CP Violation in b－hadron Decays

 b強子衰變中的 CP破壞
Chao－Qiang Geng 耿朝強清華大學（台灣新竹）

13th Workshop on Heavy Flavor and CP Violation全国第十三届重味物理和CP破坏研讨会

$$
\text { July 22-25, } 2015 \text { 兰州大学 }
$$

Outline

- Motivation
- Direct CP Violation in 3-body Baryonic B Decays
- Direct CP Violation in Λ_{b} Decays
- Summary

$$
\left.\begin{array}{rl}
c_{1} c_{3} & s_{1} c_{3}
\end{array} s_{3} e^{-i \delta}\right)\left(\begin{array}{ccc}
V_{C K M}= \\
-s_{1} c_{2}-c_{1} s_{2} s_{3} e^{i \delta} & c_{1} c_{2}-s_{1} s_{2} s_{3} e^{i \delta} & s_{2} c_{3} \\
s_{1} s_{2}-c_{1} c_{2} s_{3} e^{2 \delta} & -c_{1} s_{2}-s_{1} c_{2} s_{3} e^{i \delta} & c_{2} c_{3}
\end{array}\right)
$$

CP violation	K^{0} system：indirect（ ε ）and direct（ $\left.\varepsilon^{\prime} / \varepsilon\right)\left(\mathrm{K}_{L} \rightarrow T \pi T\right)$
	B^{0} system：mixed induced $\left(B^{0} \rightarrow J / \Psi K_{s}\right)+\operatorname{direct}\left(B^{0} \rightarrow \pi \pi, K \pi\right)$
	Direct CP in charged systems： $\mathbf{K}^{ \pm}$？ $\mathbf{B}^{ \pm}$？
	Th： $\mathcal{A}_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right) \simeq \mathcal{A}_{C P}\left(B^{-} \rightarrow K^{-} \pi^{0}\right)$ but $\mathcal{A}_{B^{0} \rightarrow K^{-} \pi^{+}}=-0.082 \pm 0.006$
	隹 $\mathcal{A}_{B^{-} \rightarrow K^{-} \pi^{0}}=0.040 \pm 0.021$

Matter－antimatter asymmetry

1．Baryon number violation
2．C and $C P$ violation
3．A departure from thermal equilibrium
1967：Sakharov

See 舒菁＇s talk

The CP violating mechanism in the SM，i．e．the phase in the CKM， cannot account for the matter－antimatter asymmetry in the universe．

To study direct CP violation in heavy flavor（b－hadron）systems
Goal To test the standard model and look for New Physics！

Direct CP－violating asymmetry（CPA）in the B decays：

$$
\mathcal{A}_{C P}(\bar{B} \rightarrow \bar{f})=\frac{\Gamma(\bar{B} \rightarrow f)-\Gamma(B \rightarrow \bar{f})}{\Gamma(\bar{B} \rightarrow f)+\Gamma(B \rightarrow f)}
$$

$\mathcal{A}(B \rightarrow f)=a e^{i \delta_{w}}+b e^{i \delta_{s}}$
$\mathcal{A}(\bar{B} \rightarrow \bar{f})=a e^{-i \delta_{w}}+b e^{i \delta_{s}}$

$$
\Gamma(B \rightarrow f) \neq \Gamma(\bar{B} \rightarrow \bar{f})
$$

$\delta_{w}: V_{u b}=A \lambda^{3}(\rho-i \eta)$

δ_{s} ：effective Wilson coefficients，final state interactions，．．．
on－shell processes give the imaginary parts
strong CP phase

See 何小刚，李新強，張振華＇s talks

Direct CP Violation in 3-body Baryonic B Decays

;) Three-body charmless baryonic B decays:

$$
\begin{aligned}
B r\left(B^{-} \rightarrow p \bar{p} \pi^{-}\right) & =(1.62 \pm 0.20) \times 10^{-6} \\
\operatorname{Br}\left(\bar{B}^{0} \rightarrow p \bar{p} K^{0}\right) & =(2.7 \pm 0.3) \times 10^{-6} \\
B r\left(B^{-} \rightarrow p \bar{p} K^{-}\right) & =(5.9 \pm 0.5) \times 10^{-6} \\
B r\left(\bar{B}^{0} \rightarrow p \bar{p} \bar{K}^{* 0}\right) & =(1.2 \pm 0.3) \times 10^{-6} \\
B r\left(B^{-} \rightarrow p \bar{p} K^{*-}\right) & =(3.6 \pm 0.8) \times 10^{-6} \\
B r\left(B^{-} \rightarrow \Lambda \bar{p} \gamma\right) & =(2.4 \pm 0.5) \times 10^{-6} \\
B r\left(B^{-} \rightarrow \Lambda \bar{p} \pi^{0}\right) & =(3.0 \pm 0.7) \times 10^{-6} \\
B r\left(\bar{B}^{0} \rightarrow \Lambda \bar{p} \pi^{+}\right) & =(3.14 \pm 0.29) \times 10^{-6} \\
\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{\Lambda} K^{-}\right) & =(3.4 \pm 0.6) \times 10^{-6} \\
B r\left(\bar{B}^{0} \rightarrow \Lambda \bar{\Lambda} \bar{K}^{0}\right) & =(4.8 \pm 1.0) \times 10^{-6} \\
\operatorname{Br}\left(\bar{B}^{0} \rightarrow \Lambda \bar{\Lambda} \bar{K}^{* 0}\right) & =(2.5 \pm 1.0) \times 10^{-6} \\
\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{\Lambda} \bar{K}^{*-}\right) & =(2.2+0.9) \times 10^{-6} \\
B r\left(B^{-} \rightarrow \Lambda \bar{\Lambda} \pi^{-}\right) & <0.94 \times 10^{-6}
\end{aligned}
$$

$$
\operatorname{Br}\left(\bar{B}^{0} \rightarrow p \bar{p}\right)=\left(1.47_{-0.53}^{+0.71}\right) \times 10^{-8}(\mathrm{LHCb})
$$

$$
\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{p}\right)<32 \times 10^{-8}(\text { BELLE })
$$

$$
\operatorname{Br}\left(\bar{B}^{0} \rightarrow \Lambda \bar{\Lambda}\right)<32 \times 10^{-8}(\text { BELLE })
$$

- Large BRs: $\underline{\operatorname{Br}\left(B \rightarrow B^{\prime} \mathrm{P}\right) \gg \operatorname{Br}\left(B \rightarrow B^{\prime}\right) \text { due to the threshold enhancements }}$

Direct CP Violation in 3-body Baryonic B Decays

© Three-body charmless baryonic B decays:

$B r\left(B^{-} \rightarrow p \bar{p} \pi^{-}\right)$	$=(1.62 \pm 0.20) \times 10^{-6}$
$B r\left(\bar{B}^{0} \rightarrow p \bar{p} K^{0}\right)$	$=(2.7 \pm 0.3) \times 10^{-6}$
$B r\left(B^{-} \rightarrow p \bar{p} K^{-}\right)$	$=(5.9 \pm 0.5) \times 10^{-6}$
$B r\left(\bar{B}^{0} \rightarrow p \bar{p} \bar{K}^{* 0}\right)$	$=(1.2 \pm 0.3) \times 10^{-6}$
$B r\left(B^{-} \rightarrow p \bar{p} K^{*-}\right)$	$=(3.6 \pm 0.8) \times 10^{-6}$
$B r\left(B^{-} \rightarrow \Lambda \bar{p} \gamma\right)$	$=(2.4 \pm 0.5) \times 10^{-6}$
$B r\left(B^{-} \rightarrow \Lambda \bar{p} \pi^{0}\right)$	$=(3.0 \pm 0.7) \times 10^{-6}$
$B r\left(\bar{B}^{0} \rightarrow \Lambda \bar{p} \pi^{+}\right)$	$=(3.14 \pm 0.29) \times 10^{-6}$
$\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{\Lambda} K^{-}\right)$	$=(3.4 \pm 0.6) \times 10^{-6}$
$B r\left(\bar{B}^{0} \rightarrow \Lambda \bar{\Lambda} \bar{K}^{0}\right)$	$=(4.8 \pm 1.0) \times 10^{-6}$
$\operatorname{Br}\left(\bar{B}^{0} \rightarrow \Lambda \bar{\Lambda} \bar{K}^{* 0}\right)$	$=(2.5 \pm 1.0) \times 10^{-6}$
$B r\left(B^{-} \rightarrow \Lambda \bar{\Lambda} \bar{K}^{*-}\right)$	$=(2.2-0.9) \times 10^{-6}$
$\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{\Lambda} \pi^{-}\right)$	$<0.94 \times 10^{-6}$

Using the generalized factorization method along with QCD counting rule
$+$
$S U(3)_{F} \& S U(2)_{S}$ symmetries

Chua, Hou,Tsai, PRD66 (2002) 054004; Chua,Hou, Eur. Phys. J. C 29 (2003) 27; CQG, Hsiao, PLB610 (2005) 67; CQG, Hsiao, PLB619 (2005) 305; CQG, Hsiao, PRD72 (2005) 037901; CQG, Hsiao, PRD74 (2006) 094023; CQG, Hsiao, Ng, PRL98 (2007) 011801; CQG, Hsiao, Ng, PRD75 (2007) 094005; CQG, Hsiao, PRD85 (2012) 017501.

- Large BRs: $\operatorname{Br}\left(B \rightarrow B^{\prime} \mathrm{P}\right) \gg \operatorname{Br}\left(B \rightarrow \mathrm{BB}^{\prime}\right)$ due to the threshold enhancements

Direct CP Violation in 3-body Baryonic B Decays

() Three-body charmless baryonic B decays:

$$
\begin{aligned}
\operatorname{Br}\left(B^{-} \rightarrow p \bar{p} \pi^{-}\right) & =(1.62 \pm 0.20) \times 10^{-6} \\
\operatorname{Br}\left(\bar{B}^{0} \rightarrow p \bar{p} K^{0}\right) & =(2.7 \pm 0.3) \times 10^{-6} \\
B r\left(B^{-} \rightarrow p \bar{p} K^{-}\right) & =(5.9 \pm 0.5) \times 10^{-6} \\
\operatorname{Br}\left(\bar{B}^{0} \rightarrow p \bar{p} \bar{K}^{* 0}\right) & =(1.2 \pm 0.3) \times 10^{-6} \\
\operatorname{Br}\left(B^{-} \rightarrow p \bar{p} K^{*-}\right) & =(3.6 \pm 0.8) \times 10^{-6} \\
\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{p} \gamma\right) & =(2.4 \pm 0.5) \times 10^{-6} \\
\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{p} \pi^{0}\right) & =(3.0 \pm 0.7) \times 10^{-6} \\
\operatorname{Br}\left(\bar{B}^{0} \rightarrow \Lambda \bar{p} \pi^{+}\right) & =(3.14 \pm 0.29) \times 10^{-6} \\
\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{\Lambda} K^{-}\right) & =(3.4 \pm 0.6) \times 10^{-6} \\
\operatorname{Br}\left(\bar{B}^{0} \rightarrow \Lambda \bar{\Lambda} \bar{K}^{0}\right) & =(4.8 \pm 1.0) \times 10^{-6} \\
\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{K} \bar{K}^{* 0}\right) & =(2.5 \pm 1.0) \times 10^{-6} \\
\operatorname{Br}\left(B^{-} \rightarrow \Lambda \bar{\Lambda} \pi^{-}\right) & <0.94 \times 10^{-6}
\end{aligned}
$$

- Large BRs: $\underline{\operatorname{Br}\left(B \rightarrow B^{\prime} \mathrm{P}\right) \gg \operatorname{Br}\left(B \rightarrow B^{\prime}\right) \text { due to the threshold enhancements }}$
- Large direct CP violation in charged \mathbf{B} modes of $B^{ \pm} \rightarrow p \bar{p} K^{(*) \pm}$

The direct CP asymmetries in $B^{ \pm} \rightarrow p \bar{p} M^{ \pm}\left(M=K, K^{*}\right)$:

$$
A_{C P}(M)=\frac{\Gamma\left(B^{-} \rightarrow p \bar{p} M^{-}\right)-\Gamma\left(B^{+} \rightarrow p \bar{p} M^{+}\right)}{\Gamma\left(B^{-} \rightarrow p \bar{p} M^{-}\right)+\Gamma\left(B^{+} \rightarrow p \bar{p} M^{+}\right)}
$$

$$
A_{C P}\left(K^{(*)}\right)=\frac{\left|\alpha_{K^{(*)}}\right|^{2}-\left|\bar{\alpha}_{K^{(*)}}\right|^{2}}{\left|\alpha_{K^{(*)}}\right|^{2}+\left|\bar{\alpha}_{K^{(*)}}\right|^{2}}
$$

The amplitudes of $B^{-} \rightarrow p \bar{p} K^{(*)-}$:

$$
\begin{aligned}
& \mathcal{A}_{K}=i \frac{G_{F}}{\sqrt{2}} m_{b} f_{K}\left[\alpha_{K}\langle p \bar{p}| \bar{u} b\left|B^{-}\right\rangle+\beta_{K}\langle p \bar{p}| \bar{u} \gamma_{5} b\left|B^{-}\right\rangle\right] \\
& \mathcal{A}_{K^{*}}=\frac{G_{F}}{\sqrt{2}} m_{K^{*}} f_{K^{*}} \varepsilon^{\mu} \alpha_{K^{*}}\langle p \bar{p}| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|B^{-}\right\rangle
\end{aligned}
$$

Free of hadronic uncertainty

$$
\alpha_{K^{*}} \equiv V_{u b} V_{u s}^{*} a_{1}-V_{t b} V_{t s}^{*} a_{4}
$$

$\left(\mathrm{Nc}=3\right.$ at the scale $\left.\mathrm{m}_{\mathrm{b}}\right)$

$$
\begin{aligned}
& a_{1}=c_{1}^{\text {eff }}+c_{2}^{\text {eff }} / N_{c} \\
& a_{4}=c_{4}^{\text {eff }}+c_{3}^{\text {eff }} / N_{c} \\
& a_{6}=c_{6}^{\text {eff }}+c_{5}^{\text {eff }} N_{c}
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=1.05 \\
& a_{4}=[(-427.8 \mp 9.1 \eta-3.9 \rho)+i(-83.2 \pm 3.9 \eta-9.1 \rho)] \times 10^{-4} \\
& a_{6}=[(-595.5 \mp 9.1 \eta-3.9 \rho)+i(-83.2 \pm 3.9 \eta-9.1 \rho)] \times 10^{-4}
\end{aligned}
$$

$\varepsilon_{i}^{\text {eff }}(i=1,2, \ldots, 6)$ being effective Wilson coefficients (WC's)

Direct CP asymmetries in $B \rightarrow \mathbf{B} \overline{\mathbf{B}}^{\prime} M$:

$B \rightarrow \mathrm{~B} \overline{\mathrm{~B}}^{\prime} M$	$B^{ \pm} \rightarrow p \bar{p} K^{* \pm}$	$B^{ \pm} \rightarrow p \bar{p} K^{ \pm}$	$B^{ \pm} \rightarrow p \bar{p} \rho^{ \pm}$	$B^{ \pm} \rightarrow p \bar{p} \pi^{ \pm}$
$A_{C P}(M)$	0.22 ± 0.04	0.06 ± 0.01	-0.03	-0.06
Belle (2004)		-0.05 ± 0.11		
BaBar (2005)		-0.16 ± 0.09		
BaBar* (2006)	0.26 ± 0.19	$-0.13_{-0.07}^{+0.08}$		0.06 ± 0.02
BaBar (2007)	0.32 ± 0.14			0.04 ± 0.07
Belle (2008)	-0.01 ± 0.20	-0.02 ± 0.05		-0.17 ± 0.11
PDG (2014)	0.21 ± 0.16	-0.16 ± 0.07		0 ± 0.04
LHCb** (2014)		0.021 ± 0.020		-0.041 ± 0.039

CQG+Hsiao+Ng, PRL98,011801 (2007)

* T.B.Hryn'ova, SLAC-R-810 (2006)
** PRL113, 141801 (2014)

Large, Accessible to the LHCb as well as SuperKEKB!

Direct CP asymmetries in $B \rightarrow \mathbf{B} \overline{\mathbf{B}}^{\prime} M$:

$B \rightarrow \mathrm{~B}^{\prime} M$	$B^{ \pm} \rightarrow p \bar{p} K^{* \pm}$	$B^{ \pm} \rightarrow p \bar{p} K^{ \pm}$	$B^{ \pm} \rightarrow p \bar{p} \rho^{ \pm}$	$B^{ \pm} \rightarrow p \bar{p} \pi^{ \pm}$
$A_{C P}(M)$	0.22 ± 0.04	0.06 ± 0.01	-0.03	-0.06
Belle (2004)		-0.05 ± 0.11		
BaBar (2005)		-0.16 ± 0.09		
BaBar* (2006) $^{*} 0.26 \pm 0.19$	$-0.13_{-0.07}^{+0.08}$		0.06 ± 0.02	
BaBar (2007)	0.32 ± 0.14			0.04 ± 0.07
Belle (2008)	-0.01 ± 0.20	-0.02 ± 0.05		-0.17 ± 0.11
PDG (2014)	0.21 ± 0.16	-0.16 ± 0.07		0 ± 0.04
LHCb** (2014)		0.021 ± 0.020		-0.041 ± 0.039

CQG+Hsiao+Ng,
PRL98,011801 (2007)

* T.B.Hryn'ova, SLAC-R-810 (2006)
** PRL113, 141801 (2014)

Large, Accessible to the LHCb as well as SuperKEKB!

Remarks: 1. Independent of BR measurements+Free of hadronic uncertainties
2. $\left.\Delta A_{C P}\left(K^{(*)}\right)\right|_{C K M}$ elements ~ 0.01
3. Small nonfactorizable contributions:
$\Delta A_{C P}\left(K^{(*)}\right) \leq 0.005(0.04)$ for $N_{c}=3 \rightarrow N_{c}^{\text {eff }}=2$ and ∞
4. Annihilation contributions and final state interactions - suppressed

- Direct CP Violation in Λ_{b} Decays: $\Lambda_{b} \rightarrow \mathrm{pM}(\mathrm{V})$
$\mathbf{M}=\pi, \mathbf{K}$

$$
\mathbf{V}=\rho, K^{*}
$$

	pQCD	data
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p K^{-}\right)$	$2.0_{-1.3}^{+1.0}$	4.9 ± 0.9^{2}
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p \pi^{-}\right)$	$5.2_{-1.9}^{+2.5}$	4.1 ± 0.8^{2}
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p K^{*-}\right)$	-	-
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p \rho^{-}\right)$	-	-
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p K^{-}\right)$	-5_{-5}^{+26}	$-10 \pm 8 \pm 4^{3}$
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p \pi^{-}\right)$	-31_{-1}^{+43}	$6 \pm 7 \pm 3^{3}$
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p K^{*-}\right)$	-	-
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p \rho^{-}\right)$	-	-

(a)

(b)

1. without annihilation
2. without color-suppressed tree amp
${ }^{1}$ C.D. Lu, Y.M. Wang, H. Zou, A. Ali and G. Kramer, PRD80, 034011 (2009).
${ }^{2}$ PDG
${ }^{3}$ CDF, PRL106, 181802 (2011); arXiv:1403.5586 [hep-ex].

(a)

(b)
Y.K.Hsiao+CQG,

PRD91,116007(2015)

$$
\mathcal{A}\left(\Lambda_{b} \rightarrow p M\right)=i \frac{G_{F}}{\sqrt{2}} m_{b} f_{M}\left[\alpha_{M}\langle p| \bar{u} b\left|\Lambda_{b}\right\rangle+\beta_{M}\langle p| \bar{u} \gamma_{5} b\left|\Lambda_{b}\right\rangle\right]
$$

$$
\langle M| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|0\rangle=-i f_{M} q_{\mu}
$$

$$
\mathcal{A}\left(\Lambda_{b} \rightarrow p V\right)=\frac{G_{F}}{\sqrt{2}} m_{V} f_{V} \varepsilon^{\mu *} \alpha_{V}\langle p| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|\Lambda_{b}\right\rangle
$$

$$
\langle V| \bar{q}_{1} \gamma_{\mu} q_{2}|0\rangle=m_{V} f_{V} \varepsilon_{\mu}^{*}
$$

$$
\alpha_{M}\left(\beta_{M}\right)=V_{u b} V_{u q}^{*} a_{1}-V_{t b} V_{t q}^{*}\left(a_{4} \pm r_{M} a_{6}\right)
$$

$$
\alpha_{V}=V_{u b} V_{u q}^{*} a_{1}-V_{t b} V_{t q}^{*} a_{4}
$$

$$
\begin{aligned}
& r_{M} \equiv 2 m_{M}^{2} /\left[m_{b}\left(m_{q}+m_{u}\right)\right] \\
& a_{i} \equiv c_{i}^{\text {eff }}+c_{i \pm 1}^{\text {eff }} / N_{c}^{(\text {eff })} \text { for } i=\text { odd (even) }
\end{aligned}
$$

$$
f_{1}=g_{1} \text { and } f_{2,3}=g_{2,3}=0
$$

- By the $\operatorname{SU}(3)$ flavor and $\mathrm{SU}(2)$ spin symmetries or the heavy-quark and large-energy symmetries
Khodjamirian, Klein, Mannel, Wang, JHEP 1109, 106 (2011);
T. Mannel and Y. M. Wang, JHEP 1112, 067 (2011).

(a)

(b)
Y.K.Hsiao+CQG,

PRD91,116007(2015)

$$
\mathcal{A}\left(\Lambda_{b} \rightarrow p M\right)=i \frac{G_{F}}{\sqrt{2}} m_{b} f_{M}\left[\alpha_{M}\langle p| \bar{u} b\left|\Lambda_{b}\right\rangle+\beta_{M}\langle p| \bar{u} \gamma_{5} b\left|\Lambda_{b}\right\rangle\right]
$$

$$
\langle M| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|0\rangle=-i f_{M} q_{\mu}
$$

$$
\mathcal{A}\left(\Lambda_{b} \rightarrow p V\right)=\frac{G_{F}}{\sqrt{2}} m_{V} f_{V} \varepsilon^{\mu *} \alpha_{V}\langle p| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|\Lambda_{b}\right\rangle
$$

$$
\langle V| \bar{q}_{1} \gamma_{\mu} q_{2}|0\rangle=m_{V} f_{V} \varepsilon_{\mu}^{*}
$$

$$
\alpha_{M}\left(\beta_{M}\right)=V_{u b} V_{u q}^{*} a_{1}-V_{t b} V_{t q}^{*}\left(a_{4} \pm r_{M} a_{6}\right)
$$

$$
\alpha_{V}=V_{u b} V_{u q}^{*} a_{1}-V_{t b} V_{t q}^{*} a_{4}
$$

$$
\begin{aligned}
& r_{M} \equiv 2 m_{M}^{2} /\left[m_{b}\left(m_{q}+m_{u}\right)\right] \\
& a_{i} \equiv c_{i}^{\text {eff }}+c_{i \pm 1}^{\text {eff }} / N_{c}^{(e f f)} \text { for } i=\text { odd (even) }
\end{aligned}
$$

$$
f_{1}=g_{1} \text { and } f_{2,3}=g_{2,3}=0
$$

$$
f_{1}\left(q^{2}\right)=\frac{C_{F}}{\left(1-q^{2} / m_{\Lambda_{b}}^{2}\right)^{2}}
$$

- By the $\operatorname{SU}(3)$ flavor and $\mathrm{SU}(2)$ spin symmetries or the heavy-quark and large-energy symmetries
Khodjamirian, Klein, Mannel, Wang, JHEP 1109, 106 (2011);
T. Mannel and Y. M. Wang, JHEP 1112, 067 (2011).

(a)

(b)
$\boldsymbol{\Lambda}_{\mathbf{b}} \rightarrow \mathbf{p M}(\mathbf{V})$
$\mathrm{M}=\boldsymbol{\pi}, \mathbf{K}$ $\mathrm{V}=\rho, \mathrm{K}^{*}$
Y.K.Hsiao+CQG,

PRD91,116007(2015)

$$
\mathcal{A}\left(\Lambda_{b} \rightarrow p M\right)=i \frac{G_{F}}{\sqrt{2}} m_{b} f_{M}\left[\alpha_{M}\langle p| \bar{u} b\left|\Lambda_{b}\right\rangle+\beta_{M}\langle p| \bar{u} \gamma_{5} b\left|\Lambda_{b}\right\rangle\right]
$$

$$
\langle M| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|0\rangle=-i f_{M} q_{\mu}
$$

$$
\mathcal{A}\left(\Lambda_{b} \rightarrow p V\right)=\frac{G_{F}}{\sqrt{2}} m_{V} f_{V} \varepsilon^{\mu *} \alpha_{V}\langle p| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|\Lambda_{b}\right\rangle
$$

$$
\langle V| \bar{q}_{1} \gamma_{\mu} q_{2}|0\rangle=m_{V} f_{V} \varepsilon_{\mu}^{*}
$$

$$
\begin{aligned}
& \alpha_{M}\left(\beta_{M}\right)=V_{u b} V_{u q}^{*} a_{1}-V_{t b} V_{t q}^{*}\left(a_{4} \pm r_{M} a_{6}\right) \\
& \alpha_{V}=V_{u b} V_{u q}^{*} a_{1}-V_{t b} V_{t q}^{*} a_{4}
\end{aligned}
$$

$$
\begin{aligned}
& r_{M} \equiv 2 m_{M}^{2} /\left[m_{b}\left(m_{q}+m_{u}\right)\right] \\
& a_{i} \equiv c_{i}^{\text {eff }}+c_{i \pm 1}^{\text {eff }} / N_{c}^{(\text {eff })} \text { for } i=\text { odd (even) }
\end{aligned}
$$

$$
\begin{aligned}
\langle p| \bar{u} \gamma_{\mu} b\left|\Lambda_{b}\right\rangle & =f_{1} \bar{u}_{p} \gamma_{\mu} u_{\Lambda_{b}} \\
\langle p| \bar{u} \gamma_{\mu} \gamma_{5} b\left|\Lambda_{b}\right\rangle & =g_{1} \bar{u}_{p} \gamma_{\mu} \gamma_{5} u_{\Lambda_{b}} \\
\langle p| \bar{u} b\left|\Lambda_{b}\right\rangle & =f_{S} \bar{u}_{p} u_{\Lambda_{b}} \\
\langle p| \bar{u} \gamma_{5} b\left|\Lambda_{b}\right\rangle & =f_{P} \bar{u}_{p} \gamma_{5} u_{\Lambda_{b}}
\end{aligned}
$$

$$
f_{1}=g_{1} \text { and } f_{2,3}=g_{2,3}=0
$$

$$
\begin{aligned}
& f_{1}\left(q^{2}\right)=\frac{C_{F}}{\left(1-q^{2} / m_{\Lambda_{b}}^{2}\right)^{2}} \\
& f_{S}=\frac{m_{\Lambda_{b}}-m_{p}}{m_{b}-m_{u}} f_{1}, \quad f_{P}=\frac{m_{\Lambda_{b}}+m_{p}}{m_{b}+m_{u}} g_{1}
\end{aligned}
$$

	our result＊	pQCD^{1}	data
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p K^{-}\right)$	$4.8 \pm 0.7 \pm 0.1 \pm 0.3$	$2.0_{-1.3}^{+1.0}$	4.9 ± 0.9^{2}
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p \pi^{-}\right)$	$4.2 \pm 0.6 \pm 0.4 \pm 0.2$	$5.2_{-1.9}^{+2.5}$	4.1 ± 0.8^{2}
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p K^{*-}\right)$	$2.5 \pm 0.3 \pm 0.2 \pm 0.3$	-	-
$10^{6} \mathcal{B}\left(\Lambda_{b} \rightarrow p \rho^{-}\right)$	$11.4 \pm 1.6 \pm 1.2 \pm 0.6$	-	-
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p K^{-}\right)$	$5.8 \pm 0.2 \pm 0.1$	-5_{-5}^{+26}	$-10 \pm 8 \pm 4^{3}$
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p \pi^{-}\right)$	$-3.9 \pm 0.2 \pm 0.0$	-31_{-1}^{+43}	$6 \pm 7 \pm 3^{3}$
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p K^{*-}\right)$	$19.6 \pm 1.3 \pm 1.0$	-	-
$10^{2} \mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p \rho^{-}\right)$	$-3.7 \pm 0.3 \pm 0.0$	-	-

＊where the errors for $\mathcal{B}\left(\Lambda_{b} \rightarrow p M(V)\right)$ arise from $f_{M(V)}$ and $f_{1}\left(g_{1}\right)$ ，the CKM matrix elements and non－factorizable effects while those for $\mathcal{A}_{C P}\left(\Lambda_{b} \rightarrow p M(V)\right)$ are from the CKM matrix elements and non－factorizable effects
${ }^{1}$ C．D．Lu，Y．M．Wang，H．Zou，A．Ali and G．Kramer， PRD80， 034011 （2009）．

${ }^{2}$ PDG

${ }^{3}$ CDF，PRL106， 181802 （2011）；arXiv：1403．5586［hep－ex］．

Our approach can be extend to the two－body decays of other b－baryons

$$
\mathcal{B}\left(\Xi_{b} \rightarrow \Sigma^{+} K^{*-}\right) \sim 2.8 \times 10^{-6}
$$

$$
\mathcal{A}_{C P}\left(\Xi_{b} \rightarrow \Sigma^{+} K^{*-}\right) \sim 20 \%
$$

\vee Direct CP violation in 3-body baryonic charged B and 2-body Λ_{b} baryon decays are large in the $S M$:

our result	$B^{ \pm} \rightarrow p \bar{p} K^{ \pm}$	$B^{ \pm} \rightarrow p \bar{p} \pi^{ \pm}$	$B^{ \pm} \rightarrow p \bar{p} K^{* \pm}$	$B^{ \pm} \rightarrow p \bar{p} \rho^{ \pm}$
$10^{6} \mathcal{B}$	5.9	1.6	3.6	10
$10^{2} \mathcal{A}_{C P}$	6	-6	22	-3
our result	$\Lambda_{b} \rightarrow p K^{-}$	$\Lambda_{b} \rightarrow p \pi^{-}$	$\Lambda_{b} \rightarrow p K^{*-}$	$\Lambda_{b} \rightarrow p \rho^{-}$
$10^{6} \mathcal{B}$	4.8	4.2	2.5	11.4
$10^{2} \mathcal{A}_{C P}$	6	-4	20	-4

small hadronic \& other uncertainties
\checkmark Some of CPAs are accessible to current experiments.

- Rich physics in b-hadron decays.

More studies are needed at B-factories, especially, LHCb + SuperKEKB.

Thank you!

