Collecting more data for XYZ study at BESIII

苑长征

中国科学院高能物理研究所

3rd XYZ workshop, IHEP, Beijing

April 3, 2015

There are four interactions!

- It all started with the big bang! → Gravity governed by General Relativity (<u>it was good</u>!)
- Let there be light: and there was light! → Electromagnetic and weak interactions governed by Electroweak theory (it was good!)
- Let there be quarks and gluons! → strong interaction governed by QCD (<u>it was good at short</u> <u>distance only</u>!)
- Yes, let's study the strong interaction at long distance non-perturbative part of QCD! 2

The heavy quarkonium system

• At short distance Cornell model works pretty well

 $V(r) = -4\alpha_s/3r + kr$

The quarkonium system

- When distance becomes larger
 - Theory 1: let there be screened potential
 - Theory 2: let there be hybrids with excited gluons
 - Theory 3: let there be tetraquark states
 - Theory 4: let there be meson molecules
 - Theory 5: let there be cusps
 - Theory 6: let there be final state interaction
 - Theory 7: let there be coupled-channel effect
 - Theory 8: let there be mixing
 - Theory 9: let there be mixture of all these effectsTheories ...
- The world is not that good! Need data to develop theory.

R values/ψ states/Y states

Information between 4.0 & 4.7 GeV is very limited! BESIII can contribute! 6

We've collected 5/fb above 4 GeV

We collected 0.8/fb at >100 energy points

8

We've done a lot with these samples

- Observation of $Z_c(3900) \rightarrow \pi^{\pm} J/\psi, \pi^0 J/\psi, \overline{D}D^*$
- Observation of $Z_c(4020) \rightarrow \pi^{\pm}h_c, \pi^0h_c, \overline{D}^*D^*$
- Observation of $Z_c(4050) \rightarrow \pi \psi'$, $Y(4260) \rightarrow \gamma X(3872)$
- Observation of ψ(1³D₂)=<u>X(3823)</u>
- Observation of $e^+e^- \rightarrow \omega \chi_{cJ}$, $\phi \chi_{cJ}$, ηh_c
- Observation of $e^+e^- \rightarrow \eta J/\psi$, $\eta' J/\psi$, $\eta \psi'$
- Observation of $e^+e^- \rightarrow KKJ/\psi$ possibly from Y(4260)
- Search for radiative transitions $\gamma X(4140)$, $\gamma \eta_c$, $\gamma \chi_{cJ}$
- Search for Z_{cs} , search for $Z \rightarrow$ light hadrons
- Search for $\pi\pi h_c(2P)$, $\pi\pi\chi_{cJ}$, $\pi\pi\pi\chi_{cJ}$, $\gamma\eta_{c2}(^1D_2)$, ...
- Search for missing charmonium states
- Charm meson production and decay; Charm baryons
- ψ , $Y \rightarrow$ Light hadrons

We also found more questions to answer

- In the X sector
 - Where the X(3872) & X(3823) come from? Resonance decays or continuum production?
 - May other X states be produced and where?
- In the Y/ψ sector
 - Is the Y(4260) a single resonance? Is Y(4008) a real structure?
 - Does the Y(4360) decay only to $\pi\pi\psi$? Not to $\eta J/\psi$?
 - What is hidden behind $\pi\pi h_c$? Large coupling to spin-singlet, is a <u>hybrid</u> state observed?
 - Correlation between charm production & charmonium transitions?
 - May we observe the charmonium $3^{3}D_{1}$ state at ~4.5 GeV?
- In the Z sector
 - Are the Z_c and Z_c ' from resonance decays or continuum prod.?
 - Are there excited Z_c states and Z_{cs} states $[D^*D_s \text{ or } DD_s^*]$?
- In the C sector
 - Charm spectroscopy: D^* , D_0 , D_1 , D_2 , D_{s0} , D_{s1} , D_{s2} , ...
 - Charm decays: D_s and Λ_c samples are too small ...

Cross sections of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

BESIII: more complicated than Y4260+X?

Cross sections of $e^+e^- \rightarrow \pi^+\pi^-h_c({}^1P_1)$

 $e^+e^- \rightarrow \eta J/\psi$

Cross sections of $e^+e^- \rightarrow K^+K^-J/\psi$

e⁺**e**⁻→γX(3872) & ππX(3823) & ωχ_{c0}

We need data

- To understand
 - The ψ s
 - The Ys
 - The other XYZ particles via hadronic and radiative transitions of the ψs or/and Ys or continuum
 - The C-even charmonium states
- More data points between 4 GeV and 4.6 [4.8] GeV
- At each point, we need more luminosity

The plan

- Start from 4.0 GeV up to the maximum energy BEPCII can reach (≥ 4.6 GeV)
- 10 MeV step (slight adjust ~ thresholds, skip those 6 points we have already collected large samples)
- 500 pb⁻¹/point (from the size of the existing samples!)
- Year 1: 4.0-4.1 GeV
- Year 2: 4.1-4.2 GeV
- Year 3: 4.2-4.3 GeV
- Year 4: 4.3-4.4 GeV
- Year 5: 4.4-4.5 GeV
- Year 6: 4.5-4.6 GeV
- Years 7, 8, ...: >4.6 GeV

- ~ 4.5/fb per year!
- A bit conservative than BEPCII design luminosity (5/fb/yr)!
- Top-up injection allows more integrated luminosity!
- If "Year 1" = 2015, we finish 4.6 GeV data taking in 2021!

Belle II is coming

ISR produces events at all CM energies BESIII can reach

Summary

- Let's make a long term data taking plan for a better understanding of the strong interaction!
 - Start from 4.0 GeV to Emax of BEPCII
 - with 10 MeV step
 - 500/pb per point
 - Understand the XYZ, charmonia, and more!
- Please let us know if you have any new/crazy idea to use these data!

It is time to use a net!

It is time to use a net!

The end

Start from low energy

- Accelerator optimized at low energy, gain experience step by step to run at high energy
- No saturation in detector at low energy
- Also important sample for Ds and D studies
- Radiative correction is necessary in all cross section measurements
- Radiative correction at s depends on cross sections at s'<s

Samples for Ds physics

Charm proposal of 3/fb at 4.17 GeV for Ds

 $- N_{Ds} = 3/fbx0.92nb = 2.8M$

• 0.5/fb each 10 MeV at 4.02-4.04, 4.15-4.19 GeV=4/fb

 $- N_{Ds} = 1.5 / fbx 0.5 nb + 2.5 / fbx 0.9 nb = 3.0 M$

26