Charmed baryons and their interactions

Atsushi Hosaka RCNP, Osaka University

Workshop Heavy flavor and CP violation at Lanzhou, July 22-25, 2015

With Noumi, Shirotori, Kim, Sadato, Yoshida, Oka, Hiyama, Nagahiro, Yasui

Contents

1. Introduction
2. Structure: How @d modes appear in the spectrum 3. Productions

1. Introduction Particle data book (PDG)

				β_{31}	****	$\underline{2}$	ρ_{1}	****	2°	P_{9}	****	A:	****
Baryons				β_{3}	***	2	ha_{1}	****	E^{+}	$P_{\text {a }}$	****	A, (2585)*	***
				$5{ }^{11}$	****	1	\hat{R}_{12}	****	파530)	P_{2}	****	有(2525)*	***
				$日_{4}$	****	2[13s)	P12	***	-(1620)		*	(1, $(2248)^{4}$	*
				β_{3}	*	2 (1485)		*	2(1500)		***	A, (2000) ${ }^{*}$	***
N(10s0)	${ }^{11}$		A(1300)	5_{11}	**	I [1569]		**	- -1320) $^{\text {a }}$	D_{13}	***	(1, $(2740)^{*}$	***
$N(168)$	D_{15}	***	A(190s)	Fin	****	I (1585)	a_{2}	${ }^{*}$	- 12950$)$		***	I, (20ss)	***
N[1680)	Fis	***	4 (1910)	P_{13}	****	2 [1620)	SH_{1}	**	-(20)0]		***	2.(200)	***
$N(1700)$	D_{13}	***	$\Delta(1820)$	P_{3}	***	2 [1660]	P_{1}	***	-(2120)		$\stackrel{ }{*}$	L-(2000)	***
$N(1710)$	P_{11}	**	$4(1909)$	Das	***	I (1670)	D_{13}	****	- 422350$)$		**	$\because:$	***
N(1720)	P_{11}	***	Δ (1943)	D_{2}	${ }^{*}$	2 [16\%)		**	- [23m)		**	\pm	***
$N(1000)$	P_{11}	**	$\Delta(1809)$	F_{12}	****	$\underline{T}(1750)$	51	***	- $2(2500)$		*	\because	***
N(190]	F_{17}	${ }^{4 *}$	$\Delta(2000)$	Fs	**	2 (17ra)	P_{1}	*				IS	***
$N(2000) \mid$	F_{21}	${ }^{* *}$	$\Delta(2150)$	$5{ }_{51}$	*	I[7m]	D.	* $2 *$	5^{5}		****	H. 12481	***
$N(2000)$	D_{13}	4	$\Delta(2300)$	G_{w}	$\stackrel{\square}{6}$	I (1849)	R_{1}	$\stackrel{ }{*}$	¢¢2asoy		***	F, 1270]	***
N[200]	$5{ }_{31}$	4	Δ (2300)	Hn_{n}	**	$\mathrm{E}_{\text {(2mes) }}$	P_{1}	**	¢27noy		**	-4, (2013)	***
N[2100]	P_{12}	*	$\Delta(2980)$	D_{n}	*	2 (1045)	${ }_{\text {a }}$	****	[2.2475		**	$\mathrm{H}_{\text {(2909 }}$	*
N[2190]	6	***	$4(2300)$	F_{3}	$\stackrel{ }{*}$	$\underline{2}$ (1849)	0_{3}	***				-4, - $^{\text {ama }}$	***
N[2200]	0 is	8	Δ [200)	C_{m}	**	$\underline{12005]}$	St					(1)38s)	**
$N[2230]$	He_{0}	****	$\Delta(2070)$	H_{3}	***	E (2005)	FII	****				[-13000]	**
N(23s)	6	***	$\Delta(2790)$	I_{1}	**	2 (2000)	${ }^{3}$	**				E, (3123)	*
N(2000)		**	$\Delta(2 \mathrm{Ha)}$	$K_{\text {us }}$	**	\underline{z} (00es)	9	**				F_{5}	***
N[2700]		**				$\begin{aligned} & I(2109) \\ & I(2395) \end{aligned}$	61					$\theta_{0}^{\prime}(2770)^{2}$	***
			A N(1405)	51 5	***	2(2455)		**					
			(1529)	Da_{3}	****	2 [200]		**				\%	*
			(1600)	P)	***	$2(0005)$		*					***
			(160)	S_{10}	****	[1970)		*					***
			(160)	Da	***								4
			(1800)	51	***							45_{8}^{5}	***
			(1835]	Pa	***								
			(1895)	F	****								
			(1850]	D_{5}	****								
			N106]	Rs	*35*								
			(2000)		*								
			N2005		*								
			A2106]		****								
			(2112)	F_{58}	***								
			N(2)25		$\stackrel{ }{*}$								
			(2350)	Hm_{0}	***								
			N2sas		**								

timit umimoritu			$f\left(f^{c}\right)$					$f\left(F^{\prime}\right)$					
N-NOMS				(f)		49		$\begin{aligned} & * 5(15) \\ & * / 4 /(19) \end{aligned}$	$88^{4} 10^{-6}$				
			1-(2-+)	* κ^{*}	1/2(20^{-})	+ 0	90]		${ }^{\circ}$				
			0^{-710}	* κ^{*}	1/210-1		(il)	*x.109					
			17	*к]	1/20")		a0+1						
- 6 (100)	$0^{+}\left(D^{+}+1\right.$	* (\%1700)	1^{+1}	* κ]	1/210")	* ${ }^{\text {duchasi }}+$		* N(1)					
*,(\%mbly	$\mathrm{I}^{+}\left(1^{--}\right)$	*(1700)	$17\left(22^{+4}\right)$	K5100]	1/20+1			*xil\|					
* (172)	0^{-18}	- (canay		* $\mathrm{K}^{\text {¢ }}$ (198)	1/20)	*D. $8 \mathrm{sm} \mathrm{m}^{3}$ Buprasi+		*-					
	$a^{2}\left(s^{-+}\right)$	(1750)	$8^{*}(20+1$	* Kin 12 m)	1/2($\mathbf{1}^{+}$			**i2S					
* (6) ${ }^{(00)}$	$\mathrm{g}^{+6+y^{++1}}$	**(18x)	$\left.1710^{-+}\right)$	*K.(1400)	$1 / 21^{*}$)	804704							
	$\left.\mathrm{l}^{-1 \mathrm{~s}^{++}}\right]$		0+0+ ${ }^{+}$		1/20 $1 / 70$			*-150m					
	$0^{-}\left(10^{--7}\right.$	x(las3)	$33^{\prime}\left(2^{-4}\right)$	* K52430) 1/20*)									
- M, ${ }^{\text {a }}$	0^{-11+-7}	*-41830]	8^{-13}	* K $2140{ }^{\text {a }}$	$1 / 22^{+}$			д(\%ab)					
* 5 (1273)	$1^{+}\left(11^{+-3}\right.$	2(103)	$8^{+}(2-+1$	к(1)ev)	1/210-)			x(1045					
* 2(1760)	$1-1 a^{+}+3$ $a^{+} 12++1$	* Ninut	¢-4\% ${ }^{\text {a }}$	$\kappa(2 s \times 1)$ κ_{1} (159]	1/20-1			- 6 (1420)					
* S [1270	$a^{2}\left(12^{+}+1\right.$ $a^{2}(1)^{+}+1$	(avom	$8^{*} 01^{-7}$		$1 / 2\left(t^{\prime}\right)$			- Wincum					
* (123s)	$a^{2}\left(1^{++}\right)$ $a^{4}\left(10^{-+i}\right.$	60153)	$0^{4}(2++1$ $0^{+} 0+2$				Auther tums Vatisi Ved OKM Me tixtiencti						
* = 0 (176)		- S0\%60)	$0^{+}\left(2^{++}\right)$				$A(4) 50]$						
	$\left.1^{-10^{-1}} 18^{-+}\right]$	A(10m)	$8^{+}\left(3^{--}\right)$	*K (1/n) * K 91 nol	$\begin{aligned} & 1 / 22^{-}-1 \\ & \left.1 / 29^{-1}\right) \end{aligned}$	$\operatorname{lin}_{00^{\prime}} 121^{-} \mid$		- \|1048)					
($+2(1100)$	$1-12+*$ $a^{+} 18++1$	* [0039)	$5^{*}\left(12^{+}+\right.$ $0^{4}+3+1$			-tisrm Nim		$\square 5$					
- Cl1900	$1-18$ $a^{2}\left(D^{+}+1\right.$ $1-10$	- *(2000)	$0^{*}(2++)$ $1-(4++)$	*K,(11 к(1)	$\begin{aligned} & 1 / 2(2-1 \\ & 1 / 20^{-7} \end{aligned}$			6(15) 0^{+}					
* +, (1400)	3^{-18-+7}	- (nowa)	0^{+14+7}		1/20+)					* T15) $5^{-1}(1)$ *x.l\| $1 /$ - 8^{*}			
* *165)	$a^{4}\left(\mathrm{~s}^{-+}\right)$ $\mathrm{a}^{+}\left(a^{++}\right)$	$5(210)^{\text {a }}$	8^{-12-1}		$1 / x p^{+} 1$								
* C(1000)	$a^{+}\left(1^{++}\right)$	(crise)				bot rom simanatin $-+1.5-811$							
* - (1479)	a^{-11-7}	f(2150)	$0^{+} 02^{++1}$ $3+10$	K, (025a)	$\begin{aligned} & 1 / 2 a^{-1} \\ & 1 / 7 y^{2}+1 \end{aligned}$	* 0^{-1}		* Koill\|					
- (180)	$9^{2} 13++7$		${ }^{*} \times 1$			* 8 :	817	* 725)					
*-2(160)	l- $1^{-10^{+}}+1$ $1^{4} 11^{-1}$	¢12780)			1/29")	* $5,1 \mathrm{lmmP}$ 1/207)		ก10]					
	$1^{4}\left(1^{--7}\right.$ $a^{*}\left(5^{-+7}\right.$	(0200)			$\begin{aligned} & 1 / 2\left(4^{-1}\right) \\ & i^{\prime}\left(r^{\prime \prime}\right) \end{aligned}$	-5/Meso (1)		* - $_{\text {- }}$					
	a $a^{*}\left(s^{-+~}\right.$ $a^{*}\left(5^{++}\right)$	(17230)	$5^{*} 12$					* $*$ (09\%					
5 (18s)	$0^{3}\left(11^{+4}\right)$	ค(280)	$\begin{aligned} & 3^{4} 6=-7 \\ & 0^{2} 6++1 \end{aligned}$	Convo				* 71 15 *T145) * 71\|amid - T7.1003\|					
(1358)	$a^{+}(2++)$	(2100)	$s^{+}(4++)$			* 0_{5}^{1}	407						
A8931	$3^{4}\left(3^{-7}-7\right.$	Camol	$s^{4} 6$										
¢ (250)	$0^{-}\left(1 a^{+}-7\right.$	- [0]saj)	(2)										
$* *,(1600)$ $*-(150)$	$1-$	A(2ma)				FON $4 T$ CANEL DAITS							
2,(164) $6(16409$		Allenal	$8^{+}(6++1$										
**(1043)	$a^{4}\left(2 z^{-+}\right)$												
* *(1)	-	futher Stats											
* - ¢ (157)	$0^{-(3--)}$												

- Most baryons are light flavored qqq, mesons as q \bar{q}
- Can we see more heavy baryons, exotics?
- How multiquarks of new exotics behave?

J-PARC 50 GeV proton $\rightarrow 30 \mathrm{GeV}$ pion beam

Physics of charm hadrons

- Primarily single charm baryons, excited states
- Hidden charm baryons, pentaquark
- D, D* mesons and excited states
- Charmed nuclei

Proposal approved and physics discussions are going

- What we can learn from charmed baryons Qqq: the simplest system with qq
- How much they are produced, in particular, excited states

Correlations in multiquarks

Recent interests are triggered by Exotic hadrons

A SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN
California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q}. Baryons can now be constructed from quarks by using the combinations (qqq), qqqqq), etc., while mesons are made out of $(q \bar{q}),(q q \bar{q} \bar{q})$ etc. It is assuming that the lowest baryon configuration (qqq) gives just the represen-

Baryons

Mesons

qqq qqqqव̄
$q \bar{q}$ $q q \bar{q} \bar{q}$

LHCb found Pentaquarks

http://arxiv.org/abs/1507.03414
7-8 TeV pp collision $\longrightarrow \Lambda_{b}$
$\Lambda_{b} \longrightarrow J / \psi, p, K^{-}$

- What we can learn from charmed baryons Qqq: the simplest system with qq
- How much they are produced, in particular, excited states

2. Structure
3. Productions $\pi+N->D^{*}+\Lambda^{*}$
4. Structure: what do we expect to study?

A heavy quark distinguish the fundamental modes λ and ϱ
Place to look at $q q$ dynamics

Spectrum and WF's as M_{Q} is varied

$$
\begin{aligned}
& \text { Roberts-Pervin, IJMPA, 23, } 2817 \text { (2008) } \\
& \text { Yoshida, Sadato, Hiyama, Oka, Hosaka }
\end{aligned}
$$

- Model Hamiltonian

$$
\begin{aligned}
H= & \frac{p_{1}^{2}}{2 m_{q}}+\frac{p_{2}^{2}}{2 m_{q}}+\frac{p_{3}^{2}}{2 M_{Q}}-\frac{P^{2}}{2 M_{\text {tot }}} \\
& +V_{\text {conf }}(H O)+V_{\text {spin-spin }}(\text { Color }- \text { magnetic })+\ldots
\end{aligned}
$$

- Solved by the Gaussian expansion method

Negative parity states - p-wave excitations - $1 / 2^{-}, 3 / 2^{-}$

Negative parity states - p-wave excitations - $1 / 2^{-}, 3 / 2^{-}$

$M=m_{s}$		$------\Sigma \Sigma\left(3 / 2^{-}\right)$
	0.7	$\begin{array}{r} -\quad \Sigma\left(1 / 2^{-}\right) \\ \cdots----\quad \Lambda\left(3 / 2^{-}\right) \\ - \\ \hline \end{array}\left(1 / 2^{-}\right)$
------3	-0.6	
$\overline{-------1}$		
	-0.4	

$M=m_{c}$

Negative parity states -p -wave excitations $-1 / 2^{-}, 3 / 2^{-}$

Wave function

Mixing of $\quad \Lambda($ phys $)=c_{\lambda} \Lambda\left({ }^{2} \lambda\right)+c_{\rho} \Lambda\left({ }^{2} \rho\right)$

e.g. λ-mode dominant state: How much the other mode mixes?

SU(3)
Heavy quark

Intermediate summary

- Heavy quark spectroscopy will give more information on constituents
- Isotope shift may resolve two diquark modes

collective and internal

- Λ baryons may have more chance to see the two modes separately
- HQ singlet, doublet are also useful
- Systematic study from strange to heavy is useful

3. Productions

$$
\pi+N \rightarrow \quad D^{*}+\Lambda_{c} \text { reactions }
$$

Cross sections $\left(Y_{c} / Y_{S}\right)$ and Ratios $\left(Y_{\mathrm{c}}{ }^{*} / Y_{\mathrm{c}}\right)$

Strategy:

Forward peak (high energy) \rightarrow t-channel dominant Next figure

We look at:

(1) Absolute values
by $\left(\Lambda_{\mathbf{c}} / \Lambda_{s}\right)$ by the Regge model, $\boldsymbol{K}^{*}, \boldsymbol{D}^{*}$ Vector-Reggeon (2) Ratios of $B_{c}^{*}(\lambda$ modes $) / B_{c}$
by a one step process of $Q d$ picture for λ-mode

Pion-induced reaction

$$
\pi+p \rightarrow \quad D^{*}+B_{c}{ }^{*}
$$

Vector Reggeon dominance
 Sang-Ho Kim, in preparation

- Angular dependence prefers vector-Reggeon
- Energy dependence seems
- There is some discrepancy in the very forward region

D* meson productions

Relative rates of $\left(B_{\mathrm{c}}{ }^{*} / B_{\mathrm{c}}\right)$

One step process for $Q d \lambda$-mode

$$
t_{f i} \sim \vec{k}_{\pi} \times \vec{e} \cdot \vec{J}_{f i}
$$

$$
\sim\left\langle B_{c}^{*}\right| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i \bar{q}_{f f} \cdot \vec{x}}|N\rangle=\text { (Geometric) } \times \text { (Dynamic) }
$$

$$
D^{*} \sim \text { Transverse }
$$

Dynamical part ~ radial integral

$\mathrm{GS}\left\langle B_{c}(\mathrm{~S}\right.$-wave $\left.)\right| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i \vec{q}_{e f f} \cdot \vec{x}} \mid N(\mathrm{~S}$-wave $\left.)\right\rangle_{\text {radial }} \sim 1 \times \exp \left(-\frac{q_{e f f}^{2}}{4 A^{2}}\right)$
Excited states

$$
\begin{aligned}
& \left.\left\langle B_{c}(P \text {-wave })\right| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i_{e f f} \cdot \vec{x}} \mid N(\mathrm{~S} \text {-wave })\right\rangle_{\text {radial }} \sim\left(\frac{q_{e f f}}{A}\right)^{1} \times \exp \left(-\frac{q_{e f f}^{2}}{4 A^{2}}\right) \\
& \left.\left\langle B_{c}(D \text {-wave })\right| \vec{e}_{\perp} \cdot \vec{\sigma} e^{i \bar{q}_{e f f} \cdot \vec{x}} \mid N(\text { S-wave })\right\rangle_{\text {radial }} \sim\left(\frac{q_{e f f}}{A}\right)^{2} \times \exp \left(-\frac{q_{e f f}^{2}}{4 A^{2}}\right)
\end{aligned}
$$

Results

Charm $\quad k_{\pi}^{C M}=2.71[\mathrm{GeV}], k_{\pi}{ }^{L a b}=16[\mathrm{GeV}]$

	$\begin{gathered} \Lambda_{c}\left(\frac{1}{2+}\right) \\ 1.00 \end{gathered}$	$\begin{gathered} \hline \Sigma_{c}\left(\frac{1}{2}^{+}\right) \\ 0.02 \end{gathered}$	$\begin{gathered} \Sigma_{c}\left(\frac{3^{+}}{}\right) \\ 0.16 \end{gathered}$					
$\underline{l=1}$	$\Lambda_{c}\left(\frac{1}{2}{ }^{-}\right)$	$\Lambda_{c}\left(\frac{3^{-}}{}{ }^{-}\right)$	$\Sigma_{c}\left(\frac{1}{2}{ }^{-}\right)$	$\Sigma_{c}\left(\frac{3}{2}{ }^{-}\right)$	$\Sigma_{c}^{\prime}\left(\frac{1}{2}{ }^{-}\right)$	$\Sigma_{c}^{\prime}\left(\frac{3^{-}}{}{ }^{-}\right)$	$\Sigma_{c}^{\prime}\left(\frac{5}{2}\right)$	
	0.90	1.70	0.02	0.03	0.04	0.19	0.18	
$\underline{l=2}$	$\Lambda_{c}\left(\frac{3}{2}{ }^{+}\right)$	$\Lambda_{c}\left(\frac{5}{2}-\right)$	$\Sigma_{c}\left(\frac{3}{2}{ }^{+}\right)$	$\Sigma_{c}\left(\frac{5}{2}{ }^{+}\right)$	$\Sigma_{c}^{\prime}\left(\frac{1}{2}{ }^{+}\right)$	$\Sigma_{c}^{\prime}\left(\frac{3^{+}}{}{ }^{+}\right)$	$\Sigma_{c}^{\prime}\left(\frac{5}{2}\right)$	$\Sigma_{c}^{\prime}\left(\frac{5}{2}{ }^{+}\right)$
	0.50	0.88	0.02	0.02	0.01	0.03	0.07	0.07

Strange $\quad k_{\pi}^{C M}=1.59[\mathrm{GeV}], k_{\pi}{ }^{L a b}=5.8[\mathrm{GeV}]$

Expected charm production spectrum

Summary

- Charmed baryons

New platform to study quark dynamics

- J-PARC plans to study them
- Production rate: Charm/Strangeness: 10^{-4} or less
- Abundant excited states
- Decays are also helpful to know the structure We are currently working for details

4. Decays

Pion emission - quark model --on going

Things to be looked at:

- Pion emission ~ very near the threshold

Place to look at the two independent operators

$$
\begin{aligned}
& \bar{q} \gamma_{5} q \phi_{\pi}, \bar{q} \gamma^{\mu} \gamma_{5} q \partial_{\mu} \phi_{\pi} \\
& \vec{\sigma} \cdot \vec{p}_{i}, \vec{\sigma} \cdot \vec{p}_{f}(\vec{\sigma} \cdot \vec{q})
\end{aligned}
$$

Possible selection rules

ϱ-modes
Decays of baryons $=$ of diquarks

Possible selection rules

ϱ-modes
Decays of baryons $=$ of diquarks

Two conditions must be satisfied for baryons and for diquarks

$$
\begin{array}{ll}
\Lambda_{c}\left(1 / 2^{-}, \rho\right) \rightarrow \Sigma_{c}\left(1 / 2^{+}, G S\right)+\pi & \text { is not allowed } \\
d\left({ }^{3} P_{0}\right) \rightarrow d\left({ }^{3} S_{1}\right)+\pi
\end{array}
$$

Radiative decay: $1 / 2^{-} \rightarrow \quad 1 / 2^{+}$E1

Radiative decay: $5 / 2^{-} \rightarrow 1 / 2^{+}$M2, E3

λ mode
${ }^{3} \mathrm{~S}_{1}$ diquark 1^{+}

ϱ mode
${ }^{3} \mathrm{P}_{2}$ diquark 2^{-}

Aoki Hatsuda Ishii, Phys.Rev.Lett. 99 (2007) 022001
\# HAL QCD data are consistent with the quark Pauli effects.

$\mathrm{S}=0$		T. Inoue et al., (HAL QCD
1	[33]	
8 s	[51]	
27	[33], [51]	
$\mathrm{S}=1$		

8a	$[33],[51]$
10	$[33],[51]$
$10 *$	$[33],[51]$

Classification of SU(6) quark model

Baryon spectrum from the lattice, David Richard, Talk at YITP, HHIQCD, Feb. 2015

X (3872)

Discovery by Belle in 2003, followed by DO, CDF, BaBar. BES

X as a Hadronic molecule

Fermi Lab

What motivate us

- Quark model seem to work
- Multiquark configurations have been found
- How are they behave, and what are the essential degrees of freedom for hadrons?
- Charmed baryons Qqq are useful to study
- qq, yet another possible constituent

Difficult to study because of colorful and confined nature

2. Charmed baryons

2. Charmed baryons

Negative parity states - p-wave excitations - $1 / 2^{-}, 3 / 2^{-}$

$M=m_{c}$

