Physics with Heavy-Ion Beams at SppC

Guang-You Qin

Central China Normal University

Workshop on Physics at the CEPC/SppC August 10-12, 2015 IHEP, Beijing

Many thanks to Qun Wang, Xin-Nian Wang, Nu Xu

Outline

- QCD and high-energy heavy-ion collisions
- Some main results from RHIC and the LHC
- Selected predictions for heavy-ion collisions at SppC energy
- Summary

QCD & high-energy heavy-ion collisions

QCD and strong interaction

- QCD is an essential ingredient of Standard Model and the fundamental quantum field theory of the strong interaction
- Elementary fields: quarks and gluons which carry "color" degrees of freedom

$$\mathcal{L} = \sum_{f} \overline{\psi}_{f} (i\gamma^{\mu}D_{\mu} - m_{f})\psi_{f} - \frac{1}{4} G^{a}_{\mu\nu}G^{a\mu\nu}$$

- SU(3) non-Abelian gauge theory
- Asymptotic freedom and confinement
- Approximate chiral symmetry which is spontaneously broken
- Approximate conformal symmetry broken by quantum interaction

Strong-interaction matter

How QCD behaves at finite/extreme temperatures and densities?

Current two heavy-ion colliders

Relativistic Heavy Ion Collider (RHIC) Au-Au, Cu-Cu,U-U @ Vs_{NN} =7-200GeV

Larger Hadron Collider (LHC) Pb-Pb @ √s_{NN}=2.76-5.5TeV

PbPb collisions at the LHC

"Standard Model" of high-energy heavy-ion collisions

Goal: to create QGP (L~10⁻¹⁵m, t~10⁻²³s), and to study the microscopic structure and interaction nature of QCD matter at various conditions (temperature, density, length/momentum scale ...)

- Soft probes: multiplicity, spectrum, flow, fluctuations, and correlations
- Hard probes: jets, open heavy flavors and heavy quarkonia
- Electromagnetic probes: photons and dileptons

• ...

Some important heavy-ion results from RHIC and the LHC

- RHIC
 - Wealthy evidences of the formation of strongly-coupled QGP
 - Strong collective flow
 - Jet quenching
 - Bonus
 - First observation of anti-hypertriton in 2010 & anti-Alpha in 2011 in Au-Au collisions (by STAR Collaboration)
- LHC
 - Confirmed all experimental evidences of QGP, obtained semiquantitative understanding of QGP
 - Flow: larger specific shear viscosity
 - Jets: smaller jet-medium interaction strength, full jets up to hundreds of GeV, mass ordering for jet quenching (D and non-prompt J/ ψ)
 - Surprise
 - Evidence for the collectivity in p-Pb collisions

Anisotropic collective flow

The interaction among QGP constituents translates initial state geometric anisotropy to final state momentum anisotropy (particle correlations) Relativistic hydrodynamics gives nice description of flow => strongly-coupled QGP

Initial state fluctuations and final state correlations

lumpy IC

The lumpiness of the initial conditions leads to anisotropy and inhomogeneity of QGP (e₁, e₂, e₃, e₄, e₅...) $\varepsilon_n e^{in\Phi_n} = \frac{\left\{r^m e^{in(\phi-\Phi_n)}\right\}}{\left\{r^m\right\}} = \frac{\int d^2 r_\perp \rho(r_\perp) r^m e^{in(\phi-\Phi_n)}}{\int d^2 r_\perp \rho(r_\perp) r^m}$

Initial state fluctuations affect the system evolution and manifest in final state flow and correlations (v_1 , v_2 , v_3 , v_4 , v_5 ...)

$$\frac{dN}{d\psi} \propto 1 + \sum_{n} 2v_n \cos[n (\psi - \psi_n)] \qquad v_n e^{in\Psi_n} = \left\{ e^{in(\psi - \Psi_n)} \right\}$$

The joint distribution of flow magnitudes and phases:

$$p(v_n, v_m, \ldots, \psi_n, \psi_m, \ldots) = \frac{1}{N_{evt}} \frac{dN_{evt}}{dv_n dv_m \ldots d\psi_n d\psi_m \ldots}$$

Alver and Roland, PRC 2010; GYQ, Petersen, Bass, Muller, PRC 2010; Teaney, Yan, PRC 2011; etc.

Collective flow at RHIC and the LHC

- Initial temperature T₀>T_c => QGP is created
 - 360MeV @RHIC
 - 470MeV @LHC
- Thermalization time: τ_0 =0.6fm/c
- Strong collective flow & small specific shear viscosity η/s obtained => strongly-coupled QGP, a relativistic fluid
 - ~0.12 @RHIC
 - ~0.2 @LHC
- One of the largest uncertainties is the incomplete knowledge of initial state (fluctuations)

Gale, Jeon, Schenke, Tribedy, Venugopalan, PRL 2012; etc.

Collectivity in small collision systems

- Collectivity should diminish for smaller system size, so was not expected in p-p and p-A collisions
- But at the LHC, similar long range correlations have been observed in p-A and high multiplicity p-p collisions
- Hydrodynamics provides a natural explanation (so a mini-QGP has been created?), but is also challenged by its applicability in such small systems and the assumption of rapid thermalization
- Initial state quark and gluon correlations?
- How to disentangle initial and final state correlation effects?

Bozek, Broniowski, Torrieri, PRL 2013; GYQ, Muller, PRC 2014; Bzdak, Ma, PRL 2014; etc.

Hard probes of QGP

Parton energy loss and jet transport parameter

Higher-Twist (Wang-Guo-Majumder)

$$\frac{dN_g}{dxdk_{\perp}^2 dt} \approx \frac{2\alpha_s}{\pi} P(x) \frac{\hat{q}}{k_{\perp}^4} \sin^2 \left(\frac{t - t_i}{2\tau_f}\right)$$

Jet transport coefficient:

Elastic (collisional)

BDMPS-Z: Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov ASW: Amesto-Salgado-Wiedemann AMY: Arnold-Moore-Yaffe DGLV: Djordjevic-Gyulassy-Levai-Vitev

$$\hat{q} = \frac{d\langle \Delta p_{\perp}^2 \rangle}{dt} \approx \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \langle F^{\mu+}(0) F_{\mu}^+(y^-) \rangle = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho_A x G_N(x) |_{x \to 0}$$

Jet transport parameter at RHIC and the LHC

McGill-AMY:

GYQ, Ruppert, Gale, Jeon, Moore, Mustafa, PRL 2008 HT-BW: Chen, Hirano, Wang, Wang, Zhang, PRC 2011 HT-M: Majumder, Chun, PRL 2012 **GLV-CUJET:** Xu, Buzzatti, Gyulassy, arXiv: 1402.2956 **MARTINI-AMY:** Schenke, Gale, Jeon, PRC 2009 **NLO SYM:** Zhang, Hou, Ren, JHEP 2013

Future: precise determination of T (& E) dependence of jet transport parameters

Full jets in heavy-ion collisions

Full jets are expected to provide more detailed information than single hadron observables

- 1. Strong modification of dijet imbalance distribution
- 2. Largely-unchanged angular distribution

Significant energy loss for the away-sidesubleading jets

Full jet shower evolution in medium

Not only the interaction of the leading hard parton with the medium constituents, but also the fate of radiated shower partons as well

$$E_{jet} = E_{in} + E_{lost}$$

= E_{in} + E_{out}(radiation) + E_{out}(broadening) + E_{th}(collision)

GYQ, Muller, PRL, 2011; Young, Schenke, Jeon, Gale, PRC, 2011; Dai, Vitev, Zhang, PRL 2013; Wang, Zhu, PRL 2013; Blaizot, Iancu, Mehtar-Tani, PRL 2013; etc.

Full jet structure

Medium modification of jet fragment (shape) profiles

- Little change at small r; depletion at intermediate r, z; excess at large r, low & high z
- The soft outer part of jets is easier to be modified (some absorbed by medium), while the modification of the inner hard cone is more difficult; the enhancement at large r is consistent with the broadening
- The enhancement at low z is expected from medium-induced radiation; the enhancement at large z can be understood since the inner hard core does not change much while the outer soft part flows to the medium

Open heavy flavors

- light flavor mesons
- High-p_T b-quark jets show similar suppression to inclusive jets
- Comparison of D-meson production and non-prompt J/ψ from B decays indicates the mass ordering

Heavy quarkonia

- J/ψ suppression has been proposed as a signature of QGP
- At high T, when the color screening length $\lambda_{\rm D}$ becomes smaller than quarkonium radius $r_{\rm QQ}$, the bound states melt (dissociate)
- Sequential melting may be used to determine T & $\lambda_{\rm D}$

Matsui, H.Satz, PLB 1986; Karsch, Satz, ZPC, 1991; Karsch, Kharzeev, Satz, PLB 2006

- Less suppression in central collisions at the LHC than at RHIC can be explained well by regeneration mechanism
- Higher temperature at the LHC means: more effective melting, but also much more frequent recombination of heavy quark pairs into quarkonia

What have we learned so far from RHIC & LHC

- Lattice QCD gives Tc~155MeV (the transition is a smooth crossover)
- We have created the hottest matter in Universe since it was a few μ s old
- The QGP is a strongly-coupled liquid (η /s is larger at the LHC than at RHIC)
- Quantum fluctuations of initial states persist and manifest in the final states (the knowledge of initial states is the largest uncertainties in determining η/s)
- The QGP is highly opaque to colored probes (hard partons are more weakly coupled at the LHC than at RHIC)
- The temperature of the QGP is high enough to melt heavy quarkonia (but the recombination of heavy quark pairs into quarkonia is more frequent at the LHC than at RHIC)
- Evidences for collective behaviors in small collision systems

What is still not very clear?

- What is the microscopic origin of the collective properties of QGP?
- What is the nature of the initial state?
 - How to image the high-density gluon fields of incoming nuclei and their fluctuations? How exactly does QCD become a classical high-density gluon system?
- How is QGP formed in heavy-ion collisions?
 - What is the thermalization mechanism? How does the thermalization time depend on collision energy?
- How does QCD matter behaves over a wide range of length/momentum scales?
 - What are the precise values of η /s and jet transport coefficients at various temperatures (scales)?
- What is the smallest QGP that we can create?

Selected predictions for heavy-ion beams at SppC

Multiplicity in A-A collisions

Flow in A-A collisions

The same η /s gives roughly the same v_n gives at 30TeV, while larger η /s leads to smaller v_n

Jet quenching

Full jets

Open heavy flavors

At low p_T, larger gluon shadowing effect

At high p_T , higher temperature and longer lifetime of QGP lead to more suppression

Heavy quarkonia

Initial produced J/ ψ are largely melted due to higher temperature Significant nuclear shadowing effect suppresses the contribution from regeneration

Summary

• At RHIC, QGP was discovered

- It is strongly-interacting, and its collective behavior is similar a perfect fluid
- It shows strong opaqueness to the colored probes

• At the LHC, semi-quantitative picture of QGP has been obtained

- The temperature dependence of the QGP properties have been investigated/measured
- Larger specific shear viscosity & smaller jet-medium interaction strength at the LHC than at RHIC
- Strong evidence of collectivity in small collision systems
- Future heavy-ion collisions at SppC energies will help to obtain much more precise determination of the properties and the microscopic structures of QGP at a wide range of length/momentum scales
 - Initial states (and their fluctuations)? How QGP is formed?
 - Temperature dependence of QGP properties (η /s and jet transport coefficients, etc.)
 - How a strongly-interacting QGP fluid at RHIC & LHC emerges from a weakly-coupled gaseous phase at high temperature?
 - QGP might be easily produced in p-A and even p-p collisions. How mini a thermal QGP can be?
 - Other bonuses/surprises?

Pre-proposal for future heavy-ion and electron-ion collision program

Ning-bo Chang,¹ Bao-yi Chen,² Shi-yong Chen,¹ Zhen-yu Chen,² Heng-Tong Ding,¹ Zhi-quan Liu,¹ Long-gang Pang,¹ Guang-you Qin,¹ Björn Schenke,³ Huichao Song,⁴ Bo-wen Xiao,¹ Hao-jie Xu,⁵ Qun Wang,⁵ Xin-Nian Wang,^{1,6} Ben-wei Zhang,¹ Han-zhong Zhang,¹ Xiangrong Zhu,⁴ and Peng-fei Zhuang²

Only a few selected topics are presented. More comprehensive results need much more dedicated efforts.

Thank you!

ep & eA collisions

- 120GeV electron + 25-50GeV proton(nucleus), most powerful electron-hadron collider in the near future
- 3D (longitudinal and transverse) image of internal structure of protons and nuclei
- Precise measurement of PDFs (Q²~10⁶GeV², x~10⁻⁷) is important for hadron-hadron collider and the search for new physics
- Low-x physics: non-linear gluon dynamics, gluon saturation and nuclear structure at extremely high density

Viscosity

- Bulk viscosity: the resistance to expansion
- Shear viscosity: the resistance to flow

 Shear viscosity measures the ability of momentum transport between different parts of the system (thus the interaction strength)

$$\eta \approx \frac{1}{3} n \overline{p} \lambda_f = \frac{p}{3\sigma_{\rm tr}}$$

Relativistic hydrodynamics

• Energy-momentum conservation law:

$$\partial_{\mu}T^{\mu\nu} = 0$$

$$T^{\mu\nu} = eU^{\mu}U^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$

• Equations of motion (Israel-Stewart viscous hydrodynamics):

$$\begin{split} \dot{e} &= -(e + P + \Pi)\theta + \pi^{\mu\nu}\sigma_{\mu\nu} \\ (e + P + \Pi)\dot{U}^{\alpha} &= \nabla^{\alpha}(P + \Pi) + \dot{U}_{\mu}\pi^{\mu\alpha} - \Delta^{\alpha}_{\nu}\nabla_{\mu}\pi^{\mu\nu} \\ \dot{\Pi} &= -\frac{1}{\tau_{\Pi}} \bigg[\Pi + \zeta\theta + \Pi\zeta\mathcal{T}\partial_{\rho}\bigg(\frac{\tau_{\Pi}}{2\zeta\mathcal{T}}U^{\rho}\bigg) \bigg] \\ \Delta^{\mu\nu}_{\alpha\beta}\dot{\pi}^{\alpha\beta} &= -\frac{1}{\tau_{\pi}} \bigg[\pi^{\mu\nu} - 2\eta\sigma^{\mu\nu} + \pi^{\mu\nu}\eta\mathcal{T}\partial_{\rho}\bigg(\frac{\tau_{\pi}}{2\eta\mathcal{T}}U^{\rho}\bigg) \bigg] \end{split}$$

• Hadron spectra from Cooper-Fry formula:

$$E \frac{dN_i}{d^3 p} = \frac{g_i}{(2\pi)^3} \int_{\Sigma} p \cdot d^3 \sigma f(p \cdot U, T)$$

Hadron rescattering and decay

arXiv:0902.3663; arXiv:1301.2826; arXiv:1301.5893; arXiv:1311.1849; arXiv:1401.0079...

Specific shear viscosity for strongly-correlated fluids

Adams, Carr, Schafer, Steinberg, Thomas, New J.Phys. 14 (2012) 115009, arXiv: 1205.5180