-unconstrained ratios $R(D^0)$, $R(D^+)$, $R(D^{*0})$ and $R(D^{*+})$, the pQCD predictions agree well with the BaBar measured values.

(iv) For the two isospin-constrained ratios R(D) and $R(D^*)$, the pQCD predictions agree well with BaBar's measurements.

3.2 R(D) and R(D*) in "pQCD + Lattice QCD input"

arXiv:1505.07169

The $B \rightarrow D^{(*)} l \nu_l$ decays in the pQCD approach with the Lattice QCD input

Ying-Ying Fan¹, Zhen-Jun Xiao² ^a, Ru-Min Wang¹, and Bing-Zhong Li¹

¹ College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, Henan 464000, P. R. China ²Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China (Dated: May 28, 2015)

In this paper, we studied the semileptonic decays $B \to D^{(*)}l^-\bar{\nu}_l$ by using the the "pQCD+Lattice QCD" method. We made the extrapolation for the six relevant form factors by using the values obtained from the pQCD factorization approach in the lower region of $0 \le q^2 \le m_{\tau}^2$, but the Lattice QCD input at the end-points q_{max}^2 . We then calculated the branching ratios $\mathcal{B}(B \to D^{(*)}l^-\bar{\nu}_l)$ and the ratio R(D) and $R(D^*)$. From our numerical results we found that (a) the "pQCD+Lattice QCD" predictions for the branching ratios $\mathcal{B}(B \to D^{(*)}l^-\bar{\nu}_l)$ agree well with the measured values within one standard deviation; and (b) the "pQCD+Lattice QCD" predictions for the ratios $R(D^{(*)})$ are $R(D) = 0.337^{+0.038}_{-0.037}$ and $R(D^*) = 0.269^{+0.021}_{-0.020}$, the deviation of these new predictions from the averaged BaBar and Belle measurements is about 2.1σ .

Some points about this work

- 1 The Th.predictions strongly depend on the value and their q² dependence of the relevant FFs.
- 2 The classical method is the HQET (see S.Fajfer's papers)
- 3 For the calc of form factors, pQCD are reliable in the low q² region only, one has to make the extrapolation for FF to the high q² region by using the "pole model param.", this is the major source of uncertainty!
- 4 The FFs can be evaluated reliably in q^2_{max} by using the Lattice QCD method !
- 5 We take the Lattice QCD predictions at q²{max} as input to improve the extrapolation !

Effects of the Lattice QCD input on the form factors

FIG. 1. The theoretical predictions for the q^2 -dependence of the six form factors in the pQCD approach (the dashed curves), the pQCD plus Lattice-QCD input (solid curves).

Effects of the Lattice QCD input on the form factors

- J.A.Baily et al., FermiLab Lattice and MILC Collab. PRD 85, 114502 (2012)
 PRD 89, 114504 (2014); Pos Lattice2010: 311 (2010).
- -- D.M.de Divitis et al., NPB 807, 373 (2009)

Effects of the Lattice QCD input on the form factors

FIG. 2. The theoretical predictions for the q^2 -dependence of $d\Gamma/dq^2$ for $B \to D^* l^- \bar{\nu}_l \ l = (e, \mu)$ and $B \to D^* \tau^- \bar{\nu}_\tau$ decays in the pQCD approach (the dashed curves), the "pQCD + Lattice-QCD" method (solid curves), and the traditional HQET method (the dots curves). Here $q_{max}^2 = 10.69 \text{ GeV}^2$.

	R(D) =	$0.337\substack{+0.038\\-0.037}$
pQCD+Lattice	$R(D^*) =$	$0.269\substack{+0.021\\-0.020}$

3.3、Some works for SL B/Bs/Bc decays in pQCD approach

- The semileptonic decays B/Bs → (π,K)(I⁺ I⁻,Iv,vv) in the pQCD approach beyond the leading-order, Wen-Fei Wang, Zhen-Jun Xiao, Phys.Rev.D86, 114025 (2012);
- ◆ SL decays Bc → (\eta_c,J/\Psi) I v in the pQCD approach
 W.F. Wang, Y.Y. Fan and Z.J. Xiao, Chin.Phys.C37, 093102 (2013).
- SL decays Bs → (η,η',G)(II,Iv,vv) in the pQCD approach beyond the LO W.F. Wang, Y.Y. Fan, M. Liu and Z.J. Xiao, Phys.Rev.D87, 097501 (2013);
- ◆ Study of Bs → (Ds^+,Ds^{*+}) I^- v decays in the pQCD factorization approach, Y.Y. Fan, W.F. Wang, and Z.J. Xiao, Phys.Rev.D89, 014030 (2014).
- The SL decays of B/Bs meson in the pQCD approach: A short review Z.J. Xiao et al., Chin.Sci.Bull. 59 (2014) 3787-3800.
- The semileptonic decays Bc → D(s)^(*)(lv,ll,vv) in the pQCD approach W.F. Wang, X.Yu, C.D. Lu, Z.J. Xiao, Phys.Rev.D90,094018 (2014);

4、Summary

- Based on the pQCD factorization approach, we can provide an self-consistent SM interpretation for R(D)-R(D*) anomaly.
- With the "pQCD + Lattice input" methods, the extrapolation of the form factors from the low to high q² are improved.
- LHCb and Super-B leading the precision frontier, precision measurements for the Brs, angles, CPV etc will become true in the near future!
- High precision measurements will play an important role in testing the SM or to find the signals of NP !

You are welcome to visit our group in NJNU

欢迎年轻人加入我们的研究团队!