Flavor Physics in Extra Dimensions

QIN QIN, IHEP

in cooperation with C.-D. Lu and M. Neubert

Introduction

Theoretical Preparation

Phenomenological Analysis

S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing

Introduction

Theoretical Preparation

Phenomenological Analysis

S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing

Introduction

 In 1999, to solve the gauge hierarchy problem, Lisa Randall and Raman Sundrum introduced one extra warped dimension to the 4D space-time [arXiv:hep-ph/9905221], with the metric given by,

$$ds^2=e^{-2kr|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu}-r^2d\phi^2, \phi\in[-\pi,\pi].$$

The fundamental scale is M_{pl} , and the effective 4D electroweak scale is suppressed by a magic exponential,

$$M_{ew} \sim M_{pl} e^{-L} \sim$$
 TeV.

• Fermion mass hierarchies are generated by the magic exponentials,

$$m_q \propto e^{2c_q}, m_l \propto e^{2c_l}, m_\nu \propto e^{2c_\nu},$$

in the Randall-Sundrum model, and the right structure of the **CKM matrix** are also obtained.

Introduction

 In 1999, to solve the gauge hierarchy problem, Lisa Randall and Raman Sundrum introduced one extra warped dimension to the 4D space-time [arXiv:hep-ph/9905221], with the metric given by,

$$ds^{2} = e^{-2kr|\phi|}\eta_{\mu\gamma}$$
The fundamental scale is M_{f}
scale is suppressed by a map
$$M_{ew\gamma}$$

$$V_{\rm CKM} \sim \begin{pmatrix} 1 & \lambda & \lambda^{3} \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix}^{k}$$

• Fermion mass hierarchies are generated by the magic exponentials,

$$m_q \propto e^{2c_q}, m_l \propto e^{2c_l}, m_\nu \propto e^{2c_\nu},$$

in the Randall-Sundrum model, and the right structure of the **CKM matrix** are also obtained.

Introduction

 In 1999, to solve the gauge hierarchy problem, Lisa Randall and Raman Sundrum introduced one extra warped dimension to the 4D space-time [arXiv:hep-ph/9905221], with the metric given by,

$$ds^2=e^{-2kr|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu}-r^2d\phi^2, \phi\in[-\pi,\pi].$$

The fundamental scale is M_{pl} , and the effective 4D electroweak scale is suppressed by a magic exponential,

$$M_{ew} \sim M_{pl} e^{-kr\pi} \sim$$
 TeV.

• Fermion mass hierarchies are generated by the magic exponentials,

$$m_q \propto e^{2c_q}, m_l \propto e^{2c_l}, m_\nu \propto e^{2c_\nu},$$

in the Randall-Sundrum model, and the right structure of the CKM matrix are also obtained.

• **Tree-level FCNC** processes happen in the model, which is our main motivation to study flavor physics.

Introduction

Theoretical Preparation

Phenomenological Analysis

S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing

Theoretical Preparation: General Set

• As mentioned before, we have had the space-time background with the metric,

$$ds^2 = e^{-2kr|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - r^2d\phi^2, \phi \in [-\pi,\pi].$$

 ϕ = 0, UV brane; ϕ = π , IR brane.

Gauge group:

$$SU(3)_c \times SU(2)_V \times U(1)_Y$$

• 5D Fields:

Scalar SU(2) doublet: $\Phi(x, \phi)$;

Gauge fields: W_N^i , B_N , i = 1, 2, 3, N = 0, 1, 2, 3, ϕ ;

Fermion fields: $\binom{U}{D}$, u, d, $\binom{v}{E}$, e, (v). (each representing 3 generations)

Theoretical Preparation: $5D \implies 4D$

Having the action for the 5D theory at hand,

$$S = \int dx^4 \int_{-\pi}^{\pi} d\phi \sqrt{-G} \, \mathcal{L}[F(x,\phi)],$$

we need to integrate over the 5th dimension to obtain the 4D effective theory.

Kaluza-Klein decomposition:

$$F(x, \phi) = \sum_{n=0}^{\infty} f_n(x) \chi_f^{(n)}(\phi)$$

The profiles $\chi_f^{(n)}(\phi)$ can be obtained by solving the EoMs. $f_n(x)$ are 4D fields.

n = **0**: $f_0(x)$ correspond to the **SM particles**;

n > 0: $f_n(x)$ are **KK excitations** of the SM particles, with the lowest masses ~ **2.45** M_{KK} .

Theoretical Preparation: $5D \implies 4D$

Interaction terms (Feynman rules):

$$\mathcal{I} \ni \sum_{m,n,l} \int_{-\pi}^{\pi} d\phi \, g \bar{f}_m(x) f_n(x) V_l(x) \chi_f^{(m)}(\phi) \chi_f^{(n)}(\phi) \chi_V^{(l)}(\phi)$$
$$\Rightarrow \bar{f}_m(x) f_n(x) V_l(x): \quad g \int_{-\pi}^{\pi} d\phi \, \chi_f^{(m)}(\phi) \chi_f^{(n)}(\phi) \chi_V^{(l)}(\phi)$$

• 4-fermion interaction (Wilson coefficients):

The RS corrections to the Wilson coefficients are obtained by summing over the contributions from all possible mediate propagators, including KK excitations of the scalars and gauge bosons.

Introduction

Theoretical Preparation

Phenomenological Analysis

S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing

B meson rare decays

Conclusion and Outlook

Constraints from the oblique parameters: S, T & U

Introduction

Theoretical Preparation

Phenomenological Analysis

S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing

B meson rare decays

Conclusion and Outlook

Constraints from Zbb couplings

The left- and right-handed $Z^0 \overline{b} b$ couplings, g_L^b and g_R^b , are constrained by three pseudo observables at Z^0 pole,

 $\begin{array}{l} R_b^0: \Gamma(Z^0 \to \overline{b}b) \ / \ \Gamma(Z^0 \to \text{hadrons}); \\ A_b: \text{the left-right forward-backward asymmetry;} \\ A_{FB}^{0,b}: \text{the forward-backward asymmetry.} \end{array} \begin{array}{l} 0.12 \\ 0.11 \\ 0.10 \end{array}$

The have been precisely measured by the Z^0 pole experiments, [arXiv: hep-ex/0509008]

$$\begin{split} R_b^0 &= 0.21629 \pm 0.00066, \\ A_b &= 0.923 \pm 0.020, \\ A_{FB}^{0,b} &= 0.0992 \pm 0.0016. \end{split}$$

Introduction

Theoretical Preparation

Phenomenological Analysis

S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing...

B meson rare decays

Conclusion and Outlook

Right-handed Wtb coupling

The right-handed Wtb coupling can be regarded as the right-handed CKM matrix element, $(V_R)_{33}$, multiplied by the weak coupling g.

Introduction

Theoretical Preparation

- Phenomenological Analysis
 - S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing...

B meson rare decays

Conclusion and Outlook

Rare decay:
$$t \rightarrow Z^0 c$$

Suppressed by the GIM mechanism, the SM prediction for the branching ratio of the rare decay $t \rightarrow Z^0 c$ is ~ $\mathbf{0}(10^{-14})$, [hep-ph/0409342].

Rare decay: $t \rightarrow Hc$

The SM prediction for the branching ratio of the rare decay $t \rightarrow Hc$ is of the order $\mathbf{0}(10^{-15})$, [hep-ph/0409342].

Introduction

Theoretical Preparation

- Phenomenological Analysis
 - S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing

$K^0 - \overline{K}^0$ mixing

The mixing effect of the K^0 - \overline{K}^0 system is characterized by the observable,

$$\boldsymbol{\varepsilon}_{K} \equiv \mathcal{A}[K_{L} \to (\pi\pi)_{I=0}]/\mathcal{A}[K_{S} \to (\pi\pi)_{I=0}],$$

which has been precisely measured and the world average [PDG2014] is

 $|\varepsilon_K| = (2.228 \pm 0.011) \times 10^{-3}.$

The SM prediction for $|\varepsilon_K|$ is

$$|\varepsilon_{K}| = (2.1 \pm 0.4) \times 10^{-3}.$$

As shown in the right figure, most of the RS points are ruled out by the constraint from $|\varepsilon_K|$.

$B_d^0 - \overline{B}_d^0$ mixing

In the B_d^0 - \overline{B}_d^0 mixing system, we study the following observables,

 $\Delta\Gamma_d$: the width difference between the mass eigenstates; A_{SL}^d : the CP asymmetry in the semileptonic decays; $S_{\psi K_S}$: the mixing induced CP asymmetry in $B_d \rightarrow \psi K_S$.

	Exp. results	SM predictions	RS predictions
$\Delta\Gamma_d/\Gamma_d$	0.001 ± 0.010	[0.003, 0.005]	[0.003, 0.005]
$S_{\psi K_S}$	0.676 ± 0.021	0.682 ± 0.019	[0.58, 0.78]
A^d_{SL}	-0.0015 ± 0.0017	[-0.0006, -0.0004]	[-0.0015, 0.0003]

$B_s^0 - \overline{B}_s^0$ mixing

In the B_s^0 - \overline{B}_s^0 mixing system, we study the following observables,

 $\Delta\Gamma_s$: the width difference between the mass eigenstates; A_{SL}^s : the CP asymmetry in the semileptonic decays; $S_{\psi\Phi}$: the mixing induced CP asymmetry in $B_s \rightarrow \psi\Phi$.

	Exp. results	SM predictions	RS predictions
$\Delta\Gamma_s/\Gamma_s$	0.122 ± 0.009	[0.10, 0.14]	[0.11, 0.16]
A_{SL}^{S}	-0.0075 ± 0.0041	$[1.5, 2.6] imes 10^{-5}$	[-0.0043, 0.0064]
$S_{\psi\Phi}$	0.015 ± 0.035	[0.0351, 0.0377]	[-0.09, 0.13]

$D^0 - \overline{D}^0$ mixing

In the $D^0 - \overline{D}^0$ mixing system, we study the observable,

 $S^{D}_{\Phi K_{S}}$, the mixing induced CP asymmetry in $D \rightarrow \Phi K_{S}$.

	SM predictions	RS predictions
$S^{D}_{\Phi K_{S}}$	[-0.05, 0.24]	[-0.012, 0.012]

Introduction

Theoretical Preparation

- Phenomenological Analysis
 - S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing

B meson rare decays

Conclusion and Outlook

Introduction

Theoretical Preparation

Phenomenological Analysis

S, T & U parameters

Zbb couplings

Right-handed charged weak current

Top rare decays

Neutral meson mixing

Conclusion

- In the extra dimensional extension of the Standard Model where all the fields propagate in the 5D space-time, the gauge hierarchy problem is solved. Simultaneously, the right hierarchies of fermion masses and mixing are generated.
- Because of the KK excitations of the gauge bosons and scalars, there are tree-level FCNC processes in the model. Therefore, fruitful phenomena could be observed in flavor physics.
- The RS effects on the **STU** parameters, **Zbb** & **Wtb** couplings , $t \to Z^0 c \& t \to Hc$ decay, $K^0 \overline{K}^0$, $B^0_d \overline{B}^0_d$, $B^0_s \overline{B}^0_s$ and $D^0 \overline{D}^0$ mixing, and **B meson rare decays** are studied. Some deviation from the SM predictions is hopefully to be observed.

Outlook

- B meson semileptonic decays
- B meson non-leptonic decays
- vacuum stability
- collider phenomenology
- ...

Thank you for the attention!!