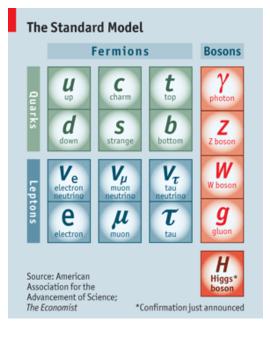
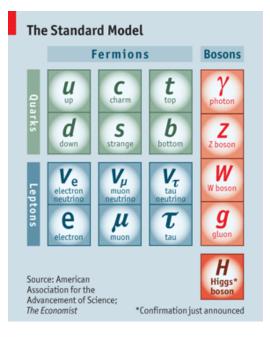
Higgs pair production via VBF at hadron colliders up to QCD NNLO


报告人: 凌刘生 合作者:马文淦,张仁友,李伟华等 中国科大高能物理唯象实验室

Contents

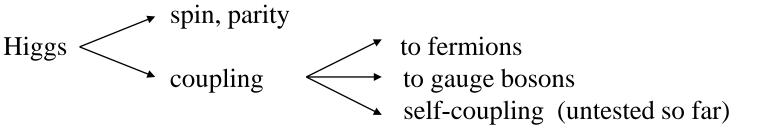
- 1. Motivation
- 2. The four main Higgs pair production channels at LHC
- 3. The VBF Higgs pair production up to QCD NNLO in SM
- 4. The VBF Higgs pair production in 2HDM

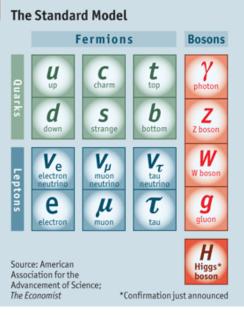
1. Motivation


• 2012, both the ATLAS and CMS collaboration have observed Higgs boson.

1. Motivation

• 2012, both the ATLAS and CMS collaboration have observed Higgs boson.


• It is the beginning and there are a lot of things that have to be done:

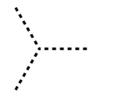


1. Motivation

• 2012, both the ATLAS and CMS collaboration have observed Higgs boson.

• It is the beginning and there are a lot of things that have to be done:

• Higgs boson self-coupling in SM

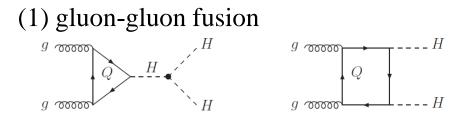

$$V(H) = \frac{1}{2}M_{H}^{2}H^{2} + \lambda vH^{3} + \frac{\lambda}{4}H^{4}.$$

triple Higgs self-coupling quartic Higgs self-coupling

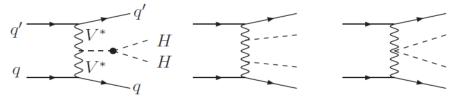
• Higgs boson self-coupling in SM

$$V(H) = \frac{1}{2}M_H^2 H^2 + \lambda v H^3 + \frac{\lambda}{4}H^4.$$

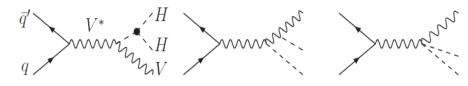
triple Higgs self-coupling quartic Higgs self-coupling

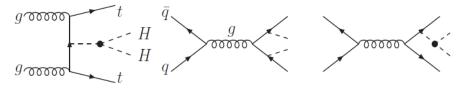


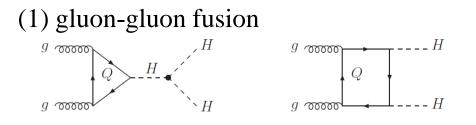
Higgs pair production require large luminosity

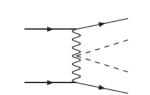


Triple Higgs production seriously challenging

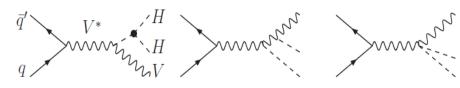

2. The four main Higgs pair production channels at LHC


(2) vector boson fusion (VBF)

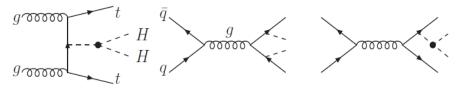

(3) double Higgs-strahlung


(4) associated production with top-quarks

2. The four main Higgs pair production channels at LHC

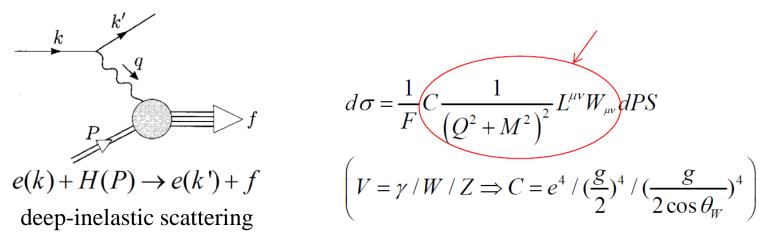


(2) vector boson fusion (VBF) $(q') = \frac{q'}{q'} + \frac{q'}{H} + \frac{q'}{g'} + \frac{q'}{H} + \frac{q'}{g'} + \frac{q'}$



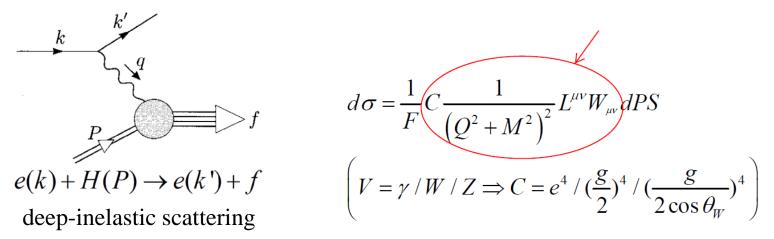
- yields the second largest cross section.
- shows a clear experimental signature.

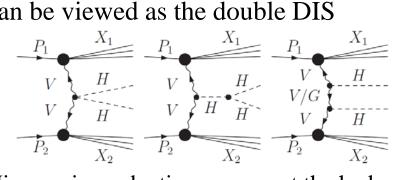
(3) double Higgs-strahlung


(4) associated production with top-quarks

3. The VBF Higgs pair production up to QCD NNLO in SM

3.1 Calculation setup


• deep-inelastic scattering (DIS) and structure function approach


3. The VBF Higgs pair production up to QCD NNLO in SM

3.1 Calculation setup

deep-inelastic scattering (DIS) and structure function approach

VBF process can be viewed as the double DIS

VBF Higgs pair production process at the hadron collider

Then we have $d\sigma = \sum_{V=Z,W} d\sigma_V,$ $d\sigma_V = \frac{G_F^2 M_V^4}{S(Q_1^2 + M_V^2)^2 (Q_2^2 + M_V^2)^2} W_{\mu\nu}(x_1, Q_1^2) \mathcal{M}_V^{\mu\rho} \mathcal{M}_V^{*\nu\sigma} W_{\rho\sigma}(x_2, Q_2^2) dPS.$

Then we have $d\sigma = \sum_{V=Z,W} d\sigma_V,$ $d\sigma_V = \frac{G_F^2 M_V^4}{S(Q_1^2 + M_V^2)^2 (Q_2^2 + M_V^2)^2} W_{\mu\nu}(x_1, Q_1^2) \mathcal{M}_V^{\mu\rho} \mathcal{M}_V^{*\nu\sigma} W_{\rho\sigma}(x_2, Q_2^2) dPS.$

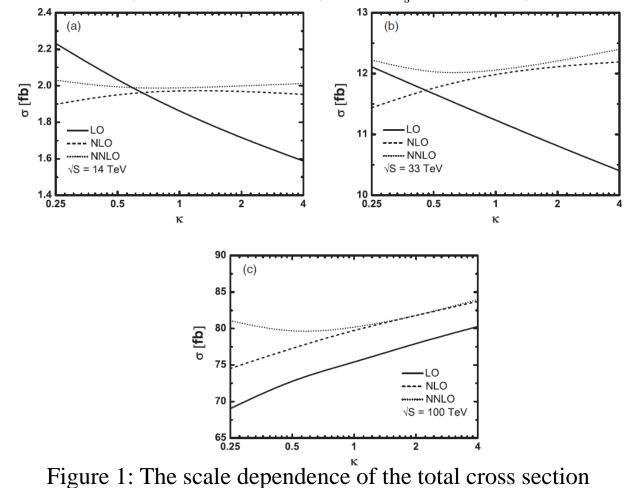
Where

$$W_{\mu\nu}(x_i, Q_i^2) = (-g_{\mu\nu} + \frac{q_{i\mu}q_{i\nu}}{q_i^2})F_1(x_i, Q_i^2) + \frac{\hat{P}_{i\mu}\hat{P}_{i\nu}}{P_i \cdot q_i}F_2(x_i, Q_i^2) + i\varepsilon_{\mu\nu\alpha\beta}\frac{P_i^{\alpha}q_i^{\beta}}{2P_i \cdot q_i}F_3(x_i, Q_i^2),$$

Then we have $d\sigma = \sum_{V=Z,W} d\sigma_V,$ $d\sigma_V = \frac{G_F^2 M_V^4}{S(Q_1^2 + M_V^2)^2 (Q_2^2 + M_V^2)^2} W_{\mu\nu}(x_1, Q_1^2) \mathcal{M}_V^{\mu\rho} \mathcal{M}_V^{*\nu\sigma} W_{\rho\sigma}(x_2, Q_2^2) dPS.$

Where

$$W_{\mu\nu}(x_i, Q_i^2) = (-g_{\mu\nu} + \frac{q_{i\mu}q_{i\nu}}{q_i^2})F_1(x_i, Q_i^2) + \frac{\hat{P}_{i\mu}\hat{P}_{i\nu}}{P_i \cdot q_i}F_2(x_i, Q_i^2) + i\varepsilon_{\mu\nu\alpha\beta}\frac{P_i^{\alpha}q_i^{\beta}}{2P_i \cdot q_i}F_3(x_i, Q_i^2),$$


 $F_j(x_i, Q_i^2)$ (j = 1, 2, 3) are the usual DIS structure functions.

$$F_j(x_i, Q_i^2) = \frac{1}{k} \sum_i PDF_i \otimes C_{ij}$$

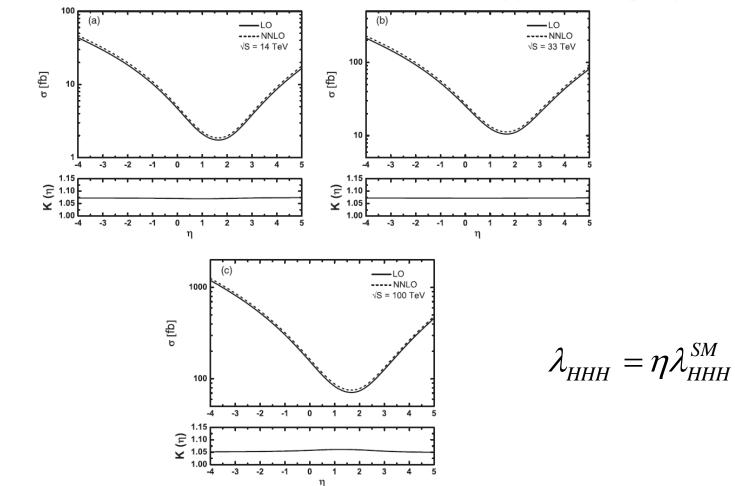
In the NNLO calculation, we need the NNLO PDF and NNLO Wilson coefficient functions.

3.2 Numerical results

• The scale uncertainty, PDF uncertainty and α_s uncertainty.

The scale uncertainty of $\sigma_{_{NNLO}}$ is much smaller than the corresponding ones of $\sigma_{_{NLO}}$ and $\sigma_{_{LO}}$.

\sqrt{S}	LO [fb]	NLO [fb]	NNLO [fb]
14 TeV	$1.858^{+0.374}_{-0.270}$	$1.976^{+0}_{-0.078}$	$1.986^{+0.045}_{-0}$
$33 { m TeV}$	$11.234_{-0.830}^{+0.878}$	$12.002\substack{+0.190\\-0.562}$	$12.041_{-0.060}^{+0.359}$
$100 { m TeV}$	$75.36\substack{+4.91 \\ -6.34}$	$79.82_{-5.26}^{+3.92}$	$80.05^{+3.92}_{-0.80}$


Table 1: The central values of total cross section and the errors due to scale uncertainty.

\sqrt{S}	LO [fb]	NLO [fb]	NNLO [fb]
14 TeV	$1.858^{+0.374}_{-0.270}$	$1.976^{+0}_{-0.078}$	$1.986^{+0.045}_{-0}$
$33 { m TeV}$	$11.234_{-0.830}^{+0.878}$	$12.002\substack{+0.190\\-0.562}$	$12.041_{-0.060}^{+0.359}$
$100 { m TeV}$	$75.36_{-6.34}^{+4.91}$	$79.82_{-5.26}^{+3.92}$	$80.05_{-0.80}^{+3.92}$

Table 1: The central values of total cross section and the errors due to scale uncertainty.

PDF sets	$\sqrt{S} = 14 \ TeV \ [fb]$	$\sqrt{S} = 33 \ TeV \ [fb]$	$\sqrt{S} = 100 \ TeV \ [\text{fb}]$
ABM11	$2.048^{+0.020+0.003}_{-0.014-0.004}$	$12.475_{-0.071-0.038}^{+0.113+0.038}$	$83.20\substack{+0.68+0.259\\-0.63-0.234}$
CT10	$2.023^{+0.039+0.001}_{-0.037-0.001}$	$12.255_{-0.201-0.013}^{+0.210+0.022}$	$81.74_{-1.48-0.288}^{+1.28+0.255}$
HERA1.5	$2.013_{-0.044-0.006}^{+0.051+0.004}$	$12.136_{-0.232-0.030}^{+0.269+0.022}$	$80.45_{-1.41-0.159}^{+1.27+0.145}$
MSTW2008	$1.986^{+0.047+0.001}_{-0.034-0.001}$	$12.041_{-0.184-0.025}^{+0.240+0.018}$	$80.05^{+1.33+0.246}_{-1.17-0.309}$
NNPDF2.3	$1.981\substack{+0.044+0.002\\-0.045-0.007}$	$11.987_{-0.249-0.080}^{+0.221+0.047}$	$79.97_{-1.67-0.749}^{+1.38+0.487}$

Table 2: The NNLO QCD corrected total cross sections and the 68% C.L. PDF uncertainties (the first error) and α_s uncertainties (the second error).

• The sensitivity of total cross sections to the trilinear Higgs self-coupling strength.

Figure 2: The dependence of the total cross section on self-coupling parameter η .

The total cross sections are strongly dependent on the parameter η .

4. The VBF Higgs pair production in 2HDM

• The 2HDM is built by adding a complex scalar doublet to the SM field content.

2HDM: Two-Higgs-Doublet Model

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} \left[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.} \right]$$

4. The VBF Higgs pair production in 2HDM

• The 2HDM is built by adding a complex scalar doublet to the SM field content.

2HDM: Two-Higgs-Doublet Model

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} \left[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.} \right]$$

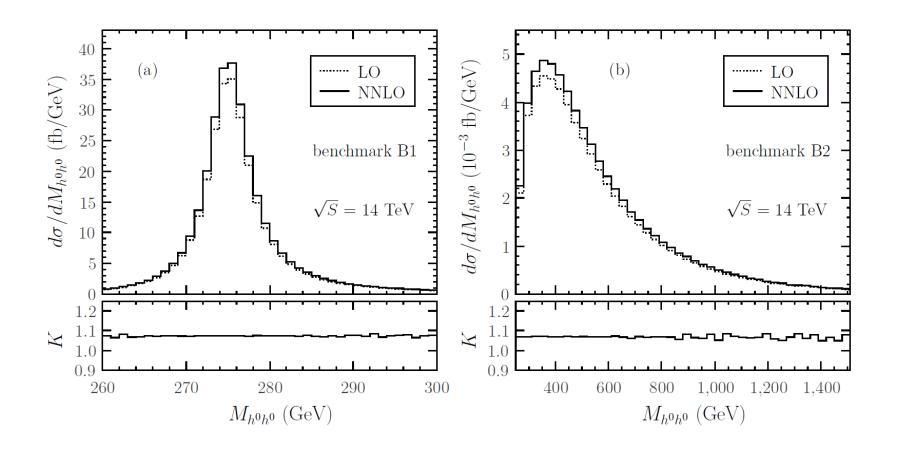
Five scalar particles: h^0, H^0, A^0, H^{\pm}

4. The VBF Higgs pair production in 2HDM

• The 2HDM is built by adding a complex scalar doublet to the SM field content.

2HDM: Two-Higgs-Doublet Model

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} \left[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.} \right]$$


Five scalar particles: h^0, H^0, A^0, H^{\pm}

We focus on the light Higgs pair production via VBF:

$$pp \xrightarrow{VBF} jh^0 h^0 j$$
 Resonance: $V \downarrow_V \stackrel{h^0}{\xrightarrow{H^0}} H^0 \stackrel{h^0}{\xrightarrow{h^0}}$

• Numerical results

	$\sin(\beta - \alpha)$	aneta	$m_{h^0} (\text{GeV})$	$m_{H^0} ({\rm GeV})$	$m_{A^0} (\text{GeV})$	$m_{H^{\pm}} (\text{GeV})$
B1	0.6	2	126	275	600	600
B2	1	1.5	126	160	380	420

Thank you !