第17届全国科学计算与信息化会议暨智慧科研论坛(合肥, 8月19日)

# 核电子学与探测前沿技术与应用 --高速数据传输、计算与互连架构

#### 报告人:刘振安

中国科学院高能物理研究所

录 目

#### 1 物理实验装置的构成及演变

#### 2 光纤高速数据传输与互联

#### B ATCA/uTCA/xTCA 新型系统架构

#### 4 FPGA 算法实现



#### ·.物理实验的基本构成 ●试验装置及其演变 物理过程 万分之一有用好事例 触发判选 粒子 数据 读出 / 模 / 数 探测装置前放 主电子学 存储 在线处理 转换 放大、成形 微弱电信号 离线 ●电子学: 分析 1. (前放+主放)电子学, 2. 触发判选, 3. 数字化, 4. 后段读出, 5. 实验监测与数据存储(DAQ)



### ●试验装置及其演变:



1. 混合(前放,主放,数字化)2. FPGA信号与数据处理,
 3. 读出(嵌入式CPU)4. 系统架构(NIM, CAMAC)



### ●试验装置及其演变:



1. ASIC (放大、成形,数字化), 2. FPGA触发数据处理, 3. GPU/CPU事例过滤, 4. 系统架构(VME, CPCI)

# 目前采用的技术

#### ●分级触发

- A. 一级硬件电子学B. 二级硬件处理器C. 三级计算机软件
- ●体系架构
  - ◆ VME或CPCI
  - ◆ 没有硬件互联
- ●当前技术的局限性

-硬件触发方案需要基于单元合 并简化,不易解决信号堆积的 情况

- 500Mb/秒的数据带宽,制约系统整体速度,乃至高事例率系统的触发效率





### ●试验装置及其演变:



前沿技术

 ASIC(放大、成形,数字化),2.光纤高速数据传输,3.FPGA触发数据处理,4.GPU/CPU事例过滤,5.系统
 2.2.2.2.4.10, SCE2015 Hefei

### 一. 光纤高速数据传输与互联

# 范例一: Belle II 实验系统

#### Belle 实验(放大+甄别器+TDC+读出)



- Belle II DAQ
  - 前放
  - 电缆
  - 数字化平台/COPPER

#### Belle II Preliminary DAQ Structure





#### ☑不足与困扰之处 长电缆架构结构复杂,地线回路干扰,数量多成本高。





#### ☑新方案(Gary+Zhen-An)

☑ 2008 ITOH/Nakao 教授参观BESIII并进行了探讨 利用BESIII 光纤传输经验 完全重新设计前端电子学 统一的探测器读出模块+标准HSLB 决定邀请高能所触发组参加Belle II 合作

# **Belle II Hardware Collaboration**





Belle2Link



### • 全局统一读出与高速传输(Belle2link)



# 光纤高速数据传输与互联小结

- LHC: 2001-2009,
- BESIII: 2002-2008,
- Belle II: 2009
- PANDA: 2010
- DEPFET: 2011
- CMS: 2014

- 1.6Gbps
  - 1.75Gbps
  - 2.5Gbps
  - 3.124Gbps
  - 6.4Gbps
  - 9.6/10Gbps

# 范例2 PANDA实验系统

- 3.125Gbps
- FEE -> 触发
- 触发间互联
- 触发-> DAQ



# 范例3 DEPFET硅像素探测器 (PXD)DAQ系统





- 240Gb/s
- 大于Belle II 其他总和
- 压缩到**1/10** 2015/08/19



Option 3: No ATCA system, PC for each DHH instead (no SVD data) c. Klesing, 2nd PXD-DAQ-Meeting, Grünberg, Bep 25-26, 2010

Z-A LIU, SCE2015 Hefei

10

# 范例4 CPPF in CMS Trigger Phase I Upgrade

CSC **GFM** Endcap Barrel DT RPC CuOF RPC CMS 老系统1.6Gbps 新系统 输入输出及互 MPC LB LB 联 10Gbps Mezz **CPPF:** Concentration, PP |& HO 1.6Gbps Pre-Processing, and Fan-Optical HTR Solitters out **CPPF** Components (PP-Pre + CPPF Patch Panel(PP-Pre) Modules + TwinMux **PP-Post**) for fibers from RPC-LB DT+Barrel RPC + HO of 1.6 Gbps 10Gbps CPPF modules (Key Optical PP 10Gbps Splitters & PP Module) uMTCA shelf + Power + Shelf Manager + Overlap Endcap Barrel MTF MTF MTF AMC13 Patch Panel(PP-Post) for fibers to Endcap μGMT μGT PP and Overlap MTFs

# **CPPF Board Prototype Design**



特点

- · 输入: Four 12ch MiniPoD
   (1.6Gbps/10Gbps, total
   76Gbps/480Gbps)
- 输出: Two 12ch MiniPoD
   (10Gbps/ch, total 240Gbps)

– FPGA

- -- XC7VX415T-2FFG1157C(48 GTH)
- -- XC7K70T-2FG484C
- Flash
  - -- PC28F00AG1
- DDR3(reserve Processing)

MT41J<mark>64</mark>M16(1



二。ATCA/uTCA/xTCA 新型系统架构





- 1960年代
  - 英国卢瑟福实验室开创核电子学的标准
  - 欧洲核子研究中心CERN和美国实验室同 期开展
  - 美国国家标准局和核仪器插件委员会建 立了NIM标准
- 70-80年代建立了另2个标准CAMAC, FASTBUS,并被研究领域得到广泛应 用
  - 核谱测量、粒子物理、医学物理、加速 器仪器、加速器控制、航空航天、工业 控制等
- 目前这些标准仍在使用,但显局限性
- 90年代借用工业标准VME(VXI等)
- 2000年后CPCI







# 核仪器研制的现状及研究

标准与技术的演变

#### 标准是有寿命的,但其 演化要缓慢温和

- 物理实验中的标准已经有些过时,但很多系统却仍然在使用
- 一 微电子工业的巨大进展需
   要新的平台来展现他的优点,目前的平台已不适应:
  - 高速处理芯片4Gsps
  - 集成电路的功能已经把 原来插件完成的功能在 一片可变成逻辑器件 FPGA中实现
  - 片上处理器提供了可变 成控制和并行数据处理 能力
  - 通用硬件设计配以不同 的固件得以实现多种功 能设计
  - 片上串并/并串转换能力 3-10Gbps
- 需要新的标准 2015/08/19



专用总线

BESIII通用插件

Z-A LIU, SCE2015 Hefei

205Gb/秒同步 传(BESIII) <sup>21</sup>

# 工业新标准ATCA/MTCA

- 电信领域大多数基于CPCI、VME总线的处理器系统,总线带宽已经成为制约系统 处理能力的瓶颈。VME64X的总线带宽为320Mb/s,已经不能满足要求高吞吐量、 低延迟的系统。随着对更高系统带宽、总线速度、实时性、系统可靠性、温度范 围、散热及更小空间等方面越来越高的要求,迫切需要一种新的运算架构来满足 信号处理的需求。
- PICMG协会ATCA委员会由代表了工业和电信设备制造商及终端用户的105个公司组成,其目标是建立、修改并计划在2002年底发布新的规范——ATCA。经过12个月的奋战,PICMG3.0规范——先进的通讯计算机构架(ATCA)如期发布。

• 低成本、小尺寸的应用, PICMG协会又在ATCA构架的 基础上提出了MicroTCA构架, 该技术在2006年逐渐成熟。





- ATCA
  - 优点
    - 高速IO及互连10Gb/s
    - 高可用性HA ~99.999%
    - 智能管理
- MicroTCA (MTCA)
  - ATCA的优点
  - 半高度
- AdvancedMC (AMC)
  - 小插板

高能物理实验再次借鉴 工业标准(电信)?

这是一个很好的思路!

### 谁在用(想用)ATCA?

### Who else is using ATCA?



The group of experimenters includes several major laboratories representing different fields of use and a range of applications.

- Active programs are showing up most notably at
  - DESY for XFEL and JET
- Other laboratories
  - ILC, IHEP, KEK, SLAC, FNAL, ANL, BNL, FAIR, ATLAS at CERN, AGATA, large telescopes, Ocean Observatories
- Investigating ATCA solutions for future upgrades
  - Both the CMS and ATLAS detectors
- Setting up prototype experiments to test its potential
  - ILC and ITER

ATCA is being adapted without significant change as a platform for generic data acquisition processors requiring high throughput and bandwidth.

#### Most of these programmes put the emphasis on High Availability

B. Gonçalves | Paris, February 2, 2009 | NI - Big Physics Round Table

**IHFP** 

# 高能所: 高性能节点计算机的设计

- High Performance Compute Power:
  - 5x (Virtex-4 FPGA + 2Gb Optical link(x8) DDR2) PHY(x5)
- ~32Gbps Bandwidth
  - 13x RocketIO to backplane
  - **5x** Gigabit Ethernet
  - 8x Optical Link
- 2 Embedded PowerPC in I each FPGA
  - Real time Linux
- ATCA compliant
- 完成第二板



高能所设计的基于ATCA和FPGA的高性能处理板 Z-A LIU, SCE2015 Hefei

### 国际上其它实验室的相关研究

- 德国DESY在 XFEL 1 km 电子直线加速器领先设计 (~1/20th an ILC)
  - -LLRF, 连锁保护, 束线仪器
  - ATCA + MicroTCA
- SLAC 开始用MTCA对3km电子直线 加速器进行更新

### 国际直线对撞机



| Scheduled Operating Hours: 6500   |        |              |                               |
|-----------------------------------|--------|--------------|-------------------------------|
| · · ·                             | Weight | Availability | Unscheduled<br>Outage (hours) |
| $e^-$ Inj, Source and Linac       | 1      | 0.99         | 66                            |
| $e^-$ DR and Compressor 1         | 1      | 0.99         | 66                            |
| $e^-$ Booster Linac and Comp. 2   | 1      | 0.99         | 66                            |
| $e^-$ Main Linac                  | 3      | 0.97         | 195                           |
| $e^-$ Final Focus and Dumpline    | 1      | 0.99         | 66                            |
| Subtotal e <sup>-</sup> machines: | 7      | 1            | 458                           |
| $e^{-}$ Inj, Source and Linac     | 1      | 0.99         | 66                            |
| e <sup>+</sup> Source and Linac   | 1      | 0.99         | 66                            |
| $e^+$ Pre-damping Ring            | 1      | 0.99         | 66                            |
| $e^+$ DR and Compressor 1         | .1     | 0.99         | 66                            |
| $e^+$ Booster Linac and Comp. 2   | 1      | 0.99         | 66                            |
| $e^+$ Main Linac                  | 3      | 0.97         | 66                            |
| $e^+$ Final Focus and Dumpline    | 1      | 0.99         | 66                            |
| Subtotal $e^+$ machines:          | 9      | 1            | 589                           |
| Totals:                           | 16     | 0.85         | 1047                          |

• 下一代加速-国际直线对撞机 (ILC)要求

- 高可用率(high availability)
- 高数据产生率(>500Gbps)
- 解决办法ATCA/MTCA?
  - HA ~99.999%
  - 波特率 10Gbps

# ITER 欧洲核聚变项目



B. Gonçalves | Paris, February 2, 2009 | NI - Big Physics Round Table

18

### Why xTCA

- ATCA 缺点:
  - 高8U,不适合控制用
  - 没有后插板
  - 没有定义子板及信号
  - 没有定义后插板(AA)
  - 没有控制信号...
- MTCA缺点:
  - 没有后插板
  - 没有定义子板及信号
  - 没有定义后插板(HA)
  - 没有控制信号...
- AMC缺点:
  - 互联?
  - 控制信号
  - 信号管脚定义

EXILINX"

高能所计算节点板

制定新标准: xTCA for Physics

Z-A LIU, SCE2015 Hefei

### xTCA for Physics 协议标准委员会



2009年3月10日在PICMG 下成立 xTCA for Physics 协调委员会(CCTS)

- IHEP, SLAC, FNAL, DESY 发 起单位
- 40多厂商参加
- 选举产生了事务人员
  - 主席: SLAC Ray Larsen
  - 会议秘书: 三环公司 Augustus Lowell
  - 文件编辑: 高能所刘振安

xTCA for Physics 大事

- 2007年5月 在FNAL第一次ATCA workshop
- 2007年5月 IEEE RT07 ATCA 专题
- 2008年初讨论建立新标准的可行性
- 2008年10月在Dresden第二次ATCA workshop
- 2008年10月IEEE NSS ATCA 专题
- 2009年5月高能所第三次 xTCA workshop
- 2009年5月高能所 IEEE RT09 ATCA 专题
- 2010年5葡萄牙里斯本 第四次 xTCA workshop
- 2010年5月葡萄牙里斯本 IEEE RT1 xTCA 专题
- 2011年10月在西班牙瓦伦西亚第五次xTCA workshop
- 2011年10月在西班牙瓦伦西亚NSS/MIC xTCA 专题
- 2012 Berkeley/2013 Desy/2014 奈良研讨会

# CCTS的路线图

- 组织工作组每周二开技术讨论电话会
- xTCA for physics
  - Extensions to specifications 协议文本的起草
  - Guidelines 设计指引
  - Open source solutions 开源软件的编制
  - Building on existing xTCA base under PICMG rules 依 照PICMG规则构建xTCA骨架
  - Spec approval by PICMG membership PICMG成员验 收
  - Collaborating with industry for product development & support 工业界的密切合作

# xTCA 技术协调委员会月会

xTCA Coordinating Committee Meeting Agenda Jul 30, 2015 0700-0800 Pacific Daylight – Live Meeting

#### 1. Call to Order – Chair Ray Larsen

- a. PICMG Patent Call Secretary Gus Lowell
- b. Roll Call, member changes since last meeting Secretary
- c. Approval of Minutes of last meeting Secretary
- 2. Review of Purpose & Scope of Coordinating Committee Chair Ray Larsen
- 3. 3-slide reports from Technical Subcommittees
  - a. Hardware WG (Timing, Synchronization & IO) Chair Robert Downing SOW-Roadmap-Progress
  - b. Software WG (Interoperability, high availability guidelines) Chair Stefan Simrock SOW-Roadmap-Progress
- 4. 1-slide reports from Lab members
  - a. DESY
  - b. FNAL
  - c. IHEP
  - d. IPFN
  - e. ITER
  - f. CERN
  - g. SLAC
- 5. 1-slide reports from Industry
  - Submit single slides in advance to larsen@slac.stanford.edu
- 6. 1-slide report from PICMG, MTCA Summit etc
- 7. New Business
- 8. Next Meeting Topic Suggestions
- 9. Motion to Adjourn



Status Report DESY



Two AMC's ready: Full MTCA.4 specs

µRTM's: RF receiver: soldering Test board for optical fibers: ready Pulse shaper: in production

Next step: IPMI software for µRTM

28. Oct. 2010



Kay Rehlich, DESY



#### Status Report DESY (2)



JAVA application to Display management data and control system integration.

Two shelfs according to MTCA.4 operational

Kay Rehlich, DESY



28. Oct. 2010

# 美国SLAC进展

#### **MTCA.4 Development Platform (SLAC)**





SLAC xTCA Update - R. Larsen 10:

MTCA.4 platform proposed for major SLAC Linac controls upgrade

Interim Timing System >Micro-Research PMC Event Receiver (EVR) on double

#### LSST- Large Synoptic Survey Telescope





Generic Massively Parallel Processor & Hub Switcher 0.5 Tb/s Throughput System 10 Gbps Channels – Courtesy M. Huffer, SLAC



SLAC xTCA Update - R. Larsen 102810



### **Ongoing XTCA Development at IHEP**

- DAQ R&D for PANDA at GSI, Germany
  - Ver.2 of Computer Node (CN,ATCA) successful
  - Demo system established
  - Moving to XTCA( xTCA Carrier + AMC)
- PXD/DAQ design for Belle II at KEK, Japan
  - XTCA Carrier (layout)
  - AMC with FPGA+4G Memor
- R&D for LUMI at IHEP, Chin – newdesign


#### **Ongoing XTCA Development at IHEP**



# 范例5 Application in PANDA TDAQ



#### 范例6 Belle II/PXD 触发数据压缩算法原理





- DEPFET数据获取(压缩)方案
  - 基于硬件触发









通用硬件平台——计算节点



#### • 板级监测

• 控制管理

#### System on Programmable Chip



基于Xilinx FPGA内嵌的PowerPC硬核和一些开源的IP和构建一个通用的硬件系统,移植开源Linux来实现系统管理以及UDP/TCP协议栈的处理 在线触发算法设计成专用IP核以及基于多端口内存控制器实现片上数据交换模块





- 从高速光口接收到的粗数据在DDR2内缓存(通过PLB主设备:低延时,高带宽)
- 数据从DDR2发送到触发算法IP核以及处理结果写回DDR2(通过LocalLink DMA 设备,更加灵活,高带宽)

• 结果通过Gigabit Ethernet送出(通过UDP/TCP,标准设计)

#### EMC探测器





簇团重建需要解决的问题



2015/08/19

• 在线簇团重建:"速度,效率

47





#### 寻找区域最大值

为了避免找到假的区域最大值,需要选择更加严格的判选条件

- ✓ Eseed>20MeV
- ✓ ERatio<ERatioCut

 $ERatio = \frac{MaxEofNeighbors - fERatioCorr}{MaxE - fERatioCorr} \qquad ERatioCut = fCutSlope \times (Number of Neighbors - fCutoffset) \\ ERationCut \qquad ERationCut$ 



49



- 带电粒子必须提供簇团位置来与径迹探测器做匹配;
- 光子位置重建准确性对 π<sub>0</sub> 质量的重建影响特别大;

EMC  $\pi^{\dagger}$  reconstruction



Wi = Ei2015/08/19 权重  $Xial = \frac{\sum_{i} Wi * Xi}{Xcal = \frac{i}{\sum_{i} Wi} \sum_{j \le 2015 \text{ Hefei}}}$ 线性权重位置计算

适合V4Fx60 FPGA的设计

- •能量/位置计算模块速度较快,能完全流水线运行
- •从资源使用量上看,这是最优的配置



• 4 Cluster Finder + 1 Energy and Position Calculation

2015/08/19

400KHz Events/FPGA=≫1?6₩Hź/CN

#### Cluster Finder 模块框图



# 簇团查找有限状态机



2015/08/19

Z-A LIU, SCE2015 Hefei





总结

- 本报告简介电子学在与计算技术相关的发展
  - 高速数据传输与互联
  - -新型互联架构
  - FPGA算法实现
- 这些国际领先的技术及应用案例都是高能 所发展的,并在国际合作项目中得到应用



研究方案2(续)

- ONSEN
  - -软件
  - -硬件
    - 1 ATCA 机箱(采购)
    - •2 机箱管理器(采购)
    - •1 电源(采购)
    - 10 计算节点CN(研建)
      - 1 个ATCA 载板
      - -1个电源板
      - 4 个 xFP/AMC板
      - 5 MMC 智能管理子板





Development of MTCA/xTCA/ATCA based instrumentation for particle physics at IHEP



#### TIPP2014 Amsterdam, Netherland, June 2-7 2014 Zhen-AN LIU TrigLab/IHEP Beijing Member & Officer PICMG/xTCA for Physics Committee

## Outline

- Overview of xTCA for Physics
- Activities in IHEP/TrigLab
  - ATCA complaint
  - MicroTCA complaint
  - xTCA complaint
  - IPMC and MMC
- Applications
  - PANDA TDAQ
  - BESIII Luminosity Readout
  - Belle II PXD-DAQ/SVD-DACON
  - TREND FEE and Readout
  - LLRF R&D
  - CMS Mu Trigger concentrator
- Summary



#### xTCA workshops

- International Linear Collider, XFEL
  - 2004 ATCA, MTCA intro paper NSS-MIC, Rome
  - 2005 ILC Snowmass Conference + Availability Workshop @ Grömitz on ATCA for *high availability*
  - 2007 1st xTCA workshop, IEEE RT2007 Fermilab
  - 2008 2nd xTCA workshop, IEEE NSS-MIC Dresden
  - 2009 –xTCA for Physics subcommittees formed under PICMG open source telecom standards ~200 vendors
  - 2009 2013 IEEE Workshops 3-6 at Beijing, Lisbon, Valencia, Berkeley, DESY (1st & 2nd DESY workshops)
  - 2014 7th Annual IEEE Workshop Nara Japan last week, 3rd DESY workshop Dec. 2014

- Single Width AMC
  - Type 1 for trigger
    - Discriminators
  - Type 2 for CN
    - Virtex 5 XC5V50T
    - 4GB DDR2
    - 1 Ethernet
    - 2 SFP(3 Gbps)
  - Type 3 for DATCON
    - Virtex 5 XC5V70T
    - 4GB DDR2
    - 1 Ethernet
    - 4 SFP+(6.4 Gbps)







Z-A LIU, SCE2015 Hefei

- Double Width AMC
  - Type 1 for LumiMonitor
    - Up to 6 Signal inputs
    - 2 delayed signal/clock
    - Virtex 5 XC5V70T data processing
    - 2GB DDR2 data buffer
    - 1 Ethernet output
    - 1 SFP(3 Gbps)



- Double Width AMC
  - Type 2 for GPS timing
    - Add-on GPS daughter board
    - Fine timing for tagging
    - Spartan 6 processor
    - Trigger inputs
    - USB ports



- Double Width AMC
  - Type 3 for LLRF
    - 4 ADC inputs
      - 120Msps
    - 1 DAC output
    - Virtex 5 XC5V70T data processing
    - 2GB DDR2 data buffer
    - 1 Ethernet output
    - 1 SFP(3 Gbps)



- Double Width AMC
  - Type 4 for TREND
    - 2 ADC inputs for antennas
      - 250Msps
    - Virtex 5 XC5V70T data processing
    - 1 Ethernet output
    - 1 SFP(3 Gbps)
    - USB ports



- Double Width AMC
  - Type 5 for TREND upgrade/GRAND
    - 3 ADC inputs for antennas
      - 500Msps
    - 1 ADC for Sci.
    - Virtex 5 XC5V70T data processing
    - 1 Ethernet output
    - 1 SFP(3 Gbps)



- Double Width AMC
  - Type 6 for CMS TRG upgrade
    - 48 1.6Gbps inputs
    - 24 9.6/10Gbps output
    - Virtex 7 XC7V485T data processing
    - Kintax 7 for control
    - 1 Ethernet output



- PICMG 3.8
- ATCA Carrier AMC Board
  - 1 Virtex-4 for Routing(13 backplain)
  - 2 GB DDR2
  - Host 4 AMCs
  - JTAG chain
- Add-on Power board
  - Power converters
  - Jtag Port
- AMC
  - 2x Optical Link (6.4Gb)
  - 1 ethernet Panel
  - 2 Embedded PowerPC
  - Real time Linux
- RTM

2015/08/19

Replacement of panel signals



# IPMC/MMC design



• ACBA: IPMC



AMC:MMC



## Activities in IHEP/ RTM

- IPMC
  - Power management
  - Temperature monitoring
  - Voltage Monitoring
  - Communication with MMC
- MMC
  - Power management
  - Temperature monitoring
  - Voltage Monitoring
- RTM for PICMG 3.8



## Outline

- Overview of xTCA for Physics
- Activities in IHEP/TrigLab
  - ATCA complaint
  - MicroTCA complaint
  - xTCA complaint
  - IPMC and MMC
- Applications
  - PANDA TDAQ
  - BESIII Luminosity Readout
  - Belle II PXD-DAQ/SVD-DACON
  - TREND FEE and Readout
  - LLRF R&D
  - CMS Mu Trigger concentrator
- Summary


#### PANDA EMC TDAQ development System in PANDA



### **Application BESIII LUMI**

- Successfully running for one year
  - Prototype of xFP card
  - A full-size, Double-width AMC module
  - Embedded system designed
  - Open source Linux system
  - Luminosity IP core
  - Web slow control
  - MTCA complaint





2015/08/19

# Belle II PXD-DAQ/SVD-DATCON

 PXD/DAQ design in DEPFET Colaboration aimed for Belle II at KEK



 ATCA/ONSEN and DatCon both consist of Computer Node compliant to xTCA specification in both MTCA and ATCA shelves.



2015/08/19

### TREND

- All AMC/MTCA/ATCA composed system
- Site test successful



# What is xTCA?

- ATCA(Advanced Telecommunication Computer Architecture)
  - High speed IO interconnection up to 10Gbps
  - High availability HA~99.999%
  - System intelligence management
- MicroTCA(MTCA)
  - Have advantage of ATCA
  - Half hight of ATCA, compact system
- AdvancedMC(Advanced Mezzanine Card )
  - Filed Replace Unite module(FRU)
- xTCA for physics: new standard formed xTCA CCTS committee under PICMG which admits some of ATCA/MTCA/AMC
- **xTCA** for short

# xTCA features

- ATCA & MicroTCA Unique Features
  - ATCA board, shelf is first modular computer architecture with completely serial multi-Gbps backplane
  - Serial ports are bidirectional pairs in star or mesh topology
  - Serial bit rate of one port at 2.5 Gbps exceeds data rate of parallel bus backplanes, e.g. VME 32/64 bit word at 10 MHz => 320/640 Mbps (*now 2.5G=>10G=>40 G*)
  - Architecture based on FPGAs with imbedded SERDES Tx-Rx, LVDS balanced logic
  - High processing power of single ATCA card (Blade)
  - MCH enables module to any other module communication
  - Special low jitter switches for clocks
  - Dual redundancy MCH, Processor, Power Units optional

#### **xTCA Standards – Hardware Extensions**

- Rear Transition Modules
  - ATCA Card => PICMG 3.8
    - Zone 3 area defined but interface left to discretion of vendors
    - Severely limits interoperability of vendor modules
    - Physics developed ATCA Standard RTM Interface
    - Fabric, power, JTAG, IPMI, managed from ATCA
  - MicroTCA Double-Wide Card => MTCA.4
    - MTCA.0 defined double-wide AMC but not Zone 3 or RTM mechanics
    - MTCA.4 developed new crate, RTM, interface, cooling
    - Fabric, power, JTAG, IPMI, managed from AMC
    - RTM hot-swappable

### 一.PANDA国际合作简介

- □ 973: 自由电子激光和反质子加速器重大基础研究(高能所姜晓明)
  - □ FAIR有关的大型实验探测器关键技术问题研究(近物所徐瑚珊)

□ PANDA实验触发及数据获取系统(高能所刘振安)

- □ 实验室间长期合作
  - □ 高能所实验物理中心触发实验室
  - □ 德国吉森大学第二物理所
  - □ 2006年起长期合作
    - □ PANDA实验
    - □ DEPFET硅像素探测器应用研究
- □ 研究内容
  - □ 新型触发与数据获取系统构架(TD/ 可行性研究
  - □ 高性能计算节点的研制硬件设计
  - □ 基于FPGA的嵌入式片上数据获取系:
- □ 高能所的作用
  - □ 负责硬件设计,调试
  - □ 负责系统平台的建立
  - □参加软件触发功能的开发

2015/0 9 承担EMC 高级触发算法研究U, SCE2015 Hefei



# 一. PANDA完成情况(1)

- 完成情况:全面完成了计划预定的任务
  - 1. 成功研制2版实用计算节点原型 样机
  - 2. 完全实现了预定的功能
    - 高数据传输带宽(6个千兆网口,8 个光纤口(到3.125Gbps),13个Rocket10s 板板点对点的互联
    - 大容量数据处理能力(5个V4 FPGA + 2GB DDR2)
    - 嵌入式设计方式(通用的系统+专用的数据处理模块
    - 智能平台管理(基于板上IPMC子板 与机箱控制器的通信来实现系统监 测及管理功能)



计算节点原理方框图



高能所研制的第二版计算节点



- 完成情况:全面完成了 计划预定的任务(续)
  3.小批量生产了计算节点
  4.搭建了5套样机验证系 统(高能所一套,吉森 大学2套,波恩大学一 套,荷兰KVI一套)
  - 5. 实现了PANDA EMC电磁 量能器在线事例特征 提取、触发与事例预 选择和事例组建的样 机系统
- 973项目结题
- 后续研究(xTCA相关)?



# DEPFET/PXD硅像素探测器国际合作

- DEPFET: 欧洲硅像素探测器国际合作之一
- 触发实验室2010年4月底受邀正式加入合作
- 任务:
  - 海量数据快速读出与预处理系统的设计
  - 高能所与德国吉森大学合作承担
  - 取名 ONSEN 系统
  - 应用目标: Bellell实验
- IGAS有以下特点:
  - 基于xTCA新标准(高能所特殊贡献)
  - 实现单通道光纤数据带宽6Gb/秒
  - 实现数据缓冲内存200GB
  - 事例的局部判选
  - 实现数据事例率1/10的压缩
- 2012年进展
  - 完成了关键部件的第一版样机,包括载板、
     电源板、子板、后插板等,已完成调试
  - 功能调试在德国吉森大学进行

201<del>5</del>/08建立了开发平台

Z-A LIU, SCE2015 Hefei











# Bellell高速读出与数据传输系统



2009底我们决定受邀参加 触发实验室负责(命名为Belle2Link )

- 整体方案设计、TDR撰写
- 样机研制、系统调试
- Belle II 联调
- 主要特性有
  - 国际上率先实现告诉通路数据和慢控命令的共享传输 ■期待获得经费支持

  - 各探测器统一的固件设计
  - 实现了电隔离
  - 3.125Gb/秒的高速率数据和信号传输
  - 可以兼容不同系统的不同数据输入速率
  - 自主研发的传输协议

2015/08/19

Z-A LIU, SCE20

#### 2012年进展

- ■基于CDC的样机系统得到合作组认定, 并进行了评估鉴定
- ■成立了Belle II推广工作组,刘振安任组
- 长,开展所有探测器的读出改进及联调 ■开始了硬件的批量生产





### xTCA标准制定及相关研究 -下一代核仪器及设备标准XTCA进展



# 刘振安中国科学院高能物理研究所快触发实验室

核探测与核电子学国家重点实验室揭牌仪式 北京 2012年3月7日





#### PET phodetectors promizing technologies • SiPM/MPPC-DSiPM **Large Area MCP's**



#### Exemple of Conceptual TOF-PET architecture model



Free-running analog waveform sampling and digitizer (SCA)

- Digital filter used to extract pulse amplitude and high resolution timing (FPGA)
- Pipelined processing architecture to avoid deadtimes
- Parallel digital read out
- Terabit network for communication and processing (xTCA) 2015/08/19

# TDAQ = Pipeline Architectures

#### LHC

#### **Future PET**

