X(3872) Production

孟策 北京大学

3rd XYZ, 04月01日, 高能所

Outline

- Experimental information on X(3872)
- Production of X(3872)
 - As $D^0 \overline{D}^{*0}$ molecule state
 - As χ'_{c1}
 - As a mixing state of χ'_{c1} and $D^0 \overline{D}^{*0} + c.c.$
- > X(3872) production in B decays --- revisited
- Summary & Perspectives

Experimental information

1st observed by Belle Collaboration in

 $B \rightarrow J/\psi \pi^+ \pi^- K$ Belle'03

Mass, width and quantum numbers:

- $m_X = 3871.69 \pm 0.17 \text{ MeV}$ PDG'14 $|m_X - m_{D^0D^{*0}}| < 0.4 \text{MeV}$ CL = 90% Tomaradze *et al.*'12
- $\Gamma < 1.2 \text{ MeV}$ CL = 90% PDG'14
- $J^{PC} = 1^{++}$ LHCb'13

Experimental information

- Decay pattern:
- Observed decay modes:

 $J/\psi\rho, J/\psi\omega, D^0\overline{D}^{*0}/\overline{D}^0D^{*0}/D\overline{D}\pi, J/\psi\gamma, \psi'\gamma$

Relative ratios of these 4 modes: 1:1:10:0.3:1 PDG'14

Did not seen $\chi'_{c1}(3920 - 3960)$ in $B \rightarrow D\overline{D}^*K$ Belle'10

 $\checkmark \operatorname{Br}(X \to J/\psi\rho) = \operatorname{Br}(X \to J/\psi\pi^+\pi^-) \equiv \operatorname{Br}_0 < 8\%$

Experimental information

B-production:

 $1 \times 10^{-4} < Br(B \to X(3872)K) < 3.2 \times 10^{-4} BaBar'05$ Br(B \to X(3872)K)Br₀ = (8.6 ± 0.8) × 10⁻⁶ PDG'14 2.6% < Br₀ ≡ Br(X → J/\psi \pi^+ \pi^-) < 8%

- Hadro-production
- Large production rate:

 $\frac{\sigma(p\bar{p}\to X)\mathrm{Br}_{0}}{\sigma(p\bar{p}\to\psi')}\frac{\epsilon_{\psi'}}{\epsilon_{X}} = (4.8 \pm 0.8)\% \text{ CDF'04}$

• Similar behaviors to ψ' production

 $R = d\sigma(\psi')/d\sigma(X) \sim P_T$

Production of X(3872)

Molecule

- ▶ QED molecule: eg. $H_2 \sim pp$
- > QCD molecule:
 - Deuteron: $D \sim pn$

• $X(3872) \sim DD^*$: with annihilation channel

X(3872) produced as DD^* molecule

- Naively, $\sigma(X) \sim |R(0)|^2 \sim k_0^3$, $k_0 = \sqrt{2\mu_{DD^*}|E_b|} < 40 \text{ MeV}$
- Explicit calculations [Bignamini *et al*, PRL'09]: $\sigma_{CDF}^{th}(X) < 0.085 \text{ nb}$ v.s. $\sigma_{CDF}^{ex}(X)Br_0 = 3.1 \pm 0.7 \text{ nb}$
- DD^* scattering with cutoff Λ [Artoisenet & Braaten'10]:

$$\sigma_{\rm CDF}^{\rm th}(X) \sim \left(\frac{\Lambda}{m_{\pi}}\right)^2 \frac{k_0}{30 \text{ MeV}} \times 6 \text{ nb}$$

Similarly, for $Br(B \rightarrow XK)$ [Braaten, Lu, Kusunoki'05-06]

$$\left(\frac{\Lambda}{m_{\pi}}\right)^{2} \frac{k_{0}}{30 \text{ MeV}} \times 0.2 \cdot 10^{-4} \quad v.s. \quad [(1-3) \times 10^{-4}]^{\text{ex}}$$

$$\text{Need } \Lambda = 3m_{\pi}!$$

X(3872) produced as DD^* molecule

 $> Z_c(3900)$ production in *B* decay: [Belle'14]

 $Br(\bar{B}^0 \to Z_c^+ K^-) \times Br(Z_c^+ \to J/\psi \pi^+) < 9 \times 10^{-7}$ @ 90% C. L.

If $Br(Z_c^+ \rightarrow J/\psi \pi^+) = 0.1$, then

 $Br(\bar{B}^0 \to Z_c^+ K^-) < 10^{-5}$

- $\Lambda \leq m_{\pi}$ if $Z_c(3900)$ and X(3872) are similar in production
- The production rates of X(3872) would be smaller than the data by one order or more in magnitude.

X(3872) production as χ'_{c1}

- $\succ \chi'_{c1}$ production
- ✓ Hard production is very similar to that of $\chi_{c1}(1P)$
- $\sigma(\chi'_{c1}) \sim |R'_{2P}(0)|^2$ $R'_{2P}(0) \approx R'_{1P}(0)$ Eichten & Quigg'95
- For the $b\overline{b}$ sector: $pp \rightarrow \chi_b @$ LHC

$$\sigma_{\chi_b}(1P) \sim \sigma_{\chi_b}(2P) \sim \sigma_{\chi_b}(3P)$$

$$Br(B \to \chi_{c1} K) = (4 - 5) \times 10^{-4}$$

LHCb'14 & Han et al'14

PDG'14

• $\sigma(pp \rightarrow \chi_{c1}) \approx \sigma(pp \rightarrow \psi')$ Wang, Ma, Chao'10

 $\chi'_{c1} - D^0 \overline{D}^{*0}$ mixing model

Meng, Gao and Chao, PRD_87_074035 (2013) [hep-ph/0506222]

- Both the two components are substantial, and they may play different roles in the dynamics of X(3872).
- 1. The short distance (the *b* and *hadro*-) production and the quark annihilation decays of X(3872) proceed dominantly through the χ'_{c1} component.
- 2. The $D^0 \overline{D}^{*0}$ component is mainly in charge of the hadronic decays of X(3872) into $DD\pi/DD\gamma$ as well as $J/\psi\rho$ and $J/\psi\omega$.
- 3. The long distance coupled-channel effects between the two components could renormalize the short distance dynamics by a product factor $Z_{c\bar{c}}$, the equivalent probability of χ'_{c1} in X(3872).

X(3872) production as a mixing state

General factorization formula:

 $d\sigma (X(J/\psi \pi^{+}\pi^{-})) = \sum_{n} d\hat{\sigma} ((c\bar{c})_{n}) \cdot \langle O_{n}^{\chi'_{c1}} \rangle \cdot k, \qquad k = Z_{c\bar{c}} Br_{0}$ $p_{T}, m_{b}, m_{c} \gg m_{c} v, m_{c} v^{2}, \Lambda_{QCD} \gg \epsilon, \Gamma_{X} \sim 1 MeV$ $c\bar{c} \text{ production } \chi'_{c1} \text{ production } Binding \& Decay(LD)$

► B-procution: [Meng, Gao and Chao, PRD_87_074035 (2013) [hep-ph/0506222]] Br $(B \rightarrow \chi'_{c1}K)/Br(B \rightarrow \chi_{c1}K) = 0.75 \sim 1$

• Consistent with the fitting result: [Kalashnikova & Nefediev PRD'09] $Br^{fit}(B \rightarrow \chi'_{c1}K) = (3.7-5.7) \times 10^{-4}$ $Br(B \rightarrow X(J/\psi\pi^{+}\pi^{-})K) = (8.6 \pm 0.8) \times 10^{-6}$ PDG'14 $\therefore k = Z_{c\bar{c}}Br_0 = 0.018 \pm 0.004$ $(Z_{c\bar{c}} = 28\%-44\% \text{ for } Br_0 = 5\%)$

X(3872) as mixing state Production at $pp/p\bar{p}$ Colliders

Meng & Han & Chao, arXiv:1304.6710

- Similar to that of $\chi_{c1}(1P)$ $d\sigma(\chi'_{c1}) \approx d\sigma(\chi_{c1})$ [MWC'11]
- Consistent with B-production $k = 0.014 \pm 0.007$ $(0.018 \pm 0.004)_{B-pro}$
- Consistent with the P_T spectrum
 [CMS'13]

$$\chi^2/3 = 0.17$$

 $e^+e^- \rightarrow \psi^n \rightarrow \gamma X(3872)$

Meng & Li & Chao, in preparation

m _i /MeV	Γ_{tot}^i /MeV	Γ^i_{ee} /keV
4260 [1]	100	0.5
4160	100	0.83
4040	80	0.86

[1] $\psi(4260) = \psi(4S)$ Li & Chao'09

• Molecule models: $DD_1(4260) \rightarrow \gamma[DD^*(3872)]$. Guo et al'13

$$Br(Y \to \gamma X[J/\psi \pi \pi]) \sim \frac{50 \text{ keV}}{100 \text{ MeV}} Br_0 \sim 2.5 \times 10^{-5}$$
$$\frac{Br(Y \to \gamma X[J/\psi \pi \pi])}{Br(Y \to J/\psi \pi \pi)} \sim 5 \times 10^{-3} \qquad \text{BES'13}$$
$$\Gamma_{ee} \cdot Br(Y \to J/\psi \pi \pi) \sim 6 \text{ eV} \Rightarrow \text{Need } \Gamma_{ee} \sim 1 \text{ keV!}$$

 $e^+e^- \rightarrow \psi^n \rightarrow \chi_{cI}(2P)$

Meng & Li & Chao, in preparation

- $\sigma > 0.15 \text{ pb} @ 4170 \text{ MeV}$
- $\sigma(e^+e^- \rightarrow \gamma \chi_{c2}'(3930)) \sim 50 \text{ pb } @4060 \text{ MeV}$ Br $(\chi_{c2}' \rightarrow D\overline{D}) \sim 70\%$

•
$$\sigma(e^+e^- \rightarrow \gamma \chi'_{c0}) \sim 50 \text{ pb } @4170 \text{ MeV}$$

Assuming $\chi'_{c0} = X(3915) \& \Gamma_{tot}(\chi'_{c0}) = 10 \text{ MeV}$ Br $(\chi'_{c1} \rightarrow \gamma \psi') \sim 1\%$

X(3872) production in B decays --- revisited

 $B \rightarrow \chi_{c1}^{(\prime)} K$ in QCD factorization

Meng, Gao and Chao, PRD'13; Meng and Chao, in preparation

- Vertex corrections ~ $R'_P(0) \cdot F^{B \to K}(m^2_{\chi_c})$
- Spectator corrections ~ $\int_0^1 dx \frac{\Phi_B(x)}{x} \int_0^1 dy \frac{\Phi_K(y)}{y^2}$

End point singularity $\sim \frac{m_B}{\lambda_B} \int_0^1 dy \frac{6y(1-y)}{y^2}$ $\Rightarrow \frac{m_B}{\lambda_B} \ln \frac{m_B}{\Lambda_h} \qquad \Lambda_h \sim 500 \text{ MeV}$

Violet factorization but numerical important

 $B \rightarrow \chi_{c1}^{(\prime)} K$ in QCD factorization

Meng and Chao, in preparation

${ m Br} imes 10^4$	λ	PDG data [3]	
	$300 { m MeV}$	$200 { m ~MeV}$	
$B^0 o \chi_{c1} K^0$	1.79	3.56	$\boxed{3.93\pm0.27}$
$B^0 o \chi_{c1}^\prime K^0$	1.78	3.65	
$B^+ o \chi_{c1} K^+$	1.93	3.84	4.79 ± 0.23
$B^+ ightarrow \chi_{c1}^\prime K^+$	1.91	3.93	

• $\lambda_B = 200$ MeV: favored by fits in $B \rightarrow \pi \pi, \pi \rho, \dots$

•
$$R_{2P/1P} = \frac{\operatorname{Br}(B \to \chi_{c1}'K)}{\operatorname{Br}(B \to \chi_{c1}K)} \approx 1$$

Almost independent to any parameters, such as λ_B , Λ_h

Based on the factorization assumption

Can be generalized to other *B* decay modes

X(3872) production in B decays

Meng and Chao, in preparation

• $\operatorname{Br}(B \to X(J/\psi \pi^+ \pi^-) \dots) = \operatorname{Br}(B \to \chi'_{c1} \dots) \cdot k$

• Assuming
$$R_{2P/1P} = \frac{\operatorname{Br}(B \to \chi'_{c1} \dots)}{\operatorname{Br}(B \to \chi_{c1} \dots)} = 1$$

Br(B⁺ → $\chi_{c1}K^+$) = (4.79 ± 0.23) × 10⁻⁴ PDG'14 Br(B → $X(J/\psi\pi^+\pi^-)K$) = (8.6 ± 0.8) × 10⁻⁶ PDG'14 $\therefore k = Z_{c\bar{c}}Br_0 = 0.018 \pm 0.002$

X(3872) production in B decays

Meng and Chao, in preparation

$X(J/\psi\pi^+\pi^-)$	${ m Br} imes 10^6$ / predictions	${ m Br} imes 10^6$ /data
$B^0 \to X K^0$	7.1 ± 0.9	4.3 ± 1.3 PDG'14
$B^+ \to XK^+$	8.6 ± 0.8	8.6 ± 0.8 PDG'14
$B^0 \rightarrow X K^+ \pi^-$	6.8 ± 1.0	7.9 ± 1.4 Belle'15
$B^+ \to X K^0 \pi^+$	9.9 ± 1.2	10.6 ± 3.1 Belle'15
$B^0 \to X K^{*0}$	4.4 ± 0.6	4.0 ± 1.5 Belle'15
$B^+ \to XK^{*+}$	5.4 ± 1.2	
$B^0 \to X \pi^0$	0.20 ± 0.05	
$B^+ \to X \pi^+$	0.40 ± 0.10	
$B_s \to X\phi$	3.6 ± 0.6	

Further remarks on the factorization assumption

Meng and Chao, in preparation

$$\succ R_{K^*}(H) = \frac{\operatorname{Br}(B \to HK^*) \times \operatorname{Br}(K^* \to K^+ \pi^-)}{\operatorname{Br}(B \to HK^+ \pi^-)}$$

• $R_{K^*}(\psi') = 0.68 \pm 0.01$ v.s. $R_{K^*}(X) = 0.34 \pm 0.09$

Belle'15: ".....X(3872).....in marked contrast to ψ' case."

• While

$$R_{K^*}(J/\psi) = 0.69 \pm 0.05$$
 Belle'14
 $R_{K^*}(\chi_{c1}) = 0.42 \pm 0.06$ PDG'14

Nontrivial confirmation of the factorization assumption!

Further remarks on the factorization assumption Meng and Chao, in preparation

$$\succ R_{B_S/B}^V(H) = \frac{\operatorname{Br}(B_S \to H\phi)}{\operatorname{Br}(B \to HK^*)} \Rightarrow 1$$

(In the heavy quark & chiral limit)

$$R_{B_s/B}^V(J/\psi) = 0.81 \pm 0.08$$
$$R_{B_s/B}^V(\psi') = 0.90 \pm 0.12$$
$$R_{B_s/B}^V(\chi_{c1}) = 0.83 \pm 0.13$$

Then we predict

$$Br(B_s \to X(J/\psi\pi^+\pi^-)\phi) \sim 4 \times 10^{-6}$$

Further remarks on the factorization assumption Meng and Chao, in preparation

 $\succ R_{B_s/B}^P(H) = \frac{\operatorname{Br}(B_s \to H\eta^{(\prime)})}{\operatorname{Br}(B \to HK)} \Rightarrow 0.5$

(Assuming 50% of $\eta^{(\prime)}$ is $s\bar{s}$)

$$R^{P}_{B_{S}/B}(J/\psi) = 0.46 \pm 0.08 \qquad (0.39 \pm 0.06)$$
$$R^{P}_{B_{S}/B}(\psi') = 0.53 \pm 0.15$$

Then one can predict

$$Br(B_s \to \chi_{c1}\eta^{(\prime)}) \sim 2 \times 10^{-4}$$
$$Br(B_s \to X(J/\psi\pi^+\pi^-)\eta^{(\prime)}) \sim 4 \times 10^{-6}$$

Comparing with molecule model

$$\succ R^{n/c} = \frac{\operatorname{Br}(B^0 \to XK^0, XK^+\pi^-, \dots)}{\operatorname{Br}(B^+ \to HK^+, XK^0\pi^+, \dots)} \xrightarrow{data} 0.5 - 0.75$$

- Molecule model [Braaten, Lu, Kusunoki'05-06] $R^{n/c} < 0.1 \sim 1/N_c^2$
- Mixing model

$$R^{n/c} = R^{n/c}(\chi_{c1}) = 0.7 - 0.8$$

- Pattern in different B decay modes
 - Similar to χ_{c1} , but not ψ'
 - Quite confusing in the molecule models

Summary & perspectives

- > Data favor the mechanism that the X(3872) is produced at short distance mainly through the χ'_{c1}
 - Large production rates
 - Universality of $k = Z_{c\bar{c}} Br_0 = 0.018 \pm 0.002$
 - Similar patterns to χ_{c1}
 - ✓ P_T spectrum in pp collision @ LHC
 - $\checkmark R_{K^*}(X) \approx R_{K^*}(\chi_{c1})$
 - $\checkmark R^{n/c} \sim 0.5 0.75$

Summary & perspectives

 \succ Partners of X(3872): Molecule model: π $\overline{D}/\overline{B}$ $\checkmark X_2(4012) \sim D^*D^*$ $I^{PC} = 2^{++}$ Nieves&Valderrama'12 $\checkmark X_h(10580) \sim BB^*$ $I^{PC} = 1^{++}$ Guo et al'13 $H_{c\bar{c}}$ • Mixing model: ח ✓ No X_2 unless $X_2 = \chi'_{c2} = Z(3930)$ ✓ No X_b unless $X_b = \chi_{b1}''(10510 - 10520)$ LHCb'14

Thank you!

Back Up

χ'_{c1} or molecule: Decay pattern

$\succ \chi'_{c1}$ decay modes

• Radiative decay modes

	Barnes & Godfry'04	Barnes et al'05	Li & Chao'09
$\Gamma_{\psi\gamma}/{ m keV}$	11	59	45
$\Gamma_{\psi'\gamma}/{ m keV}$	64	88	60
$\Gamma_{\psi'\gamma}/\Gamma_{\psi\gamma}$	5.8	1.5	1.3

 $\chi'_{c1} \rightarrow \gamma \psi'$ node-allowed; $\chi'_{c1} \rightarrow \gamma J/\psi$ node-surppressed

- Light hadron decay mode $\Gamma(\chi'_{c1} \rightarrow LHs) \sim \Gamma(\chi_{c1} \rightarrow LHs) \sim 0.6 \text{ MeV}$
- Coupled-channel induced decay modes Meng & Chao'07 $\Gamma(DD^*/D^0\overline{D}{}^0\pi) \sim 0.5\text{-1 MeV}, \quad \Gamma(J/\psi\rho(\omega)) \sim 50\text{-100 keV}$ $\operatorname{Br}_0 \equiv \operatorname{Br}(X \to J/\psi\pi^+\pi^-) \sim 5\%$

χ'_{c1} or molecule: Decay pattern

- Molecule Decay pattern
- $DD\pi$ decay mode [Swanson; Voloshin; Fleming, mehen,] $\Gamma(X \to D^0 \overline{D}{}^0 \pi) \sim 2\Gamma(D^{*0} \to D^0 \pi) \sim 100 \text{ keV}$
- Radiative decays: [Swanson'04]

 $\frac{\Gamma(X \to J/\psi\gamma) \approx 8 \text{ keV}}{\Gamma(X \to \psi'\gamma)} \approx 0.03 \text{ keV}$ $\frac{\Gamma(X \to \psi'\gamma)}{\Gamma(X \to D^0 \overline{D}{}^0 \pi)} \sim 10^{-4} \quad v.s. \quad (10^{-1})_{ex} \quad [\text{PDG'14}]$

• $J/\psi\rho(\omega)$ decay mode [Swanson'04] $\Gamma(X \rightarrow J/\psi\rho(\omega)) \sim 1-2 \text{ MeV}$

χ'_{c1} or molecule: Decay pattern

- Molecule Decay pattern
- Radiative decays: additional remarks

β/GeV^{-2}	<i>R/</i> fm	$\Gamma_{J/\psi\gamma}$ /keV	$\Gamma_{\psi'\gamma}$ /keV	$\Gamma_{\psi ho}$ /keV
0.4	0.31	13.4	3	
3	0.84	0.7	0.17	50
10	1.55	0.18	0.05	

Specrum: Charmonium

Quark-level picture

Quark-pairs creation \Rightarrow Screening the linear potential

⇒ Screened (unquenched) potential model [Chao & Ding & Qin'92]

> Hadron-level picture

Coupled-Channel models \Rightarrow mixing between $H_{c\bar{c}}$ and $D\bar{D}$

Which have been considered even in the Cornell model [E. Eichten et al'78].

Specrum: Screened potential model

Li & Chao, PRD_79_094004 (2009)

86	State	Expt.	Theor.	of ours	Theor. c	of Ref.[5]
			Mass	$\langle r^2 angle^{rac{1}{2}}$	NR	GI
1S	$J/\psi(1^3{ m S}_1)$	3096.916 ± 0.011	3097	0.41	3090	3098
	$\eta_{ m c}(1^1{ m S}_0)$	2980.3 ± 1.2	2979		2982	2975
2S	$\psi'(2^3\mathrm{S}_1)$	3686.093 ± 0.034	3673	0.91	3672	3676
	$\eta_c^\prime(2^1{ m S}_0)$	3637 ± 4	3623		3630	3623
3S	$\psi(3^3{ m S}_1)$	4039 ± 1	4022	1.38	4072	4100
	$\eta_{ m c}(3^1{ m S}_0)$		3991		4043	4064
4S	$\psi(4^3{ m S}_1)$	4263^{+8}_{-9}	4273	> 1.87	4406	4450
	$\eta_{ m c}(4^1{ m S}_0)$		4250		4384	4425
5S	$\psi(5^3\mathrm{S}_1)$	4421 ± 4	4463	2.39		16
	$\eta_{c}(5^{1}\mathrm{S}_{0})$		4446			
6S	$\psi(6^3 S_1)$		4608	2.98		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	$\eta_c(6^1\mathrm{S}_0)$		4595			
1P	$\chi_2(1^3\mathrm{P}_2)$	3556.20 ± 0.09	3554	0.71	3556	3550
	$\chi_1(1^3\mathrm{P}_1)$	3510.66 ± 0.07	3510		3505	3510
	$\chi_0(1^3\mathrm{P}_0)$	3414.75 ± 0.31	3433		3424	3445
	$h_c(1^1\mathrm{P}_1)$	3525.93 ± 0.27	3519		3516	3517
$2\mathbf{P}$	$\chi_2(2^3\mathrm{P}_2)$ ($3929 \pm 5 \pm 2$	3937	1.19 (3972	3979
	$\chi_1(2^3\mathrm{P}_1)$		3901)	3925	3953
	$\chi_0(2^3\mathrm{P}_0)$		3842		3852	3916
	$h_c(2^1\mathrm{P}_1)$		3908		3934	3956

Specrum: SPM v.s. CCM

Li & Meng & Chao, PRD_80_014012 (2009)

- > SPM \approx CCM in the global features.
- CCM is more adept in investigating the open-charmed threshold effects. (Especially for the 2P states)

Specrum: S-wave threshold v.s. X(3872)

Li & Meng & Chao, PRD_80_014012 (2009)

 $M - M_0 + \Pi(M) = 0 \qquad \Pi = \sum_{BC} \int d^3p \, \frac{\left| \left\langle BC, \vec{p} \middle| H_{QPC} \middle| \psi_0 \right\rangle \right|^2}{E_{BC}(\vec{p}) - M - i\epsilon}$ $\left|\left\langle BC, \vec{p} \middle| H_{QPC} \middle| \psi_0 \right\rangle\right|^2 \sim \Gamma(\psi \to BC) \qquad \psi_0 \qquad BC$ ψ_0 $\Pi(M)$ $\sim (M - M_R - M_C)^{\frac{2L+1}{2}}$ $E = M - M_R - M_C \Rightarrow 0$ \blacktriangleright S-wave threshold effect: L = 0MeV $\Pi(E) \sim \sqrt{E}, \ \mathrm{d}\Pi(E)/\mathrm{d}E \sim 1/\sqrt{E}$ $-\operatorname{Re}\Pi_{\chi_{c1}'}(M)$ -140 -160 Aass shift \Rightarrow S-wave cusp -180 -200 \Rightarrow "attracting" the mass of the bare -220 -240 state to the threshold $M - M_0(\chi'_{c1})$ -260 -280 • $M_{\chi'_{c1}} \sim th_{DD^*}$: -300 -320 $\Delta M \sim 15 \text{ MeV} \Leftrightarrow \Delta \text{Re}\Pi \sim 70 \text{ MeV}$ 3840 3870 3810 3900 3930 3960 3990 4020 Physics mass $\Leftrightarrow \Delta M_0 \sim 85 \text{ MeV}$