A Radiated Linear Seesaw Model

Weijian Wang in collaboration with Zhi-Long Han

North China Electric Power University Nankai University

July 24, 2015

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation and introduction

Radiated Linear Seesaw Model

Neutrino Mass and Phenomenology

Summary

Questions in SM

The Standard model works well but not the end of the story:

► Small but no-zero neutrino mass: $\Delta m_{21}^2 = 7.46 \times 10^{-5} \text{eV}$, $\Delta m_{32}^2 = 2.51 \times 10^{-3} \text{eV}$ and $m_1 + m_2 + m_3 < 0.23 \text{eV}$.

(ロ) (同) (三) (三) (三) (○) (○)

- ► Dark matter:Ω_{DM}h² = 0.1199 ± 0.0027[Plank Collaboration(2013)]
- Matter-antimatter asymmetry of our universe
- Hierarchy Problems
- Strong CP problem
- Gauge Unification
- etc

Tiny neutrino mass compared with EW scale:

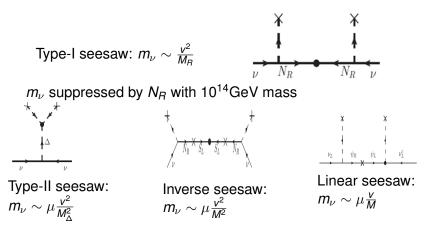
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Figure: Neutrino $m_{\nu} < 1 \text{eV}$ Figure: Top quark $m_t = 173 \text{GeV}$ For a Dirac mass term via Yukawa coupling:

$$m_
u \sim 0.1 eV \Rightarrow y_
u \simeq rac{m_
u}{v_{EW}} \simeq 10^{-12}$$

unnatural small Yukawa coupling!

Majorana neutrino mass



 μ : naturally small parameter breaking *L* symmetry(by Hooft) m_{ν} suppressed by both small μ and heavy state

Linear Seesaw Model

Linear seesaw model: the SM particles+ Ψ_L , Ψ_R E.Akhmedov, M. Linder, E. Schnapka, J. W. F. Valle, PLB, 368, 270(1996)

M. Malinsky, J. C. Romao, J. W. F. Valle, PRL 95. 161801(2005)

(日) (日) (日) (日) (日) (日) (日)

$$L = m_D \overline{\nu}_L \Psi_R + M_R \overline{\Psi}_R \Psi_L + M_L \nu_L \widetilde{\Psi}_L + h.c$$
(1)

in the basis of (ν_L, Ψ_R, Ψ_L) is

$$M_{\nu} = \begin{pmatrix} 0 & m_D & M_L \\ m_D^T & 0 & M_R \\ M_L & M_R & 0 \end{pmatrix} \Rightarrow m_{\nu} = m_D M_L \frac{1}{M_R} + \text{Transpose} (2)$$

We want to

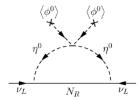
- suppress L-breaking term M_L
- accommodate the neutrino mass and dark matter simultaneously.

One stone, two birds!

$\underset{Z_2 \text{ symmetry:}}{\text{Ma model}(2006)}$

- forbid m_{ν} at tree level
- DM stability

$$(m_
u)_{ij}\sim -rac{\lambda}{16\pi^2}\sumrac{f_{ik}f_{jk}v^2}{M_k}$$
 for $m_\eta\simeq M_k$



- Inert scalar η as a DM candidate \Rightarrow inert doublet model
- Majorana fermion N_R: two fold constraints from Ω_{DM}h² and LFV processes

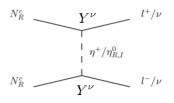


Figure: $\Omega_{DM}h^2 \sim 0.12 \Rightarrow f \sim 1$

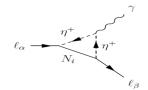
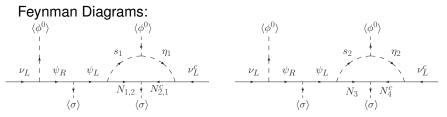


Figure: BR($\mu \rightarrow e + \gamma$) < $5.7 \times 10^{-13} \Rightarrow |f_{\mu i}|, |f_{ei}| < 10^{-2}$ ・ロト ・ 四ト ・ ヨト ・ ヨト э

Radiated Linear Seesaw



New particles content: $G_{SM} \times B - L$

Particles	Ψ_R	Ψ_L	N _R	N'_R	N_R''	η_1	S 1	η_2	S 2	σ
$SU(2)_L$	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	2	<u>1</u>	<u>2</u>	<u>1</u>	1
$U(1)_Y$	0	0	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0
$U(1)_{B-L}$	-1	0	$-\frac{1}{2}$	X	-1 - x	$-\frac{1}{2}$	$-\frac{1}{2}$	X	X	1

$$-L_Y = y_l \overline{L_l} \psi_R i \tau_2 \Phi^* + y \overline{\psi_L} \psi_R \sigma + h_\alpha \overline{N_{R\alpha}} \psi_L s_1 + f_{\alpha l} \overline{L_l^c} N_{R\alpha}^c i \tau_2 \eta_1^* + \frac{1}{2} Y_\alpha \overline{N_{R\alpha}^c} N_{R\alpha} \sigma + h \overline{N_R^c} \psi_L s_2 + f_l \overline{L_l^c} N_R^{\prime\prime c} i \tau_2 \eta_2^* + \frac{1}{2} Y \overline{N_R^{\prime\prime c}} N_R^\prime \sigma + h.c$$

no interplay Yukawa terms between N_R s and (N'_R, N''_R) .

Charge Assignment

x is fixed by anomalies cancelation for $[U(1)_{B-L}] \times [Gravity]^2$ $[U(1)_{B-L}]^3$:

$$3 + (-\frac{1}{2})N_1 + xN_2 + (-1 - x)N_2 + (-1)N_{\psi} = 0$$

$$3 + (-\frac{1}{2})^3N_1 + x^3N_2 + (-1 - x)^3N_2 + (-1)^3N_{\psi} = 0$$
(3)

Solution:

$$N_1 = 2,$$
 $N_2 = 1,$ $N_{\psi} = 1,$ $x = \frac{\sqrt{2} - 1}{2}$ (4)

partiles with B-L charge $-\frac{1}{2}$ can't decay to SM particles \leftarrow DM candidates.

particles with irrational B-L charge can't decay to SM particles \Leftarrow DM candidates.

A two-component dark matter model

Scalar Potential

$$\begin{split} V(\Phi,\sigma,\eta_1,s_1,\eta_2,s_2) &= -\mu_{\Phi}^2 \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 - \mu_{\sigma}^2 |\sigma|^2 + \lambda_{\sigma} |\sigma|^4 \\ &+ \mu_{\eta_1}^2 \eta_1^{\dagger} \eta_1 + \lambda_{\eta_1} (\eta_1^{\dagger} \eta_1)^2 + \mu_{\eta_2}^2 \eta_2^{\dagger} \eta_2 + \lambda_{\eta_2} (\eta_2^{\dagger} \eta_2)^2 \\ &+ \mu_{s_1}^2 |s_1|^2 + \lambda_{s_1} |s_1|^4 + \mu_{s_2}^2 |s_2|^2 + \lambda_{s_2} |s_2|^4 + \lambda_{s_1s_2} |s_1|^2 |s_2|^2 \\ &+ \lambda_{\eta_1 \Phi} (\Phi^{\dagger} \Phi) (\eta_1^{\dagger} \eta_1) + \lambda_{\eta_1 \Phi}' (\eta_1^{\dagger} \Phi) (\Phi^{\dagger} \eta_1) + \lambda_{\eta_2 \Phi} (\Phi^{\dagger} \Phi) (\eta_2^{\dagger} \eta_2) + \lambda_{\eta_2 \Phi}' (\eta_2^{\dagger} \Phi) (\Phi^{\dagger} \eta_2) \\ &+ \lambda_{\eta_1 \eta_2} (\eta_1^{\dagger} \eta_1) (\eta_2^{\dagger} \eta_2) + \lambda_{\eta_1 \eta_2} (\eta_1^{\dagger} \eta_2) (\eta_2^{\dagger} \eta_1) \\ &+ \lambda_{s_1 \Phi} |s_1|^2 (\Phi^{\dagger} \Phi) + \lambda_{s_1 \eta_1} |s_1|^2 (\eta_1^{\dagger} \eta_1) + \lambda_{s_1 \eta_2} |s_1|^2 (\eta_2^{\dagger} \eta_2) \\ &+ \lambda_{\sigma \Phi} |\sigma|^2 (\Phi^{\dagger} \Phi) + \lambda_{\sigma \eta_1} |\sigma|^2 (\eta_1^{\dagger} \eta_1) + \lambda_{\sigma \eta_2} |\sigma|^2 (\eta_2^{\dagger} \eta_2) \\ &+ \lambda_{s_1 \sigma} |s_1|^2 |\sigma|^2 + \lambda_{s_2 \sigma} |s_2|^2 |\sigma|^2 + \left[(\mu_1 s_1^{\dagger} \Phi^{\dagger} \eta_1 + \mu_2 s_2^{\dagger} \Phi^{\dagger} \eta_2 + h.c) \right] \end{split}$$

- no interplay mass term between (η_1, s_1) and (η_2, s_2)
- blue box: mixing between h and H
- red box: mixing between η_1 and $s_1(\eta_1 \text{ and } s_2)$

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \phi_r^{\rm o} \\ \sigma_r^{\rm o} \end{pmatrix} \qquad \sin 2\theta = \frac{2\lambda_{\sigma,\theta}v_{\theta}v_{\sigma}}{m_{H}^2 - m_h^2} \begin{pmatrix} A_{1,2}^{\rm o} \\ H_{1,2}^{\rm o} \end{pmatrix} = \begin{pmatrix} \cos\theta_{1,2} & -\sin\theta_{1,2} \\ \sin\theta_{1,2} & \cos\theta_{1,2} \end{pmatrix} \begin{pmatrix} \eta_{1,2}^{\rm o} \\ s_{1,2}^{\rm o} \end{pmatrix}, \quad \sin 2\theta_{1,2} = \frac{\sqrt{2}\mu_{1,2}v_{\phi}}{m_{A_{1,2}}^2 - m_{H_{1,2}}^2} \\ m_h^2 = \lambda_{\Phi}v_{\phi}^2 + \lambda_{\sigma}v_{\sigma}^2 - \sqrt{(\lambda v_{\phi}^2 - \lambda_{\sigma}v_{\sigma}^2)^2 + \lambda_{\sigma\Phi}^2v_{\phi}^2v_{\sigma}^2} \qquad m_{A_{1,2}}^2 = \frac{1}{2} \begin{pmatrix} m_{\eta_{1,2}}^2 + m_{s_{1,2}}^2 + \sqrt{(m_{\eta_{1,2}}^2 - m_{s_{1,2}}^2)^2 + 2\mu_{1,2}^2v_{\phi}^2} \\ m_H^2 = \lambda_{\Phi}v_{\phi}^2 + \lambda_{\sigma}v_{\sigma}^2 + \sqrt{(\lambda v_{\phi}^2 - \lambda_{\sigma}v_{\sigma}^2)^2 + \lambda_{\sigma\Phi}^2v_{\phi}^2v_{\sigma}^2} \qquad m_{H_{1,2}}^2 = \frac{1}{2} \begin{pmatrix} m_{\eta_{1,2}}^2 + m_{s_{1,2}}^2 - \sqrt{(m_{\eta_{1,2}}^2 - m_{s_{1,2}}^2)^2 + 2\mu_{1,2}^2v_{\phi}^2} \\ m_H^2 = \lambda_{\Phi}v_{\phi}^2 + \lambda_{\sigma}v_{\sigma}^2 + \sqrt{(\lambda v_{\phi}^2 - \lambda_{\sigma}v_{\sigma}^2)^2 + \lambda_{\sigma\Phi}^2v_{\phi}^2v_{\sigma}^2} \qquad m_{H_{1,2}}^2 = \frac{1}{2} \begin{pmatrix} m_{\eta_{1,2}}^2 + m_{s_{1,2}}^2 - \sqrt{(m_{\eta_{1,2}}^2 - m_{s_{1,2}}^2)^2 + 2\mu_{1,2}^2v_{\phi}^2} \\ m_H^2 = \lambda_{\Phi}v_{\phi}^2 + \lambda_{\sigma}v_{\sigma}^2 + \sqrt{(\lambda v_{\phi}^2 - \lambda_{\sigma}v_{\sigma}^2)^2 + \lambda_{\sigma\Phi}^2v_{\phi}^2v_{\sigma}^2} \qquad m_{H_{1,2}}^2 = \frac{1}{2} \begin{pmatrix} m_{\eta_{1,2}}^2 + m_{s_{1,2}}^2 - \sqrt{(m_{\eta_{1,2}}^2 - m_{s_{1,2}}^2)^2 + 2\mu_{1,2}^2v_{\phi}^2} \\ m_{H}^2 + \lambda_{\sigma}v_{\sigma}^2 + \sqrt{(\lambda v_{\phi}^2 - \lambda_{\sigma}v_{\sigma}^2)^2 + \lambda_{\sigma\Phi}^2v_{\phi}^2v_{\sigma}^2} \qquad m_{H_{1,2}}^2 = \frac{1}{2} \begin{pmatrix} m_{\eta_{1,2}}^2 + m_{s_{1,2}}^2 - \sqrt{(m_{\eta_{1,2}}^2 - m_{s_{1,2}}^2)^2 + 2\mu_{1,2}^2v_{\phi}^2} \\ m_{H}^2 + \lambda_{\sigma}v_{\sigma}^2 + \sqrt{(\lambda v_{\phi}^2 - \lambda_{\sigma}v_{\sigma}^2)^2 + \lambda_{\sigma\Phi}^2v_{\phi}^2v_{\sigma}^2} \qquad m_{H}^2 + \frac{1}{2} \begin{pmatrix} m_{\eta_{1,2}}^2 + m_{\eta_{1,2}}^2 - \sqrt{(m_{\eta_{1,2}}^2 - m_{\eta_{1,2}}^2)^2 + 2\mu_{\eta_{1,2}}^2v_{\phi}^2} \\ m_{H}^2 + \frac{1}{2} \begin{pmatrix} m_{\eta_{1,2}}^2 + m_{\eta_{1,2}}^2 \\ m_{\eta_{1,2}}^2 + m_{\eta_{1,2}}^2 \\ m_{\eta_{1,2}}^2 + m_{\eta_{1,$$

More looks on the model

The spontaneous breaking of B-L symmetry:

$$\sigma = \frac{v_{\sigma} + \sigma_0 + iG_{\sigma}}{2} \tag{5}$$

(日) (日) (日) (日) (日) (日) (日)

- The heavy states get masses via Yukawa interactions.
- Z' gets mass via Higgs mechanism.
- The origion of lepton number breaking term μ_L .
- SSB Dark side: $U(1)_{B-L} \longrightarrow Z_2 \times Z'_2$ symmetry with all inert particles are odd.

A residual symmetry stabilizing the DM candidates.

Neutrino Mass

$$m_
u = m_
u^I + m_
u^{II}$$

where

$$\begin{split} M^{I}_{\nu l l'} &= \frac{v_{\phi} \sin \theta_{1} \cos \theta_{1}}{16\pi^{2} \sqrt{2} M_{\psi}} y_{l} \sum_{i=1}^{2} h_{i} f_{i l'} m_{i} \Big[\frac{m^{2}_{A_{1}}}{m^{2}_{i} - m_{A_{1}}} \ln \Big(\frac{m^{2}_{A_{1}}}{m^{2}_{i}} \Big) - \frac{m^{2}_{H_{1}}}{m^{2}_{i} - m^{2}_{H_{1}}} \ln \Big(\frac{m^{2}_{H_{1}}}{m^{2}_{i}} \Big) \Big] + (l \leftrightarrow l') \\ M^{II}_{\nu l l'} &= \frac{v_{\phi} \sin \theta_{2} \cos \theta_{2}}{16\pi^{2} \sqrt{2} M_{\psi}} y_{l} h_{3} f_{l'} m_{\chi} \Big[\frac{m^{2}_{A_{2}}}{m^{2}_{\chi} - m^{2}_{A_{2}}} \ln \Big(\frac{m^{2}_{A_{2}}}{m^{2}_{\chi}} \Big) - \frac{m^{2}_{H_{2}}}{m^{2}_{\chi} - m^{2}_{H_{2}}} \ln \Big(\frac{m^{2}_{H_{2}}}{m^{2}_{\chi}} \Big) \Big] + (l \leftrightarrow l') \end{split}$$

benchmark points:

$$\begin{split} \mu_1 &= \mu_2 = 0.1 \text{ GeV}, y = h = f = 0.01, M_\psi = 300 \text{ GeV} \\ M_{N_{R1}} &= 149.5 \text{ GeV}, M_{N_{R2}} = 200 \text{ GeV}, M_\chi = 150 \text{ GeV} \\ M_{A_1^0} &= 300 \text{ GeV}, M_{\eta_1^\pm} = 270 \text{ GeV}, M_{H_1^0} = 1000 \text{ GeV} \\ M_{A_2^0} &= 700 \text{ GeV}, M_{\eta_2^\pm} = 690 \text{ GeV}, M_{H_2^0} = 62 \text{ GeV} \end{split} \Rightarrow \mathcal{M}_\nu \sim \mathbf{0.1} eV$$

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

LFV process

$$\mu \to \mathbf{e}\gamma: \quad \eta^{+} \text{ contribution}$$

$$\mathrm{BR}(\mu \to e\gamma) = \frac{3\alpha_{em}}{64\pi G_{F}^{2}} \left| \sum_{i=1}^{2} \frac{f_{i\mu}f_{ie}^{*}}{m_{\eta_{1}^{+}}^{2}} F\left(\frac{m_{N_{i}}^{2}}{m_{\eta_{1}^{+}}^{2}}\right) + \frac{f_{l}f_{l}^{*}}{m_{\eta_{2}^{+}}^{2}} F\left(\frac{m_{N''}^{2}}{m_{\eta_{2}^{+}}^{2}}\right) \right|^{2}$$

where

$$F(x) = \frac{1 - 6x + 3x^2 + 2x^3 - 6x^2 \ln x}{6(1 - x)^4}$$

For our benchmark point

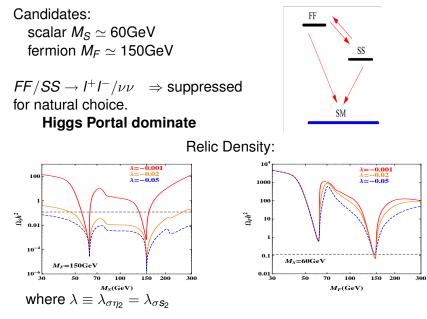
$$BR(\mu
ightarrow e\gamma) = 8.8 imes 10^{-14}$$

current bound:

$$BR(\mu
ightarrow e\gamma) < 5.7 imes 10^{-13} (90\% CL)$$

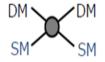
- "nature" choice: $f_{ei}, f_{\mu i}, f_{\tau i} \sim 0.01$
- ▶ hierarchal choice: $f_{ei}, f_{\mu i} \sim 0.01, f_{\tau i} \sim 1$
- special choice: nearly diagonal f matrix

Dark Scalar+ Dark Fermion Scenario



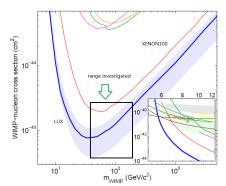
Direct Detection

DM scattering with nucleus



 $\sigma_{DM} \le 10^{-45} [cm^2] \quad M_D \sim 10^2 {
m GeV}$ Event rate

$$R\propto \sum n_i \langle \sigma
angle_i = \sum rac{
ho_i}{m_i} \langle \sigma
angle_i$$



(日) (日) (日) (日) (日) (日) (日)

Two component DM:

 $\frac{\epsilon_F}{M_F}\sigma_F + \frac{\epsilon_S}{M_S}\sigma_S < \frac{\sigma_{exp}}{M_{DM}} \qquad (\epsilon_F \equiv \frac{\Omega_F h^2}{0.12}, \quad \epsilon_S \equiv \frac{\Omega_S h^2}{0.12})$ In our benchmark point $\sigma_{SN}^{SI} = 1.62 \times 10^{-44} cm^2, \quad \sigma_{FN}^{SI} = 1.10 \times 10^{-46} cm^2$ The ϵ_S should be less than 4% to satisfy LUX bound

 $1.1 \times 10^{-47} cm^2/GeV$ (for $M_{DM} \in [30, 200]GeV$)

Constraints by Collider Machine

- ▶ $\sin \theta_0$: $\sin^2 \theta_0 = 0.09$ Current bound: $\sin^2 \theta_0 < 0.1(1505.03831)$ Future perspective: HL-LHC 4 × 10⁻², CEPC 2 × 10⁻³.
- Higgs invisible decay:

$$BR(h \rightarrow SS) \simeq 1.7\%$$
 ($M_s \simeq 60 GeV$)

Current bound: $BR_{h}^{lnv} < 37\%(1505.05516)$ Future perspective: 14TeV LHC 5%,HL-LHC 2% – 3%

► Z':
$$M_{Z'} = 4$$
TeV, $g_{B-L} = 0.5$
Current bound: LEP-II $M_{Z'}/g_{B-L} \ge 7$ TeV,
LHC $M_{Z'} > 2.95$ TeV $(g_{B-L} \simeq 0.7)$

Summary

radiated linear seesaw model

based on $G_{SM} \times U(1)_{B-L}$ small M_L generated at 1 loop level

2 component DM

charges restricted by anomaly-free condition stability guaranteed by residual $Z_2 \times Z'_2$

- The model can satisfy the current bound from LFV, relic density of DM, direct research of DM and collider machine.
- The detailed phenomenology including research of Z', Ψ and η[†]_{1,2} on collider machine will shows in the paper.