Zc decays to open charm states at BESII

Xiao-Rui Lu (吕晓睿) UCAS, Beijing (中国科学院大学,北京)

(representing the BESIII collaboration)

Exotic quarkonium-like spectroscopy

QCD predicted statess

Zc+(3900) discovered at BESIII

Phys. Rev. Lett(2013) 252001

• Has electric charge **1**

from APS/Alan Stonebraker

 \rightarrow consists of at least four quarks of $c\bar{c}u\bar{d}$

the 3rd XYZ workshop

Nature of the exotic Zc⁺(3900)

Its mass lies close to the threshold of m(D)+m(D*)

meson molecule?

tetraquark?

and other scenarios ...

Is there an excited partner Z'c?
 The Zc's probably decay to (DD*)[±] and (D*D*)[±] final states, especially if exists as meson molecule

Do search in $e^+e^- \rightarrow \pi^{\pm}(D^{(*)}\overline{D}^*)^{\mp}$

✓ We analyze data @4.23 and 4.26 GeV taken at BESIII

- Energy point is optimized
 - clean backgrounds of D**
 - larger phase space for the three body final states

the 3rd XYZ workshop

Detector in good shape

Low beam background, low noise, all sub-detectors excellent!

- Improved efficiency of the BESIII software
- Excellent agreement between data and MC simulation
 - well controlled systematic uncertainty

the 3rd XYZ workshop

PRL112, 022001 (2014)

The Zc(3885)[±]

- Clear bumps are seen in the two isospin modes
- Separated Breit-Wigner fits give consistent resonance properties
- One-resonance hypothesis fit to the combined data set gives:

 $M = (3883.9 \pm 1.5 \pm 4.2) \text{ MeV/c}^2$ $\Gamma = (24.8 \pm 3.3 \pm 11) \text{ MeV}$

The Zc (3885)[±] and Zc(3900)[±] 525/pb data @4.26 GeV

	Zc(3885)(MeV)	Zc(3900)(MeV)
Mass	$3883.9 \pm 1.5 \pm 4.2$	$3899 \pm 3.6 \pm 4.9$
Width	$24.8 \pm 3.3 \pm 11.0$	$46 \pm 10 \pm 26$
Number of events	502 and 710	307 ± 48
Production cross section	$83.5 \pm 6.6 \pm 22 \text{pb}$	$13.5 \pm 2.1 \pm 4.8 \text{pb}$

The mass and width are consistent within $2\sigma!$

If this is $Z_c(3900)^+$, open charm decays are suppressed, since $\frac{\mathcal{B}(Z_c \to D^*\bar{D})}{\mathcal{B}(Z_c \to J/\psi\pi)} = 6.2 \pm 1.1 \pm 2.7$ Compared to e.g. $\frac{\mathcal{B}(\psi(4040) \to D^{(*)}D^{(*)})}{\mathcal{B}(\psi(4040) \to J/\psi\eta)} = 192 \pm 27$

Different dynamics in Y(4260)-Zc(3900) system!

Probe the *J*^P properties of the Zc(3885)

JP	L	$dN/d \cos\theta_{\pi} $
1+	S-wave	flat
0-	P-wave	$sin^2 \theta_{\pi}$
1-	P-wave	$1 + \cos^2 \theta_{\pi}$

Confirmation of $Z_c(3885)^{\pm}$ in $e^+e^- \rightarrow \pi^{\pm}(D\overline{D}^*)^{\mp}$ using double D tag method

- "Double D tags" or DT: reconstruct the bachelor π and the $D\overline{D}$ pair;
- Combined study of $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ and $e^+e^- \rightarrow \pi^+ D^- D^{*0}$;
- Using data samples of **1090 pb⁻¹** at 4.23GeV and **827 pb⁻¹** at 4.26GeV;

Simultaneous fit

double D tag method

$e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ $e^+e^- \rightarrow \pi^+ D^- D^{*0}$ 1090 pb⁻¹@4.23GeV 1090 pb⁻¹@4.23GeV Events/(4.0 MeV/c²) Events/(4.0 MeV/c²) BESI BESI 20 20 3.9 3.95 4.05 3.9 3.95 4.05 4.1 4.1 $M(D^0D^{*})$ (GeV/c²) $M(D^+\overline{D}^{*0}) (GeV/c^2)$ Events/(4.0 MeV/c²) 10 05 05 827 pb⁻¹@4.26GeV 827 pb⁻¹@4.26GeV Events/(4.0 MeV/c²) $Mass = 3884.3 \pm 1.2 \pm 1.5 MeV,$ Width = $23.8 \pm 2.1 \pm 2.6$ MeV BESI ₩S 3.9 3.95 3.9 3.95 4.05 4.05 41 41 $M(D^0D^*)$ (GeV/c²) $M(D^+\overline{D}^{*0}) (GeV/c^2)$ 13

- Dots with error bars: Combined data at \sqrt{s} =4.23GeV and at \sqrt{s} =4.26GeV;
- Solid Lines: Fits to the data using $J^P = 1^+$;
- Dashed curves: Fits to the data using $J^P = 0^-$;
- Dotted curves: Fits to the data using $J^P = 1^-$;
- The data agrees well with $J^P = 1^+$ and disagrees with $J^P = 0^-/1^-$.

agree with the JP hypothesis test based on single D tag method! the 3rd XYZ workshop

Results form single & double D reconstruction

	Double D tags (pre. rel.)	BESIII: Single D tags PRL 112, 022001 (2014)
$M_{\rm pole}~({\rm MeV}/c^2)$	$3884.3 \pm 1.2 \pm 1.5$	$3883.9 \pm 1.5 \pm 4.2$
$\Gamma_{ m pole}$ (MeV)	$23.8 \pm 2.1 \pm 2.6$	$24.8 \pm 3.3 \pm 11.0$
$\sigma(e^+e^- \to \pi^{\pm}Z_c(3885)^{\mp}) \times B(Z_c(3885)^{\mp} \to (D\overline{D}^*)^{\mp}) \text{ (pb)}$	88.0 ± 6.1 ± 7.9 @4.26GeV 106.8 ± 7.1 ± 9.5 @4.23GeV	83.5 ± 6.6 ± 22.0@4.26GeV

- ✓ Double tag method provides more precise measurement
 - low backgrounds
 - larger data set
 - signal yields: ~400 in $\pi^+D^0D^{*-}$ and ~600 in $\pi^+D^-D^{*0}$
- ✓ Single tag method in full data set @4.23 and 4.26 GeV
 - signal yields: ~1800 in $\pi^+D^0D^{*-}$ and ~2500 in $\pi^+D^-D^{*0}$

the 3rd XYZ workshop

15

Search for $Z_c(3885)^0$ in $e^+e^- \rightarrow \pi^0(D\overline{D}^*)^0$

Compared to the charged mode, backgrounds are high due to π^0 detection

Double D tag method is required:

- → Low signal efficiency: one thirds of the charged mode
- Combine the two isospin channels in one analysis

the 3rd XYZ workshop

16

Reconstruction of $e^+e^- \rightarrow \pi^{\pm}(D^*\overline{D}^*)^{\mp}$

 π^{-}

or y

<u></u>*T**0

D0

 \sim Partial reconstruction of the process $e^+e^- \rightarrow \pi^{\pm}$ (D*D*) ∞ tag a **D**⁺ meson in an event \ll find an additional charged π^{-} so reject backgrounds from $e^+e^- \rightarrow D^{(*)}D^{(*)}$ so use signature in the recoil mass spectrum of $D^+\pi^-$ to identify the process of $e^+e^- \rightarrow \pi^- D^{*+}D^{*0}$ so to improve the significance, at least one of the π_1^0/π_2^0 is detected study the mass spectrum of recoil π^{-} PRL 112, 132001 (2014)

To select signals of D*+D*⁰π⁻ PRL 112, 132001 (2014)

- π[±](D^{*}D^{*})[∓] peaks ~2.15GeV in the D⁺π⁻ recoil mass spectrum
- a data-driven method to understand combinatorial backgrounds: shape is well reproduced by the WS shape

wrong-sign (WS) events

- to conserve charge and charm number, D⁺ only associates with bachelor π⁻
- we assign a π^+ with D^+ to form WS events

- very evident peak
- signal to background ratio is optimized

the 3rd XYZ workshop

WS shape to describe the backgrounds PRL 112, 132001 (2014)

use control sample of the sidebands in $RM(D^+\pi)$ *spectrum*

YES!

Events / 3 MeV/c

Both control sample of $RM(D^+\pi)$ sidebands and MC simulation demonstrate.

19

Measurement of the enhancement

PRL 112, 132001 (2014) assume it as a particle, Zc(4025), and fit to the $\pi^$ recoil mass distribution

✓ Zc(4025) signal:

S-wave relativistic Breit-Wigner function with phasespace factor

- three-body process (PHSP)
 - combinatorial
 backgrounds: the WS shape

resonance parameter:

significance is > 10σ $\chi^2/ndf = 30.4/33 = 0.92$

 $m(Z_c(4025)) = 4026.3 \pm 2.6 \pm 3.7 \,\mathrm{MeV/c^2},$ $\Gamma(Z_c(4025)) = 24.8 \pm 5.6 \pm 7.7 \,\mathrm{MeV}.$

the 3rd XYZ workshop

The Zc(4020) and Zc(4025)

Observed Z⁺c(4020)

PRL113,212002 (2014)

Coupling to \overline{D}^*D^* is much larger than to πh_c if $Z_c(4025)$ and $Z_c(4020)$ are the same state.

	Z ⁺ c(4025)	Z ⁺ c(4020)
Mass (MeV)	4026.3±2.6±3.7	$4022.9 \pm 0.8 \pm 2.7$
Width (MeV)	24.8±5.6±7.7	$7.9 \pm 2.7 \pm 2.6$
$\frac{Br(Z_c^{\prime +} \to D^{*+}\overline{D}^{*0})}{Br(Z_c^{\prime +} \to \pi^+ h_c)} \sim 12$		

the 3rd XYZ workshop

Search for $Z_c(4025)^0$ in $e^+e^- \rightarrow \pi^0 (D^*\overline{D}^*)^0$

Again, double D tag method is required:

- → Low signal efficiency: one thirds of the charged mode
- Combine the two isospin channels in one analysis

Which is the nature of these states? Isospin triplets? Different decay channels of the same observed states? Other decay modes?

Reported charged charmonium-like states

Future steps to understand these new findings?

at BESIII

- Search for isospin partners for the charged Zc states
 - $Zc(3885)^{0} \rightarrow (D^{0}\underline{D}^{*0} + D^{+}D^{*-})$
 - $Zc(4025)^{0} \rightarrow (D^{*0}\underline{D}^{*0} + D^{*+}D^{*-})$
- Search for more decay modes : $\pi \psi$ ', $D^{(*)}D^{**}$, light hadrons ...
- PWA of the found charged Zc states: signal statistics is desired.
- Coupled channel analysis if we want to identify the same state
 - e.g., $Zc \rightarrow \pi J/\psi$, DD^* ; $Z'c \rightarrow \pi h_c$, D^*D^*

at other experiments

It will provide very valuable knowledge if we do searches in *B* decays

PWA of the open charm decay modes data @4.23&4.26GeV

- In current statistics of data set, we detect part of the final states πDD^* and πD^*D^* and leave the soft π/γ in D* decays unreconstructed.
 - This strategy brings in relatively much combinatoric backgrounds
- Background understanding is crucial, as backgrounds are not trivial
 - Data driven method is required, since MC simulations of these backgrounds are not reliable above 4 GeV region
 - Wrong sign technique only works for single D reconstruction
 → high backgrounds
- The soft π⁰ from D* decays need to be detected in πDD* and πD*D* modes
 - Decrease the signal efficiencies : signals will be ~1k; but high bkg.
- Complexity in constructing amplitudes:
 - Need to involve the kinematic distributions in D* decay final states πDD^* : 4 body final states multiple combinations of intermediate resonances. the 3rd XYZ workshop

Summary

- We observed two charged charmonium-like resonant structures, Zc(3885) and Zc(4025), in open charm final states DD* and D*D*, respectively.
- More efforts are needed to identify the truth of these new findings
- Still unknown issues:
 - Establish the isospin partners between the observed charged and netural Zc states
 - ✓ Are the states same? Zc(3900) and Zc(3885), Zc(4020) and Zc(4025);
 - → Coupled channel analysis
 - ✓ PWA: challenging
 - ✓ These Zc states in B and LHCb factories? Important!

Thanks!

Especially to the staff of BEPCII and the computing center, the funding agencies, and all the friends of BES!

Dalitz Plot

the 3rd XYZ workshop

Highly excited D states

	Mass(MeV)	Width(MeV)
D ₀ *(2400) ⁰	2318 ± 29	267 ± 40
D_0*(2400) ±	2403 ± 40	283 ± 40
D ₁ *(2420) ⁰	2421 ± 0.6	27.4 ± 2.5
$D_1^*(2420)^{\pm}$	2423.2 ± 2.4	25 ± 6
D ₁ *(2430) ⁰	2427 ± 40	384^{+130}_{-110}
D ₂ *(2460) ⁰	2462 ± 0.6	49.0 ± 1.3
$D_2^*(2460)^{\pm}$	2464.3 ± 1.6	37 ± 6
D (2550) ⁰	2539 ± 8	130 ± 18
D (2600)	2612 ± 6	93 ± 14
D*(2640) ±	2637 ± 6	< 15

 $e^+e^- \rightarrow \pi^{\pm} (D^*\overline{D}^*)^{\mp}$

The Zc(4430)

Argand diagram is consistent with the resonant behaviour

the 3rd XYZ workshop