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CP violation 

K0 system: indirect (ε) and direct (ε′/ε)  (ΚL→ππ)

B0 system:  mixed induced (B0→J/ψΚs)+ direct (B0→ππ,Kπ) 

 

To test the standard model and look for New Physics!

Direct CP in charged systems:  K± ?

To study direct CP violation in heavy flavor (b-hadron) systems☞ LHCb  + 
SuperKEKB

Matter-antimatter asymmetry
1. Baryon number violation
2. C and CP violation
3. A departure from thermal equilibrium

1967: Sakharov

The CP violating mechanism in the SM, i.e. the phase in the CKM, 
cannot account for the matter-antimatter asymmetry in the universe.

• Motivation
The Standard Model:

Cabibbo, Kobayahsi and Maskawa (CKM) Quark Mixing Matrix

Goal

a unique CP phase

butTh:

     B± ? 

?See 舒菁’s talk

New Physics



See 何⼩小刚,李新強, 張振華’s talks 

weak CP phase

strong CP phase

－



☺Three-body charmless baryonic B decays:

● Large BRs:   Br(B→BB′P) >> Br(B→BB′)  due to the threshold enhancements
Hou+Soni, 
PRL86(01)4247
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☺Three-body charmless baryonic B decays:

● Large BRs:   Br(B→BB′P) >> Br(B→BB′)  due to the threshold enhancements

Using the generalized factorization method 
along with QCD counting rule 

+
 SU(3)F & SU(2)S symmetries

Hou+Soni, 
PRL86(01)4247
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☺Three-body charmless baryonic B decays:

●  Large direct CP violation in charged B modes of  

● Large BRs:   Br(B→BB′P) >> Br(B→BB′)  due to the threshold enhancements
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Direct CP violation in B± → pp̄K(∗)±

C. Q. Geng1,2, Y. K. Hsiao1,2 and J. N. Ng2

1Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

2Theory group, TRIUMF, 4004 Wesbrook Mall,

Vancouver, B.C. V6T 2A3, Canada

(Dated: August 30, 2006)

Abstract

We study the direct CP violation in B± → pp̄K(∗)± decays in the standard model. We point

out that these three-body baryonic B decays can be important tools for detecting the direct CP

violation in the charged B system, in which there are no conclusive signatures yet. In particular,

we show that the direct CP violating asymmetry in B± → pp̄K∗± is around 22% which supports

the recent data by the BABAR Collaboration.

PACS numbers: 11.30.Er, 13.25.Hw, 12.15.Hh
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B− → pp̄K− and B− → pp̄K∗− are given by [22–27]

AK = i
GF√

2
mbfK

[

αK⟨pp̄|ūb|B−⟩ + βK⟨pp̄|ūγ5b|B−⟩
]

,

AK∗ =
GF√

2
mK∗fK∗εµαK∗⟨pp̄|ūγµ(1 − γ5)b|B−⟩ , (1)

respectively, where GF is the Fermi constant, fK(∗) is the meson decay constant, given by

⟨K−|s̄γµγ5u|0⟩ = −ifKqµ (⟨K∗−|s̄γµu|0⟩ = mK∗fK∗εµ) with qµ (εµ) being the four momen-

tum (polarization) of K− (K∗−), and αK(∗) and βK are defined by

αK ≡ VubV
∗

usa1 − VtbV
∗

ts

[

a4 + a6
2m2

K

mbms

]

,

βK ≡ VubV
∗

usa1 − VtbV
∗

ts

[

a4 − a6
2m2

K

mbms

]

,

αK∗ ≡ VubV
∗

usa1 − VtbV
∗

tsa4 , (2)

where Vij are the CKM matrix elements and ai (i = 1, 4, 6) are given by

a1 = ceff
1 +

1

Nc

ceff
2 , a4 = ceff

4 +
1

Nc

ceff
3 , a6 = ceff

6 +
1

Nc

ceff
5 , (3)

with ceff
i (i = 1, 2, ..., 6) being effective Wilson coefficients (WC’s) shown in Refs. [21] and

Nc the color number for the color-octet terms. To calculate the decay rates, we need to

know the B− → pp̄ transitions via scalar, pseudoscalar, vector and axial-vector currents,

which have been parameterized in Ref. [26].

The direct CP asymmetries in B± → pp̄M± (M = K, K∗):

ACP (M) =
Γ(B− → pp̄M−) − Γ(B+ → pp̄M+)

Γ(B− → pp̄M−) + Γ(B+ → pp̄M+)
, (4)

while the decay rates can be evaluated from Eq. (1) after integrations over the three-body

phase spaces. Interestingly from Eqs. (1) and (4) we derive the simple result:

ACP (K(∗)) =
|αK(∗)|2 − |ᾱK(∗)|2

|αK(∗)|2 + |ᾱK(∗)|2
, (5)

with ᾱK(∗) denoting the values of the corresponding antiparticles. It is easily to see that

ACP (K(∗)) are independent of the phase spaces as well as the hadronic matrix elements.

Here, we have used the fact that |βK |2 is suppressed by 12%−15% of |αK |2 for B− → pp̄K−.

As a result, the hadron parts along with their uncertainties in ACP (K(∗)) are divided out in

Eq. (5).
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One of the most important purpose to study B physics is to test the mechanism of

CP violation as given in the Cabbibo-Kobayashi-Maskawa (CKM) framework [1] of the

Standard Model (SM) and search for new physics. Although the data of the mixing induced

CP asymmetry in B̄0 → J/ΨKS [2, 3] as well as the direct CP asymmetry in B̄0 → π+K−

[4, 5] and B̄0 → π+π− [6] have been measured precisely, analogous observations for the

charged modes are not conclusive yet. The situation is similar even in K± decays. To study

CP violations in charged B decays using two body modes there exist challenges in both

theory and experiments. For example, these charged modes involve the neutral final states

which make for low experimental efficiencies. Moreover, the present data fail to match the

expectations of the SM in the B± → K±π decays. The SM predicts that some of them

should have a direct CP asymmetry very close to those of their neutral partners [5, 7]. As a

consequence, there appears to have room for the contribution of new physics [8–10]. On the

other hand, even some CP violations are found in the promising modes, such as B± → π±π0

and B± → π0K±, clear theoretical understandings would still be hard to achieve due to the

hadronic uncertainties [11–16]. It is therefore crucial to thoroughly examine CP violation

in the charged B system because not only it is a long standing puzzle but also it may hide

new physics.

In this letter, we will study the direct CP violation in the three-body baryonic charged

B decays of B± → pp̄K(∗)±. Note that there is no neutral final state in the decays and

hopefully that will make for a clean experimental signature at the price of lower branching

ratio. Recently, the experiments [17–19] with threshold effects and large forward-backward

angular and Dalitz plot distribution asymmetries have eliminated large uncertainties from

the strong interactions as they reveal more information for the decay mechanisms than

the two-body ones. As a result, the decays of B± → pp̄K(∗)± could provide good probes

to investigate the weak phase in the charged B system. We shall demonstrate that these

three-body baryonic B decays can be important tools for CP violation due to their simple

amplitudes theoretically and we expect them to be well measured experimentally [20] in the

near future.

The amplitudes of B− → pp̄K(∗)−:

AK = i
GF√

2
mbfK

[

αK⟨pp̄|ūb|B−⟩ + βK⟨pp̄|ūγ5b|B−⟩
]

AK∗ =
GF√

2
mK∗fK∗εµαK∗⟨pp̄|ūγµ(1 − γ5)b|B−⟩ (1)
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αK⟨pp̄|ūb|B−⟩ + βK⟨pp̄|ūγ5b|B−⟩
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, (5)

with ᾱK(∗) denoting the values of the corresponding antiparticles. It is easily to see that
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As a result, the hadron parts along with their uncertainties in ACP (K(∗)) are divided out in
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In our numerical calculations, the CKM parameters are taken to be [? ] VubV
∗
us =

Aλ4(ρ − iη) and VtbV
∗
ts = −Aλ2 with A = 0.818, λ = 0.2272, the values of (ρ, η) are

(0.221, 0.340) [? ]. We remark that ai contain both weak and strong phases, induced by η

and quark-loop rescatterings [? ], respectively. Explicitly, at the scale mb and Nc=3, we
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|αK(∗)|2 + |ᾱK(∗)|2
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In our numerical calculations, the CKM parameters are taken to be [? ] VubV
∗
us =

Aλ4(ρ − iη) and VtbV
∗
ts = −Aλ2 with A = 0.818, λ = 0.2272, the values of (ρ, η) are

(0.221, 0.340) [? ]. We remark that ai contain both weak and strong phases, induced by η

3

and quark-loop rescatterings [? ], respectively. Explicitly, at the scale mb and Nc=3, we

obtain a set of a1, a4, and a6 as follows:

a1 = 1.05

a4 =
[

(−427.8 ∓ 9.1η − 3.9ρ) + i(−83.2 ± 3.9η − 9.1ρ)
]

× 10−4

a6 =
[

(−595.5 ∓ 9.1η − 3.9ρ) + i(−83.2 ± 3.9η − 9.1ρ)
]

× 10−4 (7)

for the b → s (b̄ → s̄) transition. Our results on the direct CP violation are shown in

Table ??. It is interesting to point out that the large value of ACP (B± → pp̄K∗±)=22% is

TABLE I: Direct CP asymmetries in B± → pp̄K(∗)±.

pp̄M± pp̄K± pp̄K∗±

ACP (M) 0.06 0.22

in agreement with the BABAR data of (26 ± 19)% as given in Ref. [? ]. However, taken

at face value; the sign of our prediction ACP (K) ∼ 0.06 for B± → pp̄K± is different from

those of −0.05± 0.11± 0.01 and −0.13+0.07
−0.08 ± 0.04 measured by the Belle [? ] and BaBar [?

? ] Collaborations, respectively. Since the uncertainties of both experiments are still large

it is too early to make a firm conclusion.

In term of the hadronization approach in Eqs. (??) and (??), there usually exist some

uncertainties. These come from nonfactorizable effects when gluons are attached to all

hadrons, annihilation contributions when the B meson decays into the vacuum by the W

boson emitting or exchange as well as final state interactions. We argue that they are all

small in our case. Our reasons may be outlined as follows:

I. Although the nonfactorizable terms cannot be directly and unambiguiously figured

out by theoretical calculations, in the generalized factorization method [? ] we could

estimate the uncertainty by parameterizing Nc in Eq. (??) as the effective color

number N eff
c running from 2 to ∞. Explicitly using this we find that the deviations

for ACP (K(∗)) are less than 0.005 and 0.04, respectively.

II. In the perutrbative QCD approach (PQCD), the threshold effects measured by the

experiments can be explained by power expanding the form factors in terms of 1/tn,

where t ≡ (pp + pp̄)2 and n ≥ 2 due to gluon propagators attaching to valence quarks

4
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of −0.05± 0.11± 0.01 and −0.13+0.07
−0.08 ± 0.04 measured by the Belle [17] and BaBar [19, 20]

Collaborations, respectively. Since the uncertainties of both experiments are still large it is

too early to make a firm conclusion.

In term of the hadronization approach in Eqs. (1) and (2), there usually exist some

uncertainties. These come from nonfactorizable effects when gluons are attached to all

hadrons, annihilation contributions when the B meson decays into the vacuum by the W
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Λb → pM(V) M = π, K
V = ρ, K*

• Direct CP Violation in Λb Decays:
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EoM



CKM matrix elements +
Effective Wilson Coeffs

by fitting the two branching ratios 



*

*

Our approach can be extend to the 
two-body decays of other b-baryons See 何⼩小刚’s talks 



♦ Rich physics in b-hadron decays.  

♥ Direct CP violation in 3-body baryonic charged B and
   2-body Λb baryon decays are large in the SM:  

More studies are needed at B-factories, 
especially, LHCb + SuperKEKB.

☞

↑

♥ Some of CPAs are accessible to current experiments.

• Summary

↑
small hadronic & other uncertainties



Thank you!
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