The predicted missing $\psi(4S)$ and the explanation to the structure observed in $e^+e^- \rightarrow \omega \chi_{c0}$

Dian-Yong Chen Institute of Modern Physics, Lanzhou

The 3rd workshop on the XYZ particles

Outline

- Prediction of a missing higher charmonium around 4.26 GeV in J/ψ family
- The role of the predicted $\psi(4S)$ in the observed $e^+e^- \rightarrow \omega \chi_{c0}$
- Summary

Prediction of a missing higher charmonium around 4.26 GeV in J/ψ family

He, Chen, Liu, Matsuki, Eur. Phys. J. C 74, 3208 (2014)

The Similarity between J/ψ and Υ family

The Comparison of the J/ψ family with the Y family

- Similarity
- 1. The mass gap between $\psi(2S)$ and J/ψ is almost the same as that between $\Upsilon(2S)$ and $\Upsilon(1S)$
- 2. There also exists the similarity of the mass differences, $M(\psi(3S)) - M(\psi(2S))$ and $M(\Upsilon(3S)) - M(\Upsilon(2S))$, where $\psi(2S)$ and $\psi(3S)$ correspond to $\psi(3686)$ and $\psi(4040)$, respectively.

Violation

If $\psi(4415)$ is $\psi(4S)$, such a law is violated since the mass gap of $\psi(4415)$ and $\psi(3S)$ is larger than that of $\Upsilon(4S)$ and $\Upsilon(3S)$ The possible reason to result in the above puzzling mass gap: The properties of the charmonia above 4.1 GeV are still not understood well

The mass spectrum analysis

- Compared with the J/ψ family, the bottomonia with the radial quantum numbers n = 1, 2, 3, 4 were well established both by experiment and theory.
- Thus, the study of J/ψ family can be borrowed from Y family.
- If this law of mass gap relation still holds for states with n = 3, 4 in the J/ψ and Y familes, we find that **the mass** of $\psi(4S)$ should be located at 4263 MeV, where we take the mass gap between Y(45) and Y(35) to add it to the mass of $\psi(3S)$.

Consistent

The screening potential prediction of $\psi(4S)$ mass:

- · 4273 MeV Li&Chao PRD79, 094004 (2009)
- 4247 MeV Dong&Yu&Zhang&Shen PRD49, 1642 (1994)

Questions:

- If this predicted state exists in the J/ψ family, we must reveal its underlying properties to answer why there does not have any evidence in the present experiment
- Can Y(4260) or Y(4360) be as the candidate of predicted charmonium with mass around 4.26 GeV?

The decay behavior of the predicted charmonium around 4.26 GeV

We adopt the QPC model to study the decay behavior of the discussed charmonia (L. Micu, Nucl. Phys. B 10, 521 (1969))

ψ(3S) decay behavior

- Test the reliability of the calculation via ψ(3S) (ψ(4040))
- Reproduce the experimental data well of ψ(4040)
- Enable us to apply this model to safely study the decays of ψ(4S)

$$\frac{\Gamma_{D\bar{D}}}{\Gamma_{D^{\star}\bar{D}+H.c.}} = 0.24 \pm 0.05 \pm 0.12$$

ψ(4S) decay behavior

A very interesting result of the decay behavior of $\psi(4S)$ can be found:

• The total decay width of $\psi(4S)$ is stable corresponding to the *R* range adopted, while its partial decay widths strongly depend on the *R* value

• Due to node effect!

• The predicted charmonium $\psi(4S)$ has very narrow width around 6 MeV

• For the higher charmonia above the DD threshold, this phenomenon of $\psi(4S)$ presented here is unusual

 $\psi(4040), \psi(4160)$ and $\psi(4415)$ have widths 80 ± 10 MeV, 103 ± 8 MeV and 62 ± 20 MeV, respectively, all of which are large. Even $\psi(3770)$ which is just 43 MeV above the *DD* threshold has the width 27.2 MeV

Exclude Y(4260)/Y(4360) as the candidate of $\psi(4S)$

Experimental evidence

Experimental data

C.Z. Yuan, Chinese Physics C 38, 043001 (2014)

"we conclude that very likely there is a narrow structure at around 4.22 GeV"

> $M(Y(4220)) = (4216 \pm 18) \text{ MeV}/c^2,$ $\Gamma_{\text{tot}}(Y(4220)) = (39 \pm 32) \text{ MeV},$

Is it the prediced higher charmonium with the mass around 4.26 GeV? Need further experimental and theoretical efforts! Experimental results of the open-charm decays and more precise study of the *R* value scan, especially from BESIII, Belle and forthcoming BelleII

The role of the predicted $\psi(4S)$ in the observed $e^+e^- \rightarrow \omega \chi_{c0}$

Chen, Liu, Matsuki, arXiv:1411.5136

The observation of $e^+e^- \rightarrow \chi_{c0}\omega$ from BESII

BESIII, arXiv:1410.6538

 $e^+e^- \rightarrow \chi_{c1}\omega$ and $e^+e^- \rightarrow \chi_{c2}\omega$ are not significant

The study of the transition $\psi(4S) \rightarrow \omega \chi_{c0}$

For higher charmonia and bottomonia, the unquenched effect becomes more and more important since more channels are open

- Coupled-channel effect
- Non-perturbative properties of QCD
- Hadronic loop is an effective description for this effect

$\Upsilon(5S) \rightarrow \omega \chi_{bJ}$ PROCESS

Chen, Liu, Matsuki, Phys. Rev. D90, 034019 (2014)

$\Upsilon(5S) \rightarrow \omega \chi_{bJ}$: Experimental information

PhysRevLett.113.142001(2014)@Belle

Mode	Yield	$\Sigma (\sigma)$	ε (%)	σ_B (pb)	$B(10^{-3})$	$\sigma_{ m sys}^{(1)}$ (%)	$\sigma^{(2)}_{ m sys}$ (%)
$\pi^+\pi^-\pi^0\chi_{b0}$	< 13.6	1.0	6.43	< 3.1	< 6.3	25	24
$\pi^{+}\pi^{-}\pi^{0}\chi_{b1}$	80.1 ± 9.9	12	6.61	$0.90 \pm 0.11 \pm 0.13$	$1.85 \pm 0.23 \pm 0.23$	14	12
$\pi^{+}\pi^{-}\pi^{0}\gamma_{h2}$	28.6 ± 6.5	5.9	6.65	$0.57 \pm 0.13 \pm 0.08$	$1.17 \pm 0.27 \pm 0.14$	14	12
$\omega \chi_{b0}$	< 7.5	0.5	6.35	< 1.9	< 3.9	29	28
$\omega \chi_{b1}$	59.9 ± 8.3	12	6.53	$0.76 \pm 0.11 \pm 0.11$	$1.57 \pm 0.22 \pm 0.21$	14	13
$\omega \gamma_{b2}$	12.9 ± 4.8	3.5	6.56	$0.29 \pm 0.11 \pm 0.08$	$0.60 \pm 0.23 \pm 0.15$	26	25
$(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}\chi_{b0}$	< 10.7	0.4	6.68	< 2.3	< 4.8	41	41
$(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}\chi_{b1}$	23.6 ± 6.4	4.9	6.88	$0.25 \pm 0.07 \pm 0.06$	$0.52 \pm 0.15 \pm 0.11$	21	20
$(\pi^+\pi^-\pi^0)_{\mathrm{non-}\omega}\chi_{b2}$	15.6 ± 5.4	3.1	6.91	$0.30 \pm 0.11 \pm 0.14$	$0.61 \pm 0.22 \pm 0.28$	45	45

Meson Loop contributions:

Quenched (OZI Suppressed)

Unquenched (Meson Loop)

- meson loop contributions are evaluated in hadron level
- interactions are described by effective Lagrangians
- effective Lagrangians are constructed based on heavy quark symmetry & chiral symmetry

$\psi(4040)/\psi(4160) \rightarrow J/\psi\eta$ PROCESS

Chen, Liu, Matsuki, Phys. Rev. D87, 054006 (2013)

$\psi(4040)/\psi(4160) \rightarrow J/\psi\eta$: Experimental information

Meson Loop contributions

Chen, Liu, Matsuki, PRD87, 054006

- The ratio is weakly dependent on parameter *α*;
- **Predicted:** $B(\psi(4160) \rightarrow \eta' J/\psi) = (2 \sim 4.8) \times 10^{-4};$
- Consistent with upper limit (5 ×10⁻³) @CLEO (PRL96,162003)

$\psi(4S) \rightarrow \omega \chi_{c0}$ PROCESS

Adopt the effective Lagrangian approach to do the calculation

Heavy quark limit and chiral symmetry

$$\mathcal{L}_{\psi\mathcal{D}^{(*)}\mathcal{D}^{(*)}} = -ig_{\psi\mathcal{D}\mathcal{D}}\psi_{\mu}(\partial^{\mu}\mathcal{D}\mathcal{D}^{\dagger} - \mathcal{D}\partial^{\mu}\mathcal{D}^{\dagger})
+ g_{\psi\mathcal{D}^{*}\mathcal{D}}\varepsilon^{\mu\nu\alpha\beta}\partial_{\mu}\psi_{\nu}(\mathcal{D}^{*}_{\alpha}\stackrel{\leftrightarrow}{\partial}_{\beta}\mathcal{D}^{\dagger} - \mathcal{D}\stackrel{\leftrightarrow}{\partial}_{\beta}\mathcal{D}^{*\dagger}_{\alpha})
+ ig_{\psi\mathcal{D}^{*}\mathcal{D}^{*}}\psi^{\mu}(\mathcal{D}^{*}_{\nu}\partial^{\nu}\mathcal{D}^{*\dagger}_{\mu} - \partial^{\nu}\mathcal{D}^{*}_{\mu}\mathcal{D}^{*\dagger}_{\nu}
- \mathcal{D}^{*}_{\nu}\stackrel{\leftrightarrow}{\partial}_{\mu}\mathcal{D}^{*\nu\dagger}), \qquad (1)$$

$$\mathcal{L}_{\chi_{c0}\mathcal{D}^{(*)}\mathcal{D}^{(*)}} = -g_{\chi_{c0}\mathcal{D}\mathcal{D}}\chi_{c0}\mathcal{D}\mathcal{D}^{\dagger} - g_{\chi_{c0}\mathcal{D}^{*}\mathcal{D}^{*}}\chi_{c0}\mathcal{D}^{*}_{\mu}\mathcal{D}^{*\mu\dagger}, (2)$$

$$\mathcal{L}_{\mathcal{D}^{(*)}\mathcal{D}^{(*)}\mathcal{V}} = -ig_{\mathcal{D}\mathcal{D}\mathcal{V}}\mathcal{D}_{i}^{\dagger} \stackrel{\leftrightarrow^{\mu}}{\partial} \mathcal{D}^{j}(\mathcal{V}_{\mu})_{j}^{i} - 2f_{\mathcal{D}^{*}\mathcal{D}\mathcal{V}}\varepsilon_{\mu\nu\alpha\beta}$$

$$\times (\partial^{\mu}\mathcal{V}^{\nu})_{j}^{i}(\mathcal{D}_{i}^{\dagger} \stackrel{\leftrightarrow^{\alpha}}{\partial} \mathcal{D}^{*\beta j} - \mathcal{D}_{i}^{*\beta^{\dagger}} \stackrel{\leftrightarrow^{\alpha}}{\partial} \mathcal{D}^{j})$$

$$+ ig_{\mathcal{D}^{*}\mathcal{D}^{*}\mathcal{V}}\mathcal{D}_{i}^{*\nu^{\dagger}} \stackrel{\leftrightarrow^{\mu}}{\partial} \mathcal{D}_{\nu}^{*j}(\mathcal{V}_{\mu})_{j}^{i}$$

$$+ 4if_{\mathcal{D}^{*}\mathcal{D}^{*}\mathcal{V}}\mathcal{D}_{i\mu}^{*\dagger}(\partial^{\mu}\mathcal{V}^{\nu} - \partial^{\nu}\mathcal{V}^{\mu})_{j}^{i}\mathcal{D}_{\nu}^{*j}, \quad (3)$$

$$\mathcal{L}_{\mathcal{D}^{(*)}\mathcal{D}^{(*)}\mathcal{P}} = -ig_{\mathcal{D}^*\mathcal{D}\mathcal{P}}(\bar{\mathcal{D}}\partial_{\mu}\mathcal{P}\mathcal{D}^{*\mu} - \bar{\mathcal{D}}^{*\mu}\partial_{\mu}\mathcal{P}\mathcal{D}) + \frac{1}{2}g_{\mathcal{D}^*\mathcal{D}^*\mathcal{P}}\epsilon_{\mu\nu\alpha\beta}\bar{\mathcal{D}}^{*\mu}\partial^{\nu}\mathcal{P}\stackrel{\leftrightarrow}{\partial^{\alpha}}\mathcal{D}^{*\beta}, \qquad (4)$$

a general form of the decay amplitude is

$$\mathcal{M} = \int \frac{d^4q}{(2\pi)^4} \frac{\mathcal{V}_1 \mathcal{V}_2 \mathcal{V}_2}{\mathcal{P}_1 \mathcal{P}_2 \mathcal{P}_E} \mathcal{F}^2(q, m_E),$$

 $\mathcal{F}(q,m_E) = (m_E^2 - \Lambda^2)/(q^2 - \Lambda^2), \quad \Lambda = \alpha_\Lambda \Lambda_{QCD} + m_E$

TABLE I: The concrete values of coupling constants of charmonium $(J/\psi \text{ and } \chi_{c0})$ interacting with charmed mesons, and those of charmed mesons interacting with light pseudoscalar/vector mesons [22–25].

Coupling	Value	Coupling	Value	Coupling	Value
$g_{J/\psi DD}$	7.44	$g_{J/\psi D^*D}$	2.49 GeV-1	$g_{J/\psi D^*D^*}$	8.01
8 ddv	3.47	$g_{D^*D'V}$	2.32 GeV ⁻¹	$g_{D^*D^*V}$	3.74
$f_{D^*D^*V}$	4.67	$g_{\chi_{c0}DD}$	-25.00 GeV	$g_{\chi_{c0}D^*D^*}$	-8.96 GeV
$g_{D^*D\mathcal{P}}$	8.94	$g_{D^*D^*\mathcal{P}}$	17.32 GeV-1		

$$\begin{split} \Gamma_{\psi(4S)\to DD} &= \frac{g_{\psi(4S)DD}^2 \lambda (m_{\psi(4S)}^2, m_D^2, m_D^2)^{3/2}}{24\pi m_{\psi(4S)}^5}, \\ \Gamma_{\psi(4S)\to D^*D} &= \frac{g_{\psi(4S)D^*D}^2 \lambda (m_{\psi(4S)}^2, m_D^2, m_D^2)^{3/2}}{6\pi m_{\psi(4S)}^3}, \\ \Gamma_{\psi(4S)\to D^*D^*} &= \frac{g_{\psi(4S)D^*D^*}^2 \lambda (m_{\psi(4S)}^2, m_D^2, m_D^2)^{3/2}}{96\pi m_{\psi(4S)}^5} \\ \times (\lambda (m_{\psi(4S)}^2, m_D^2, m_D^2) + m_{\psi(4S)}^4 + 12m_{D^*}^4), \end{split}$$

The coupling constants of $\psi(4S)$ interaction with charmed meson pair

He, Chen, Xiang Liu, Matsuki, Eur. Phys. J. C 74, 3208 (2014)

FIG. 2: (color online). The *R* dependence of the extracted coupling constants of $\psi(4S)$ interacting with charmed or charmed-strange mesons.

BESIII result (assuming the enhancement from $\psi(4S)$):

$$\Gamma(\psi(4S) \to e^+e^-)\mathcal{B}(\psi(4S) \to \omega\chi_{c0}) = (2.7 \pm 0.5 \pm 0.4) \,\mathrm{eV}_{c0}$$

 $\Gamma(\psi(4S) \to e^+e^-) = 0.63 \text{ keV}$ Li&Chao PRD79, 094004 $\Gamma(\psi(4S) \to e^+e^-) = 0.66 \text{ keV}$ Dong et al., PRD49, 1642

We extract

$$\mathcal{B}(\psi(4S) \rightarrow \omega \chi_{c0}) = (3.1 \sim 5.3) \times 10^{-3}$$

•Our theoretical result overlaps with the experimental data in a reasonable parameter range of $2.6 < \alpha_{\Lambda} < 4.0$ and 1.83 < R < 2.17

 e^+e^- → $\omega \chi_{c0}$ observation can be understood through introduction of the predicted $\psi(4S)$ contribution

Predict the upper limit of the branching ratio of $\psi(4S) \rightarrow \eta J/\psi$

Experimental measurement of $e^+e^- \rightarrow \eta J/\psi$

arXiv:1503.06644

Recent measurement from BESIII Collaboration indicate there exist a enhancement near 4.2 GeV.

Summary

- Predict a narrow higher charmonium $\psi(4S)$
- The introduction of $\psi(4S)$ can explain recent BESIII's observation $e^+e^- \rightarrow \omega \chi_{c0}$
- The possible evidence of $\psi(4S)$ in experiments

Process	Mass (MeV)	Width (MeV)	
$e^+e^- \rightarrow \omega \chi_{c0}$ [1]	$4230\pm8\pm6$	$38 \pm 12 \pm 2$	
$a^+a^- \rightarrow \pi^+\pi^-h$ [31]	4216 ± 7	39 ± 17	
$e e \rightarrow \pi \pi n_c [51]$	4230 ± 10	12 ± 36	

 Suggest BESIII, Belle and forthcoming Bellell to identify this missing ψ(4S)

Thank you for your attention!