

Feng-Kun Guo

#### Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

#### The 3rd *XYZ* Workshop, 01.04–03.04.2015, IHEP

Based on:

FKG, C. Hanhart, Q. Wang, Q. Zhao, Phys. Rev. D 91, 051504(R) (2015) [arXiv:1411.5584[hep-ph]]

- **1** New charmonium(-like) states and two kinds of interpretations
  - 2 Models of cusp effects
- **(3)** Distinguishing a physical state from a cusp:  $Z_c(3900)$  as an example

#### 5 Summary

## New charmonium(-like) states and two kinds of interpretations

#### **Charmonia spectrum**









#### Near-threshold prominent structures — X(3872)

• X(3872) Belle, PRL91(2003)262001



 Discovered in B<sup>±</sup> → K<sup>±</sup>J/ψππ, mass extremely close to the D<sup>0</sup>D̄<sup>\*0</sup> threshold

 $M = (3871.69 \pm 0.17) \ {\rm MeV}$ 

$$M_{D^0} + M_{D^{*0}} = (3871.80 \pm 0.12) \text{ MeV}$$

•  $J^{PC} = 1^{++}$  LHCb (2013)

 $\Rightarrow$  *S*-wave coupling to  $D\bar{D}^*$ 

• Observed in the  $D^0 \overline{D}^{*0}$  mode as well

BaBar, PRD77(2008)011102

#### Near-threshold prominent structures — X(3872)

- X(3872) Belle, PRL91(2003)262001 b) 35 Events / ( 0.005 GeV ) BELLE 3.82 3.84 3.86 3.88 3.9 3.92 M(J/ψ ππ) (GeV) Events/2 MeV/c<sup>2</sup> X(3872) All  $\overline{D}^{*0}D^0$  modes 10 6 2 3.88 3 92 3 98 39 D<sup>0</sup> Invariant Mass (GeV/c<sup>2</sup>)
- Discovered in B<sup>±</sup> → K<sup>±</sup>J/ψππ, mass extremely close to the D<sup>0</sup>D̄<sup>\*0</sup> threshold

$$M = (3871.69 \pm 0.17) \text{ MeV}$$

$$M_{D^0} + M_{D^{*0}} = (3871.80 \pm 0.12) \text{ MeV}$$

•  $J^{PC} = 1^{++}$  LHCb (2013)

 $\Rightarrow$  *S*-wave coupling to  $D\bar{D}^*$ 

• Observed in the  $D^0 \overline{D}^{*0}$  mode as well

BaBar, PRD77(2008)011102

#### Near-threshold prominent structures — X(3900)



• Discovered by BESIII and Belle in  $e^+e^- \rightarrow \pi\pi J/\psi$  at  $\sqrt{s} = 4.26$  GeV

Recall: the vector state Y(4260)

- A structure in  $e^+e^- \rightarrow \pi^{\pm} [D\bar{D}^*]^{\mp}$  as well
- Mass from Breit-Wigner fits is close to the  $D\bar{D}^*$  threshold

$$M = (3888.7 \pm 3.4) \text{ MeV}$$

assuming the two structures have the same origin

•  $Z_c(4020)$ 

Solution Second in  $e^+e^- \to \pi^{\pm}\pi^{\mp}h_c$ Second Secon

Solution Close to the  $D^*\bar{D}^*$  threshold:  $M = (4023.9 \pm 2.4) \text{ MeV}$ 

•  $Z_b(10610)$  and  $Z_b(10650)$ 

$$\begin{split} & \blacksquare \text{ Discovered in 5 different channels:} \\ & \Upsilon(10860) \to \pi \pi \Upsilon(1S, 2S, 3S) / \pi h_b (1P, 2P) \\ & \blacksquare \text{ Belle, PRL108(2012)122001} \\ & \blacksquare \text{ Observed in } \Upsilon(10860) \to \pi^{\pm} [B^{(*)} \bar{B}^*]^{\mp} \text{ well} \\ & \blacksquare \text{ Belle, arXiv:1209.6450[hep-ex]} \\ & \blacksquare M_{Z_b(10610)} \simeq M_B + M_{B^*}, \quad M_{Z_b(10650)} \simeq 2M_{B^*} \end{split}$$

•  $Z_c(4020)$ 

Image: Second system $e^+e^- \rightarrow \pi^{\pm}\pi^{\mp}h_c$ BESIII, PRL111(2013)242001Image: Second system $e^+e^- \rightarrow \pi^{\pm}[D^*\bar{D}^*]^{\mp}$ BESIII, PRL112(2014)132001

Solution Close to the  $D^*\bar{D}^*$  threshold:  $M = (4023.9 \pm 2.4) \text{ MeV}$ 

•  $Z_b(10610)$  and  $Z_b(10650)$ 

$$\begin{split} & \texttt{ISCOVERED in 5 different channels:} \\ & \Upsilon(10860) \to \pi \pi \Upsilon(1S, 2S, 3S) / \pi h_b (1P, 2P) \\ & \texttt{Belle, PRL108(2012)122001} \\ & \texttt{ISCOVERD IN } \Upsilon(10860) \to \pi^{\pm} [B^{(*)} \bar{B}^*]^{\mp} \texttt{ well } \\ & \texttt{Belle, arXiv:1209.6450[hep-ex]} \\ & \texttt{ISCOVERD IN } M_{Z_b(10610)} \simeq M_B + M_{B^*}, \quad M_{Z_b(10650)} \simeq 2M_{B^*} \end{split}$$

#### Two kinds of interpretations (I)

- Poles in the S-matrix: genuine physical states
  bound states (real axis, 1st Riemann sheet (RS) of the complex energy plane)
  virtual states (real axis, 2nd RS)
  resonances (2nd RS)
- The origins of the poles can be different:  $\mathbf{w}$  normal  $Q\bar{Q}$ 
  - hybrid states
  - 🔊 tetraquarks
  - hadronic molecules
  - 🖙 hadro-charmonia / hadro-bottomonia



#### **Two kinds of interpretations (I)**

- Poles in the S-matrix: genuine physical states
   bound states (real axis, 1st Riemann sheet (RS) of the complex energy plane)
   virtual states (real axis, 2nd RS)
   resonances (2nd RS)
- The origins of the poles can be different:  ${}^{\mbox{\tiny \mbox{\tiny \mb}\mbox{\tiny \mbox{\tiny \mb}\mbox{\!\mb}\mbox{\tiny \mbox{\tiny \mbox{\tiny \mbox{\tiny \mb}\mb}\mbox{\tiny \mbox{\tiny \mbox{\tiny \mb}\mbox{\!\mb}\mbox{\tiny \mbox{\tiny \mb}\mbox{\!\mb}\mbox{\!\mb}\mbox{\!\mb}\mbox{\!\mb}\mbox{\!\mb}\mbox{\!\mb}\mbox{\!\mb}\mb}\mbo\mbx{\tiny \mbo\mb}\mb}\mbox{\!\mb}\mbox{\!\mmbox{\mbox{\tiny \mmbox{\m\$ 
  - hybrid states
  - tetraquarks
  - hadronic molecules
  - 🖙 hadro-charmonia / hadro-bottomonia



#### Two kinds of interpretations (II)

• Cusps due to kinematical effect:

there is always a cusp at an S-wave threshold if they couple. Unitarity  $\Rightarrow$ 



Analyticity  $\Rightarrow$  dispersion relation:  $\mathcal{A}(s) = \frac{1}{2\pi i} \int_{s_0}^{\infty} ds' \frac{\operatorname{disc} \mathcal{A}(s')}{s' - s - i\epsilon}$ 

#### Can we distinguish them?

#### Two kinds of interpretations (II)

• Cusps due to kinematical effect:

there is always a cusp at an S-wave threshold if they couple. Unitarity  $\Rightarrow$ 



Analyticity  $\Rightarrow$  dispersion relation:  $\mathcal{A}(s) = \frac{1}{2\pi i} \int_{s_0}^{\infty} ds' \frac{\operatorname{disc} \mathcal{A}(s')}{s' - s - i\epsilon}$ 

• Can we distinguish them?

## Models of cusp effects

#### Cusp models — Bugg

- Bugg speculated that the X(3872) could be a cusp effect PLB598(2004)8 but no calculation
- Then he realized in 2008 that such a cusp model could not reproduce the data for X(3872) in the  $J/\psi\rho$  and  $D\bar{D}^*$  channels, a pole is needed JPG35(2008)075005

• For the  $Z_b(10610, 10650)$ 

• could produce a narrow peak by u

$$\operatorname{Re} T(s) = \frac{1}{\pi} \oint_{s_{th}} ds' \frac{g^2 \rho(s')}{s' - s}, \quad \rho(s) = \frac{2q_{cm}(s)}{\sqrt{s}} FF(s)$$
$$FF(s) = \exp\left(-q_{cm}^2(s)R^2/3\right)$$

with R = 1.41 fm (1/R = 0.14 GeV)

#### Cusp models — Bugg

- Bugg speculated that the X(3872) could be a cusp effect PLB598(2004)8 but no calculation
- Then he realized in 2008 that such a cusp model could not reproduce the data for X(3872) in the  $J/\psi\rho$  and  $D\bar{D}^*$  channels, a pole is needed JPG35(2008)075005
- For the  $Z_b(10610, 10650)$



• could produce a narrow peak by using

$$\operatorname{Re} T(s) = \frac{1}{\pi} \oint_{s_{\text{th}}} ds' \frac{g^2 \rho(s')}{s' - s}, \quad \rho(s) = \frac{2q_{\text{cm}}(s)}{\sqrt{s}} FF(s)$$
$$FF(s) = \exp\left(-q_{\text{cm}}^2(s)R^2/3\right)$$

Feng-Kun Guo (UniBonn)

EPL96(2011)11002

- 0.5 Re 1 ↑(5S 0 10.63 -0.5 -0. .5 10.605 10.66 10.64  $\pi$ Mass (GeV) Mass (GeV)
- could produce a narrow peak by using

XYZ

- Bugg speculated that the X(3872) could be a cusp effect • PLB598(2004)8 but no calculation
- Then he realized in 2008 that such a cusp model could not reproduce the data for X(3872) in the  $J/\psi\rho$  and  $D\bar{D}^*$  channels, a pole is needed JPG35(2008)075005
- For the  $Z_b(10610, 10650)$



$$\operatorname{Re} T(s) = \frac{1}{\pi} \oint_{s_{\text{th}}} ds' \frac{g^2 \rho(s')}{s' - s}, \quad \rho(s) = \frac{2q_{\text{cm}}(s)}{\sqrt{s}} FF(s)$$
$$FF(s) = \exp\left(-q_{\text{cm}}^2(s)R^2/3\right)$$
with  $R = 1.41 \text{ fm} \quad (1/R = 0.14 \text{ GeV})$ 

2 (1)

EPL96(2011)11002

1 1

0

#### Cusp models — Swanson

• Swanson's model for both  $Z_c$  and  $Z_b$  states

PRD91(2015)034009



• Impressive agreement with data by adjusting 2 parameters for each channel



Feng-Kun Guo (UniBonn)

#### Cusp models — Chen, Liu, Matsuki

### D.-Y.Chen, X.Liu, PRD84(2011)094003; PRD84(2011)034032; Chen, Liu, Matsuki, PRD84(2011)074032; PRD88(2013)036008; PRL110(2013)232001; ...



13/37

- S. Blitz, R. Lebed, arXiv:1503.0480 [hep-ph]
  - They proposed cusp effects due to diquark-antidiquark "thresholds"
  - But diquarks and antidiquarks are NOT asymptotic states and cannot go on-shell, thus cannot produce any cusp!

## Distinguishing a physical state from a cusp: $Z_c(3900)$

#### Cusp effects are well-known

- Opening of an *S*-wave threshold can produce a structure. What can be learned?
- Cusp effect has been well-known for a long time:
  - $\square$  example of the cusp in  $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$
  - the strength of the cusp is determined by the interaction strength!

Meißner, Müller, Steininger (1997); Cabibbo (2004); Colangelo, Gasser, Kubis, Rusetsky (2006); ...



#### $Z_c(3900)$ as an example (I)

• Logic:

first, fit to data with the one-loop expression which produces a cusp; then, try to understand the implications of the resulting parameter values

• Example:  $Y(4260) \rightarrow D\bar{D}^*\pi$ :

$$\mathcal{A}_{1\text{-loop}} = g_Y \left[ 1 - C \, G_\Lambda(E) \right]$$

regularize the loop with a Gaussian form factor with a cutoff  $\Lambda$ 

$$G_{\Lambda}(E) = \int \frac{d^3q}{(2\pi)^3} \frac{f_{\Lambda}(q)}{E - m_1 - m_2 - q^2/(2\mu)}, \quad f_{\Lambda}(q) = \exp\left(-\frac{2q^2}{\Lambda^2}\right)$$

three parameters:  $g_Y, C, \Lambda$ 

#### $Z_c(3900)$ as an example (I)

• Logic:

first, fit to data with the one-loop expression which produces a cusp; then, try to understand the implications of the resulting parameter values

• Example:  $Y(4260) \rightarrow D\bar{D}^*\pi$ :

$$\mathcal{A}_{1\text{-loop}} = g_Y \left[ 1 - C \, G_\Lambda(E) \right]$$

regularize the loop with a Gaussian form factor with a cutoff  $\Lambda$ 

$$G_{\Lambda}(E) = \int \frac{d^3q}{(2\pi)^3} \frac{f_{\Lambda}(q)}{E - m_1 - m_2 - q^2/(2\mu)}, \quad f_{\Lambda}(q) = \exp\left(-\frac{2q^2}{\Lambda^2}\right)$$

three parameters:  $g_Y, C, \Lambda$ 



#### $Z_c(3900)$ as an example (II)



- Implicit assumption of using g<sub>Y</sub> [1 C G<sub>Λ</sub>(E)] as the decay amplitude: the DD̄\* interaction is perturbative
- The two-loop contribution is large  $\Rightarrow$  nonperturbative  $CG_{\Lambda}(E_{\text{th}}) = -1.3!$
- Resumming all the bubbles by  $\frac{g_Y}{1 + C G_{\Lambda}(E)}$

with the parameters determined from the 1-loop fit gives a bound state pole very close to the threshold (binding energy: 0.6 MeV)

#### $Z_c(3900)$ as an example (II)



- Implicit assumption of using g<sub>Y</sub> [1 C G<sub>Λ</sub>(E)] as the decay amplitude: the DD̄\* interaction is perturbative
- The two-loop contribution is large  $\Rightarrow$  nonperturbative  $C G_{\Lambda}(E_{\text{th}}) = -1.3!$
- Resumming all the bubbles by  $g_Y = \frac{g_Y}{1 + C G_\Lambda(E)}$

with the parameters determined from the 1-loop fit gives a bound state pole very close to the threshold (binding energy: 0.6 MeV)

#### $Z_c(3900)$ as an example (II)



- Implicit assumption of using g<sub>Y</sub> [1 C G<sub>Λ</sub>(E)] as the decay amplitude: the DD̄\* interaction is perturbative
- The two-loop contribution is large  $\Rightarrow$  nonperturbative  $C G_{\Lambda}(E_{\text{th}}) = -1.3!$
- Resumming all the bubbles by  $\frac{g_Y}{1 + C G_{\Lambda}(E)}$

with the parameters determined from the 1-loop fit gives a bound state pole very close to the threshold (binding energy: 0.6 MeV)

#### $Z_c(3900)$ as an example (III)

• For perturbative interaction, we need

120 100 Events / 4 MeV 80 60 40 20 0 3.90 3.88 3.92 3.94 3.96 3.98 4.00  $m_{D^0 D^{*-}}$  [GeV]

 $|C G_{\Lambda}(E_{\rm th})| \ll 1$ 

Black curve: up to 1 loop with  $C G_{\Lambda}(E_{\text{th}}) = -1/2$ ,

#### no narrow peak any more!

• Conclusion: A pronounced near-threshold peak in the elastic channel cannot be explained by just a kinematical cusp effect

#### $Z_c(3900)$ as an example (III)

• For perturbative interaction, we need

 $|C G_{\Lambda}(E_{\rm th})| \ll 1$ 120 100 Events / 4 MeV 80 60 40 20 3.88 3.90 3.92 3.94 3.96 3.98 4.00  $m_{D^0 D^{*-}}$  [GeV]

Black curve: up to 1 loop with  $C G_{\Lambda}(E_{\text{th}}) = -1/2$ , no narrow peak any more!

• Conclusion: A pronounced near-threshold peak in the elastic channel cannot be explained by just a kinematical cusp effect



• A near-threshold peak in inelastic channel cannot distinguish a cusp effect from a pole

#### Naive fit with resummed amplitude



has a bound state pole with a binding energy of 1.6 MeV  $[C = 0.92 \text{ fm}^2]$ 

• Caution:

more complications in a realistic fit, e.g.,

possible effect of triangle singularity, data for angular distribution ...

#### Naive fit with resummed amplitude



#### or a virtual state pole with the same mass

 $[C = 0.68 \text{ fm}^2]$ 

• Caution:

more complications in a realistic fit, e.g.,

possible effect of triangle singularity, data for angular distribution . .

#### Naive fit with resummed amplitude



or a virtual state pole with the same mass

 $[C = 0.68 \text{ fm}^2]$ 

• Caution:

more complications in a realistic fit, e.g.,

possible effect of triangle singularity, data for angular distribution ...

# Hadronic molecular candidates: X(3872), Y(4260) and $Z_c(3900)$

#### X(3872), Y(4260) and $Z_c(3900)$ (I)

- Suppose that the X(3872), Y(4260) and Z<sub>c</sub>(3900) are hadronic molecules:
  S X(3872): J<sup>PC</sup> = 1<sup>++</sup>, DD̄\*
  Y(4260): J<sup>PC</sup> = 1<sup>--</sup>, D<sub>1</sub>(2420)D̄ [two D<sub>1</sub>'s, should be the narrow one]
  Z (3900): J<sup>PC</sup> = 1<sup>+-</sup>, DD̄\*
- Features of hadronic molecules:
   spin partners with similar fine splitting of their components

$$M_{D_{s1}(2460)} - M_{D_{s0}^*(2317)} \simeq M_{D^*} - M_D \simeq M_{Z_c(4020)} - M_{Z_c(3900)}$$

small, strongly to their components. If the binding energy is small,

$$g^2 \approx 16\pi (1-Z)(m_1+m_2)^2 \sqrt{\frac{2E_B}{\mu}} \le 16\pi (m_1+m_2)^2 \sqrt{\frac{2E_B}{\mu}} = g_{\rm h.m.}^2$$

1 - Z: compositeness

can decay through the decays of their componentsseemingly unrelated processes may be related; ...

#### X(3872), Y(4260) and $Z_c(3900)$ (I)

- Suppose that the X(3872), Y(4260) and Z<sub>c</sub>(3900) are hadronic molecules:
  State X(3872): J<sup>PC</sup> = 1<sup>++</sup>, DD̄\*
  Y(4260): J<sup>PC</sup> = 1<sup>--</sup>, D<sub>1</sub>(2420)D̄ [two D<sub>1</sub>'s, should be the narrow one]
  Z(3900): J<sup>PC</sup> = 1<sup>+-</sup>, DD̄\*
- Features of hadronic molecules:
   spin partners with similar fine splitting of their components

$$M_{D_{s1}(2460)} - M_{D_{s0}^*(2317)} \simeq M_{D^*} - M_D \simeq M_{Z_c(4020)} - M_{Z_c(3900)}$$

so couple strongly to their components. If the binding energy is small,

$$g^2 \approx 16\pi (1-Z)(m_1+m_2)^2 \sqrt{\frac{2E_B}{\mu}} \le 16\pi (m_1+m_2)^2 \sqrt{\frac{2E_B}{\mu}} = g_{\rm h.m.}^2$$

1 - Z: compositeness

can decay through the decays of their componentsseemingly unrelated processes may be related; ...



#### X(3872), Y(4260) and $Z_c(3900)$ (II)

Wang et al, PRL111(2013)132003; Cleven et al, PRD90(2014)074039; FKG et al, PLB725(2013)127

• Production of X(3872) and  $Z_c(3900)$  in Y(4260) decays



• Loops are enhanced when the binding energies are small:

$$\mathcal{A} \sim \mathcal{O}\left(\frac{v^5}{(v^2)^3}\right) V_{D_1 D^*}(q_{\pi/\gamma}) = \mathcal{O}\left(\frac{1}{v}\right) V_{D_1 D^*}(q_{\pi/\gamma})$$

S-wave vertices for couplings to Y(4260), X(3872) and  $Z_c(3900)$ 

- reference of the second stress of the second stress
- ${}^{m{ extsf{scalar}}}$  power counting: three-momentum  $\sim \mathcal{O}\left(v
  ight)$ , energy  $\sim \mathcal{O}\left(v^2
  ight)$

oop measure : 
$$v^5$$
, propagator :

#### X(3872), Y(4260) and $Z_c(3900)$ (II)

Wang et al, PRL111(2013)132003; Cleven et al, PRD90(2014)074039; FKG et al, PLB725(2013)127

• Production of X(3872) and  $Z_c(3900)$  in Y(4260) decays



• Loops are enhanced when the binding energies are small:

$$\mathcal{A} \sim \mathcal{O}\left(\frac{v^5}{(v^2)^3}\right) V_{D_1 D^*}(q_{\pi/\gamma}) = \mathcal{O}\left(\frac{1}{v}\right) V_{D_1 D^*}(q_{\pi/\gamma})$$

S-wave vertices for couplings to Y(4260), X(3872) and  $Z_c(3900)$ 

- $\square$  intermediate mesons are nonrelativistic. v: velocity
- so power counting: three-momentum  $\sim \mathcal{O}(v)$ , energy  $\sim \mathcal{O}(v^2)$

loop measure : 
$$v^5$$
, propagator :  $\frac{1}{v^2}$ 

#### Explicit check of the power counting

Check the 1/v with explicit calculation of the three-point loop function (normalized to 1/v at an arbitrary point) for  $Y(4260) \rightarrow Z_c(3900)\pi$ :



- power counting is well satisfied
- a large enhancement to the reaction rate

#### X(3872), Y(4260) and $Z_c(3900)$ (III)

If these three states are hadronic molecules, then

- the  $Z_c(3900)$  can be easily produced in the Y(4260) decays, in line with the BESIII and Belle observations
- Prediction:

FKG et al, PLB725(2013)127

the X(3872) can be easily produced in  $Y(4260) \rightarrow \gamma X(3872)$ 

BESIII observation of  $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma J/\psi \pi^+\pi^-$  at  $\sqrt{s} = 4.26$  GeV:



BESIII, PRL112(2014)092001

#### New predictions: $X_2(4013)$

Assuming the X(3872) as a  $1^{++} D\bar{D}^*$  bound state, then

• heavy quark spin symmetry  $\Rightarrow$ very likely, a 2<sup>++</sup>  $D^* \overline{D}^*$  bound state  $X_2(4013)$  predicted in many papers

• decay dominantly into  $D\bar{D}$  and  $D\bar{D}^* + c.c..$ decay width calculated

M. Albaladejo, FKG, C. Hidalgo-Duque, J. Nieves, M. Pavón Valderrama, arXiv:1504.0xxx [hep-ph]



large uncertainty, but of the order of a few MeV

• for BESIII, if search for the  $X_2(2013)$  in  $e^+e^- \rightarrow \gamma D\bar{D}$ , then the best energy region is 4.4 – 4.5 GeV FKG, U.-G. Meißner, Z. Yang, PLB740(2015)42

## Summary

#### Summary

- There are always cusps at S-wave thresholds. Near-threshold peaks (cusps) may provide information on interaction strength
- To distinguish a cusp from a pole, one needs to study the elastic channel. A pronounced narrow peak in line shape of the elastic channel cannot be explained by just the kinematical cusp. It requires a pole
- Hadronic molecular interpretation of the X(3872), Y(4260) and  $Z_c(3900)$

## THANK YOU FOR YOUR ATTENTION!

## Backup slides

#### **Bound state and virtual state (I)**

Im k bound state pole  $k = i \kappa$ thr. 0 unitary cut Re k virtual state pole  $k = -i \kappa$ 

Suppose the scattering length is very large, the Swave scattering amplitude

$$f_0(k) = \frac{1}{k \cot \delta_0(k) - ik} \simeq \frac{1}{-1/a - ik}$$

solution bound state pole:  $1/a = \kappa$ 

state pole:  $1/a = -\kappa$ 

• If the same binding energy, cannot be distinguished above threshold (k is real):

$$|f_0(k)|^2 \sim \frac{1}{\kappa^2 + k^2}$$

#### **Bound state and virtual state (I)**

Im k bound state pole  $k = i \kappa$  $thr. \overline{\hat{0}}$ unitary cut Rek  $\pm$ virtual state pole  $k = -i\kappa$ 

Suppose the scattering length is very large, the Swave scattering amplitude

$$f_0(k) = \frac{1}{k \cot \delta_0(k) - ik} \simeq \frac{1}{-1/a - ik}$$

31/37

solution bound state pole: 
$$1/a = \kappa$$

- virtual state pole:  $1/a = -\kappa$ B
- If the same binding energy, cannot be distinguished above threshold (k is real): •



#### Bound state and virtual state (II)

• Bound state and virtual state with a small binding energy should be distinguished in inelastic channel



A bound state and virtual state with a 5 MeV binding energy, a small residual width to the inelastic channel is allowed. Cleven et al, EPJA47(2011)120

#### S-wave loosely bound hadronic molecules (I)

Suppose the physical state  $|\psi\rangle$  contains a two-hadron continuum state  $|h_1h_2\rangle = |\mathbf{q}\rangle$ and something else  $|\psi_0\rangle$ 

The time-independent Schrödinger Equation

$$(\hat{H}_0 + \hat{V})|\psi\rangle = -E_B|\psi\rangle$$

here  $H_0$  is the free Hamiltonian,  $\hat{H}_0 |\mathbf{q}\rangle = q^2/(2\mu)$ , and  $E_B > 0$  is the binding energy.

Multiplying by  $\langle \mathbf{q} |$ , we get the momentum-space wave function

$$\langle {\bf q} | \psi \rangle = - \frac{\langle {\bf q} | \hat{V} | \psi \rangle}{E_B + q^2 / (2\mu)}$$

The probability of finding the physical state in the continuum state is

$$\lambda^{2} = \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} |\langle \mathbf{q} | \psi \rangle|^{2} = \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} \frac{|\langle \mathbf{q} | \hat{V} | \psi \rangle|^{2}}{[E_{B} + q^{2}/(2\mu)]^{2}}$$

#### S-wave loosely bound hadronic molecules (II)

Denoting  $g^2_{
m NR}({f q})=|\langle {f q}|\hat{V}|\psi
angle|^2,$  we have

$$\lambda^{2} = 4\mu^{2} \int \frac{d\Omega_{\mathbf{q}}}{(2\pi)^{3}} \int_{0}^{\infty} dq q^{2} \frac{g_{\mathrm{NR}}^{2}(\mathbf{q})}{(q^{2} + 2\mu E_{B})^{2}}$$

If the binding energy is very small, so that the binding momentum  $\sqrt{2\mu E_B} \ll 1/r$ with r the range of forces, we have an expansion



here L is the orbital angular momentum.

The integral is only convergent for S-wave. Therefore,

the probability of finding the physical state in an *S*-wave two-hadron state with a small binding energy is related to the coupling constant  $g_{NR}(0)$ 

Landau (1960), Weinberg (1963,1965), Baru et al (2004),...

$$\lambda^2\approx \frac{\mu^2}{2\pi\sqrt{2\mu E_B}}g_{\rm NR}^2(0)$$

From nonrelativistic quantum mechanics to relativistic QFT:

$$g = \sqrt{2m_1}\sqrt{2m_2}\sqrt{2(m_1 + m_2)}g_{\rm NR}(0)$$

here g is the coupling constant in the relativistic Lagrangian

$$\mathcal{L} = g\psi^{\dagger}h_1h_2 + h.c.$$

Therefore, the coupling constant contains the structure information

$$g^2 \approx 16\pi \lambda^2 (m_1 + m_2)^2 \sqrt{\frac{2E_B}{\mu}} \le 16\pi (m_1 + m_2)^2 \sqrt{\frac{2E_B}{\mu}}$$

It is bounded from above!



$$e^+e^- \to D\bar{D}^*\pi$$

 $Y(4260) \rightarrow D\bar{D}^*\pi$  with an explicit  $Z_c$  pole:



#### Radiative decays of the X(3872)



FKG, Hanhart, Kalashnikova, Meißner, Nefediev, PLB742(2015)394

The ratio

 $\frac{\mathcal{B}(X(3872) \to \psi'\gamma)}{\mathcal{B}(X(3872) \to J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$ 

LHCb, NPB886(2014)665

is insensitive to the molecular component of the X(3872):

- loops are sensitive to unknown couplings  $g_{\psi DD}/g_{\psi'DD}$ 13
- loops are divergent, needs a counterterm (short-distance physics) B