Search for $Z_c(3900)$ decays to $\omega \pi$ and Search for the isospin violating decay Y(4260)->J/ $\psi \eta \pi^0$

Beijiang LIU IHEP 3rd XYZ workshop, 2015

Search for $Z_c(3900)$ decays to $\omega \pi$

Introduction

Zc(3900):

- What we know we know: I=1,JP=1+; slightly above D*D threshold; decays to J/psi pi and D*D;
- What we know we don't know -- its nature
 - molecule?
 - tetraquark?
 - hadro-charmonium?
 - cusp?
 - triangle singularity?

Introduction (cont.)

Exploring new decay modes is crucial to ID the near threshold structures: genuine QCD states, dynamical generated, threshold effects, ...

Strong decays of charmonium-like states:

3 important modes

Hidden charm Open charm ccbar Annihilation

-- a unique signature

Involving with threshold effects, e.g.

Meson loop models: [PRL 111 132003, PLB 725 106] and references therein

ISPE model: [PRD88 036008] and references therein

Cusp: [PRD 91 034009, Europhys. Lett. 96, 11002]

LQCD studies provide theoretical support for the X(3872) [PRL 111 192991] but no evidence for Zc(3900) is found

[PLB 727 172, PRD 89 094506, PRD 91 914594,

arxiv:1410.8828, arxiv:1411.1389].

* Those studies were carried out on small volumes with unphysically heavy up and down quarks.

annihilation to light hadrons plays an important role in charmonium decays

 $\frac{\mathcal{B}(X(3872) \to p\bar{p})}{\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)} < 2.0 \times 10^{-3}.$ LHCb, Eur.Phys.J. C73 (2013) 2462

This limit challenges some of the predictions for the molecular interpretations of the X(3872)state and is approaching the range of predictions for a conventional $\chi_{c1}(2P)$ state [16, 17].

 $e^+e^- \rightarrow \omega \pi^+ \pi^- \rightarrow 2(\pi^+ \pi^-) \pi^0$

M(3π)

All 4 combinations/ event

Closest to ω

Μ(ω π)

The dots with error bars show the invariant mass distribution of $M(\omega \pi^{\pm})$ for $e^+e^- \rightarrow \omega \pi^+ \pi^-$ candidates @ 4230. The red histogram is for the ω sidebands. The green histogram shows the backgrounds from inclusive MC sample, which is dominantly from continuum.

No significant $Z_c \rightarrow \omega \pi$

- Fitting with acceptance weighted S-wave BW folded with Gaussian + ARGUS BG
 - No interference is considered

Summary

- No significant $Z_c \rightarrow \omega \pi$ is observed in 4230 data sets nor 4260 data sets @4230 : [BESIII Preliminary] $\sigma(e^+e^- \rightarrow Z_c^{\pm}\pi^{\mp}, Z_c \rightarrow \omega \pi) < 0.27 \text{ pb}$ @4260: [BESIII Preliminary] $\sigma(e^+e^- \rightarrow Z_c^{\pm}\pi^{\mp}, Z_c \rightarrow \omega \pi) < 0.18 \text{ pb}$
- Comparing to the sum of $\sigma(e^+e^- \rightarrow Z_c^{\pm} \pi^{\mp}, Z_c^{-} \rightarrow J/\psi\pi)$ and $\sigma(e^+e^- \rightarrow Z_c^{\pm} \pi^{\mp}, Z_c^{-} \rightarrow D^*D)$, the decay width, $Z_c^{-} \rightarrow \omega \pi$ is smaller than 0.2 % of Zc's total width.

<tens of keV

- The non-observation of $Z_c \rightarrow \omega \pi$ (a typical decay mode of a 1⁺ resonance) may indicate that the annihilation of ccbar in Zc is suppressed.
- No resonant structure in $J/\psi\pi$ was seen in $\overline{B}{}^0 \to J/\psi\pi^+\pi^-$ by BELLE and $\overline{B}{}^0 \to J/\psi\pi^+K^-$ by LHCb or in $\gamma p \to J/\psi\pi^+n$ by COMPASS.
- Complementary to the searches for Zc(3900) production, exploring new Zc(3900) decay mode provides a significant input to clarify its dynamical origin.

Search for the isospin violating decay Y(4260)->J/ψηπ⁰

Introduction

- Y(4260) does not fit into 1⁻⁻ quarkonium spectrum. D₁D molecule? hybrid charmonim? ...?
- Recent observations at BESIII:
 - Coupling to Z_c(3900) at 4.260 GeV is observed
 - □ Transition of $e^+e^- > \gamma X(3872)$ near Y(4260) is observed
- Search for the isospin violating decay of Y(4260) may shed a light on its nature.
 - \square e.g. X(3872)-> J/ $\psi\rho$, J/ $\psi\omega$ indicates large coupling to DD*

Theoretical works:

- Hadronium of Z_b and Z_c:
 - **Prediction of** Υ (5S)-> $\eta\pi^0$ + bottomonium, M.Voloshin, PRD 86 034013
- Tetraquark interpretation of Z_b and Z_c:
 - □ Prediction of $\Upsilon(5S)$ -> $\Upsilon(1S)\eta\pi^0$, A. Ali et al., PRL 104 162001, PRL 106 092002
 - □ Proposed search of $Z_c^+(1^{++})$ in Y(4260)->J/ $\psi\eta\pi^0$, L. Maiani et al., PRD 87 111102
- $D_1 \overline{D}$ molecule:
 - Prediction of Y(4260)->J/ψηπ⁰, X. Wu et al., PRD 89, 054038

- No signal of $J/\psi\eta\pi^0$ exceeding background is observed.
- Background is estimated from normalized 2D $\eta \pi^0$ sidebands 11

Upper Limit of Cross Section of $e^+e^- \rightarrow J/\psi\eta\pi^0$

- No signal of $J/\psi\eta\pi^0$ is observed.
- Preliminary upper limit at the 90% C.L. for σ^B (e⁺e⁻ -> J/ψηπ⁰) is set using profile likelihood method [NIM A551:493-503,2005].
- The systematic uncertainty of cross section measurement and background estimation are included.

$\sqrt{s} \; (\text{GeV})$	$\mathcal{L} (pb^{-1})$	$(1+\delta^r)$	$(1+\delta^v)$	$(\epsilon^{ee}Br^{ee} + \epsilon^{\mu\mu}Br^{\mu\mu})$ (%)	N^{obs}	N^{bkg}	N^{up}	σ_{UL}^{Born} (pb)
4.009	482	0.838	1.044	$2.1 \pm 0.1 (sys.)$	5	1	598.1	3.6
4.230	1007	0.844	1.056	$2.2 \pm 0.1 (sys.)$	12	11	592.9	1.7
4.260	804	0.847	1.054	$2.2\pm0.1(sys.)$	12	8	654.1	2.4
4.360	523	0.942	1.051	$2.2\pm0.1(sys.)$	5	4	283.2	1.4
4.420	1023	0.951	1.053	$2.3\pm0.1(sys.)$	5	6	342.7	0.9
4.600	567	0.965	1.055	$2.4 \pm 0.1 (sys.)$	6	3	418.4	1.9

 Preliminary upper limit is well above the prediction of D₁D molecule model (0.05 pb at 4.260 GeV) [PRD 89, 054038]

Search for Z_c^{0} -> J/ $\psi\eta$

It is also possible to set upper limits on $e^+e^- \rightarrow Z_c^0 \pi^0 \rightarrow J/\psi \eta \pi^0$. The number of observed events and number of estimated background events in the Z_c^0 signal region (3.850 <M($J/\psi \eta$) < 3.940 GeV/ c^2) is 7 and 4 ±2, respectively, at $\sqrt{s} = 4.230$ GeV, and 8 and 3 ± 2 , respectively, at $\sqrt{s} = 4.260$ GeV. The upper limit on $\sigma(e^+e^- \rightarrow Z_c^0 \pi^0 \rightarrow J/\psi \eta \pi^0)$ is determined to be 1.3 pb at $\sqrt{s} = 4.23$ GeV and 2.0 pb at $\sqrt{s} = 4.26$ GeV, where only the statistical uncertainty is given.

$$\frac{\sigma(e^+e^- \rightarrow Z_c^0 \pi^0 \rightarrow J/\psi \eta \pi^0)}{\sigma(e^+e^- \rightarrow Z_c^0 \pi^0 \rightarrow J/\psi \pi^0 \pi^0)} < 10\%, \text{ unlike X(3872)}$$

$$\frac{\Gamma(X(3872) \to J/\psi\,\omega)}{\Gamma(X(3872) \to J/\psi\,\pi^+\pi^-)} = 0.8 \pm 0.3.$$

Summary and outlook

- Null results of $Z_c^{\pm}(3900) \rightarrow \omega \pi^{\pm}$, $Y(4260) \rightarrow J/\psi \eta \pi^0$, $Z_c^0(3900) \rightarrow J/\psi \eta$ provide useful inputs to understand the nature of Y and Z.
- Using more data samples in the future, we may further pin down the puzzles by
 - Precision pole properties → more Y(4260) + sophisticated analysis
 - New decay modes/partners \rightarrow more Y(4260)
 - Patterns of production / Variations of lineshape →
 more data + smart choice of energy points

Thank you