Overview of the CEPC Project

XinChou Lou Institute of High Energy Physics Beijing, China

On Behalf of the CEPC-SppC Study Group

Outline

The CEPC-SppC Study Group – a brief reminder

Progress and Status

Preliminary CDR

Volume 1: Physics, detector, simulation and physics reach
Volume 2: Accelerators: CEPC, SPPC
Volume 3: Civil engineering and site consideration
preCDR: Technical review & Completion

- Communication, outreach and education
- Training and professional development

Pre. R&D and funding requests

CDR

Project evaluation

Summary

Reminder:

CEPC-SppC Study Group

Phase 1: e⁺e⁻ Higgs (Z) factory two detectors, 1M ZH events in 10yrs E_{cm}≈240GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹, can also run at the Z-pole Precision measurement of the Higgs boson (and the Z boson)

Phase 2: a discovery machine; pp collision with E_{cm} ≈ 50-100 TeV; ep,HI options Discovery machine for BSM

favored post BEPCII accelerator based particle physics program in China

4

CEPC

- Precise measurements of the Higgs properties as a Higgs Factory (similar to ILC@250 GeV)
 - □ Mass, J^{PC}, couplings, etc. \rightarrow reach (sub-) percentage accuracy

□ Precise measurements of Electroweak Symmetry-Breaking parameters at Z-pole and WW threshold □ $m_Z, m_W, \Gamma_Z, \sin^2 \theta_W^{\text{eff}}, \alpha_S, \text{ etc. + searches for rare decays}$

CEPC Organization

Institution Board and Steering Committee formed in the kick-off

Office of Engineering and Support at IHEP appointed by IHEP director Y. F. Wang on April 15, 2014

- The CEPC management was reorganized in May 2015, after the preCDR, to move forward with the CDR process;
- Int'l advisory committee formed; first meeting in September.

Preliminary Conceptual Design Report (preCDR)

Volume 1: Physics, detector, simulation and physics reach Volume 2: Accelerators: CEPC, SPPC Volume 3: Civil engineering and site consideration

- Getting preliminary answers to critical questions
- Identify critical physics, technologies & tools for R&D
- Develop estimates for R&D costs
- Formal review by int'l committees & completion

Document ready for 13th 5 Year Plan (2015)

Status and Progress

ACCELERATORS

Preliminary

For details please presentation by Qing Qin

CEPC-SppC Accelerators

• e⁺e⁻ collider

Higgs produced above the $e^+e^- \rightarrow ZH$ threshold Collide e^+e^- at $E_{cm} \sim 240 \text{GeV}$, $\sigma \sim 200 \text{ fb}$ Need 250 fb⁻¹/y/IP —> 1M Higgs particles in 10 years Goal

• pp collider

 E_{cm} =70 TeV or higher

CEPC Accelerator Baseline Design

CEPC main parameters

Parameter				Design Goal		
Parameter	Unit	Value	Param	eter	Unit	Value
Beam energy [E]	GeV	120	Circum	ference [C]	m	54752
Number of IP[N _{IP}]		2	SR loss	/turn [U₀]	GeV	3.11
Bunch number/beam[n _B]		50 (48)	Bunch	population [Ne]	<	3.79E+11
SR power/beam [P]	MW	51.7	Beam	current [l]	mA 🔇	16.6
Bending radius [ρ]	m	6094	mome	ntum compaction factor $[\alpha_p]$		3.36E-05
Revolution period [T ₀]	s	1.83E-04	Revolu	tion frequency [f ₀]	Hz	5475.46
emittance (x/y)	nm	6.12/0.018	βıթ (x/y)	mm	800/1.2 (3)
Transverse size (x/y)	μm	69.97/0.15	ξ _{x,y} /IP			0.118/0.083
Bunch length SR [σ _{s.sr}]	mm	2.14	Bunch	length total [$\sigma_{s.tot}$]	mm	2.65
Lifetime due to Beamstrahlung	min	47	lifetim scatter	e due to radiative Bhabha ing [τ _L]	min	51
RF voltage [V _{rf}]	GV	6.87	RF frec	juency [f _{rf}]	MHz	650
Harmonic number [h]		118800	Synchr	otron oscillation tune $[v_s]$		0.18
Energy acceptance RF [h]	%	5.99	Dampi	ng partition number [J $_{\mathcal{E}}$]		2
Energy spread SR [$\sigma_{\delta.SR}$]	%	0.132	Energy	spread BS [σ _{δ.BS}]	%	0.096
Energy spread total $[\sigma_{\delta.tot}]$	%	0.163	nγ			0.23
Transverse damping time [n _x]	turns	78	Longit	udinal damping time $[n_{\epsilon}]$	turns	39
Hourglass factor	Fh	0.68	Lumine	osity /IP[L]	cm ⁻² s ⁻¹	2.04E+34

SppC Accelerator Design considerations

Proton-proton collider luminosity ٠

$$L_0 = \frac{N_p^2 N_b f_{rep} \gamma}{4\pi\varepsilon_n \beta_{IP}} F \qquad (F = \sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma_{x,IP}}\right)^2})$$

- Main constraint: high-field superconducting dipole magnets ٠
 - $B_{\rm max} = 12$ T, E = 50 TeV 50 km: $B_{\min} = \frac{2\pi (B\rho)}{C_{\circ}}$ $B_{\rm max} = 20 \text{ T}, E = 70 \text{ TeV}$ **50 km**: $B_{\rm max} = 20$ T, E = 90 TeV **70 km**:

R&D plan of the 20 T accelerator magnets

(Very Preliminary)

- 2015-2020: Development of a 12 T operational field Nb₃Sn twin-aperture dipole with common coil configuration and 10⁻⁴ field quality; Fabrication and test of 2~3 T HTS (Bi-2212 or YBCO) coils in a 12 T background field and basic research on tape superconductors for accelerator magnets (field quality, fabrication method, quench protection).
- 2020-2025: Development of a 15 T Nb₃Sn twin-aperture dipole and quadrupole with 10⁻⁴ field uniformity; Fabrication and test of 4~5 T HTS (Bi-2212 or YBCO) coils in a 15 T background field.
- 2025-2030: 15 T Nb₃Sn coils + HTS coils (or all-HTS) to realize the 20 T dipole and quadrupole with 10⁻⁴ field uniformity; Development of the prototype SppC dipoles and quadrupoles and infrastructure build-up.

a long term plan for SC 20T magnets is being developed will be a world wide effort 10, 2015

Status and Progress

DETECTOR

> aim at coming up with a credible prel. CDR
 > identify "R&D" for CDR & TDR

CEPC Detector considerations

ILD-like detector with additional considerations (*incomplete list*):

- Shorter L* (1.5/2.5m) → constraints on space for the Si/TPC tracker
- No power-pulsing → lower granularity of vertex detector and calorimeter
- □ Limited CM (up to 250 GeV) \rightarrow calorimeters of reduced size

• Similar performance requirements to ILC detectors

- Momentum: $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1}$ $\leftarrow_3 \text{recoiled Higgs mass}$
- Impact parameter: $\sigma_{r\phi} = 5 \oplus 10/(p \cdot \sin^2 \theta) \mu m \leftarrow \text{flavor tagging, BR}$

- Jet energy: $\frac{\sigma_E}{E} \approx 3-4\% \qquad \leftarrow W/Z$ di-jet mass separation

Sub-detector groups consider design options, identify challenges, plan R&D February 28, 2015

CEPC Detector considerations

- Focal length (L*), the distance between QD0 and the interaction point, shortened to 1.5 m to allow realization of high luminosity without large chromaticity corrections
- Comprehensive understanding and optimization of both detector and collider performance are needed in future studies

CEPC Detector considerations

Vertex Detector

	Detector		Geometric dimensions		Material budget [X/X ₀]	
SET ETD	SIT	Layer 1: Layer 2:	r = 1 r = 30 r = 18	53 mm, 00 mm, 811 mm	z = 371.3 mm z = 664.9 mm z = 2350 mm	0.65% 0.65%
SIT T	FTD	Disk 1: Disk 2: Disk 3: Disk 4:	$r_{in} = 39$ mm, $r_{in} = 49.6$ mm, $r_{in} = 70.1$ mm, $r_{in} = 79.3$ mm,	$r_{out} = 164$ mm, $r_{out} = 164$ mm, $r_{out} = 308$ mm, $r_{out} = 309$ mm,	z = 220 mm z = 371.3 mm z = 644.9 mm z = 846 mm	0.50% 0.50% 0.65% 0.65%
FTD	ETD	Disk 5: Disk:	$r_{in} = 92.7$ mm, $r_{in} = 419.3$ mm,	$r_{out} = 309$ mm, $r_{out} = 1822.7$ mm,	$\begin{array}{l} z = 1057.5 \ \mathrm{mm} \\ z = 2420 \ \mathrm{mm} \end{array}$	0.65% 0.65%

Silicon Internal Tracker (SIT) – 2 inner layers Si strip detectors
 Forward Tracking Detector (FTD) – 5 disks (2 with pixels and 3 with Si strip sensor) on each side, comparing 7 disks on ILD, due to smaller L*
 Silicon External Tracker (SET) – 1 outer layer Si strip detector
 End-cap Tracking Detector (ETD) – 1 end-cap Si strip detector on each side

Calorimeters

• Particle Flow Algorithm (PFA) oriented electromagnetic and hadronic calorimeters, expected jet energy resolution of 3-4% combined with the tracking detectors

• Intensive detector R&D efforts in the CALICE collaboration, be selective on the technologies most suitable for CEPC

• b/c-quark and tau lepton identification (*essential for the precision physics program*) requiring impact parameter resolution in the transverse plane better than:

$$\sigma_{r\phi} = 5 \oplus \frac{10}{(p \cdot \sin^{3/2} \theta)} \ \mu m$$

- The vertex detector should comply with:
 - Spatial resolution near the IP better than 3 μm
 - Material budget ≤0.15% radiation length (X0) per layer
 - 1^{st} detector layer close to the IP (r = 16 mm)
 - Detector occupancy not exceeding 1%

Requirements on pixel sensor

Single-point resolution <3 μ m, power consumption < 50mW/cm² (air cooling), readout time < 20 μ s

radiation tolerance: annual TID~100 kRad and NIEL~3 $\times 10~n_{\rm eq}/cm^2$

Magnet

• 3.5 T central field of superconducting solenoid in a warm aperture of 6 m in diameter and 8.05 m length (total yoke weight ~ 10840t)

Structure of the coil/iron yoke

CEPC Detector R&D considerations

Critical R&D for pixel detector

- Pixel sensors with low power consumption and fast readout
 - Optional technologies: HR-CMOS, SOI, DEPFET, etc.
 - Novel readout architecture and enhanced in-pixel and sensor level electronics functionality
- Mechanical design and cooling
 - Light weight mechanical support structure and cables
 - Vibration under forced-air cooling: *impacts on position precision an* consequentially the impact parameter resolution
 - Air cooling or more aggressive CO2 cooling

Critical R&D for strip detector

- Silicon microstrip sensor with high spatial resolution
 - Convectional p+-on-n sensor with small pitch size ~ 50um fabricated with large size wafer (6" or even 8")
 - Preferably to be thinned down to below 200 um (less material) and with slim-edge (maximal sensitive area)
 - Alternatively pixelated strip sensors based on CMOS technology as being pursued by the ATLAS experiment for HL-LHC
- Front-end electrons
 - Fabricated with 90/65 nm CMOS technology
 - Fast electronics with low noise and low power consumption
- Mechanics, powering and cooling

DHCAL R&D

- Detector optimization including pad size, number of detector layers, gas recirculation system, HV distribution system
- Readout Electronics (PCB, low power ASIC FEE)
- Effective cooling together with power saving strategy
- Calibration
 - Energy, position and density calibration
 - Detailed shower measurement gives possibility to use track segments (from data itself) to calibrate calorimeter
- Mechanical: self-support and compact module

Critical R&D for PTC

- Techniques and design to fully suppress the Ion backflow
- Understand the impacts of magnetic/electric field distortion on readout modules and track reconstruction and figure out possib solution
- Readout options (GEM or Micromegas) and front-end electronic (ASICs fabricated with 65 nm CMOS technology)
- Efficient cooling techniques: two-phase CO2 cooling or more efficient micro-channel CO2 cooling
- Alignment and calibration system

CEPC Detector (pixel) considerations

Many technologies from ILC/CLIC R&D could be referred.

BUT, unlike the ILD, the CEPC detector will operate in continuous mode.

- Pixel sensor: power consumption < 50mW/cm² with air cooling, readout < 20μs
- Front-end electronics: low power consumption, low noise, 65nm CMOS technology, potential unified application with calorimeter readout
- **Power and cooling**: DC-DC powering, air cooling (or more aggressive cooling, eg. silicon micro-channel cooling)
- Mechanics: low mass supporting structure but with sufficient stiffness and stability, easy integration and replacement etc.

Beam Related Backgrounds

- Backgrounds originating from beam-beam interactions
 - Beamstrahlung (negligible)
 - Electron-positron pair production (dominant)
 - Hadronic background (negligible)
 - Radiative Bhabha scattering (small)

On the inner most detector layer

Hit density : 0.8 hits/cm²/BX Radiation levels: annual TID~100 kRad and NIEL~3 ×10 n_{eq}/cm²

- Other backgrounds also studied
 - Synchrotron radiation (partially evaluated, detectors safe)
 - Beam-gas interactions (negligible)

CEPC Detector considerations Noise near the IP

- Beam induced backgrounds (beam-gas, beam-beam, synchrotron radiation) imposes large impact on detector design (eg, occupancies, radiation damage)
- Beam-beam interactions simulated with Guinea-Pig, including Beamstrahlung, e⁺e⁻ pair production, hadronic backgrounds, etc.

Status and Progress

SIMULATION & PHYSICS REACH Preliminary

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 Lumi section: 1

MC Samples

Generators: Full SM sample + Several BSM Signals

CEPC preCDR Higgs sensitivity study

Z decay mode	ΔM_H (MeV)	$\Delta\sigma(ZH)/\sigma(ZH)$	$\Delta g(HZZ)/g(HZZ)$
ee	14	2.1%	
$\mu\mu$	6.5	0.9%	
$ee + \mu\mu$	5.9	0.8%	0.4%
$q \bar{q}$		0.65%	0.32%
$ee + \mu\mu + q\bar{q}$		0.51%	0.25%

~0.5% accuracy on σ (ZH), the **anchor** of absolute Higgs measurements

Model independent tagging of Higgs boson (via Z recoil mass)
 Make CEPC extremely sensitive to BSM Higgs decay

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\bar{\nu}H)\times \mathrm{BR}(H\to b\bar{b})$
5.9 MeV	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH) \times BR$	BR
$H \rightarrow b\bar{b}$		0.28%	0.57%
$H \to c \bar{c}$		2.2%	2.3%
$H \to gg$		1.6%	1.7%
$H\to\tau\tau$		1.2%	1.3%
$H \to WW$		1.5%	1.6%
$H \rightarrow ZZ$		4.3%	4.3%
$H \to \gamma \gamma$		9.0%	9.0%
$H \to \mu \mu$		17%	17%
$H \to \mathrm{inv}$		_	0.28%

CEPC Combination group:

Model independent result compared to ILC

Model dependent result compared to LHC (LHC: very limited access to model Independent measurement)

Status and Progress

CIVIL ENGINEERING & SUPPORT

Office of Engineering and Support at IHEP

appointed by IHEP director Y. F. Wang on April 15, 2014
veterans and very experienced professionals

"enormous amount of effort & progress"

QingHuangDao site Investigation

- 300km from Beijing
- ➢ Geo well suited
- Great environment

CEPC "Qinghuandao Site" Investigation

Preli. CDR

Reviews and completion

CEPC Pre-CDR:初步概念设计

http://cepc.ihep.ac.cn/preCDR/volume.html

The preliminary CDR volumes Volume I: Physics and the Detector Volume II: The CEPC-SppC Accelerators Volume III: Civil Engineering (in Chinese)

- The reviews
- Revisions and Chinese edition

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

Contents

1	INTRODUCTION	23
2	THE SCIENCE OF THE CEPC AND THE SPPC	28
2.1	INTRODUCTION	28
2.2	Physics with the e^+e^- Collider	28
2.3	Physics with the pp Collider	30
2.4	PHYSICS WITH THE <i>ep</i> AND <i>eA</i> COLLIDER	32
2.5	Physics with the Heavy Ion Collider	33
2.6	SUMMARY	34
2.7	References	35
3	MACHINE LAYOUT AND PERFORMANCE	36
4	CEPC - ACCELERATOR PHYSICS	41

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

CONTENTS

Auth	nor List	t		iii				
Ack	nowled	gments		ix				
1	Intro	duction		1				
	1.1	The CI	EPC-SPPC Study Group and the Preliminary CDR	1				
	1.2	The Ca	2					
	1.3	The Science in the preCDR						
	1.4	The Aa	accelerator and the Experiment	3				
2	Ove	rview of	the Physics Case for CEPC-SPPC	5				
	2.1	2.1 New Colliders for a New Frontier						
	2.2	The Electroweak Phase Transition						
	2.3	Naturalness of the Electroweak Scale						
	2.4	2.4 Dark Matter						
3	Higg	js Physi	cs at the CEPC	57				
	3.1	Introdu	action	57				
	3.2	Simula	tion and Reconstruction	59				
		3.2.1	Detector Simulation and Software Chain	59				
		3.2.2	Detector Performance	60				
	3.3	Higgs	Boson Measurements	62				
		3.3.1	Production Cross Sections of Signal and Background Processes	62				
		3.3.2	$\sigma(ZH)$ and m_H Measurements	64				
		3.3.3	Production Rates of Individual Higgs Boson Decay Modes	68				
		3.3.4	Measurements of Branching Ratios	76				
		3.3.5	Measurement of Higgs Boson Width	77				
		3.3.6	Summary of the Higgs Measurements	78				

CEPC preCDR 初步概念设计 - **Reviews**

Beijing, May 17, 2015

CEPC preCDR 初步概念设计 - **Reviews**

"The committee considers the CEPC-SPPC to be well aligned with the future of China's HEP program, and in fact the future of the global HEP program."

"The committee strongly endorses the physics case of the CEPC, as outlined in the preCDR, recognizing it as an essential step in the understanding of Nature"

"The Committee has been very impressed with the progress during such a short period of time, as well as the work and presentations shown, mostly done by the young generation, who are the ones that can devote their carriers to this project through the coming decades"

- Physics goals and precision reachable (preliminary)
- No technological obstacles that can not be overcome
- Specification of R&D items
- Initial cost estimate
- Complete preCDR (implement reviewers comments),

Status and Progress

COMMUNICATION, OUTREACH & EDUCATION

Communication: CEPC Web site (English, Chinese)

Future High Energy Circular Colliders

The Standard Model (SM) of particle physics can describe the strong, weak and electromagnetic interactions under the framework of quantum gauge field theory. The theoretical predictions of SM are in excellent agreement with the past experimental measurements. Especially the 2013 Nobel Prize in physics was awarded to F. Englert and P. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider".

After the discovery of the Higgs particle, it is natural to measure its properties as precise as possible, including mass, spin, CP nature, couplings, and etc., at the current running Large Hadron Collider (LHC) and future electron positron colliders, e.g. the International Linear Collider (ILC). The low Higgs mass of ~125 GeV makes possible a Circular Electron Positron Collider (CEPC) as a Higgs Factory, which has the advantage of higher luminosity to cost ratio and the potential to be upgraded to a proton-proton collider to reach upprecedented high energy and discover New

Panel Discussion on Fundamental Physics

Nine world leading physicists had face-to-face discussions at Tsinghua University, Beijing on Feb 23, sharing with the public their opinions on new physics opportunities after the discovery of Higgs.

Chaired by Shing-Tung Yau, a Fields medalist, the panel discussions involved a group of noted scientists, Nima Arkani-Hamed, David Gross, Gerard 't Hooft, Joseph Incandela, Luciano Maiani, Hitoshi Murayama, Yifang Wang and Edward Witten.

Scientists aim at next-generation high energy circular collider

b Opportunities JOIN US

Proposed by the Chinese high energy physics community in 2012, the circular electron positron collider (CEPC) has got warm responses from the international community. This machine could be later upgraded to a high energy proton-proton collider with physics potential far beyond the Higgs factory.

From February 24 to 25, a two-day workshop focusing on the physics case for future circular colliders, as well as discussions on how to synchronize the domestic theoretical particle physics efforts with the planning and designing of future circular machines was held at the Institute of High Energy Physics.

External Links

August 10, 2015

版权所有 @ 中国科学院高能物理研究所 各案序号: 克ICP各05002790号

地址:北京市918信箱 邮编: 100049

36

V 7hong

Copyright @2002-2013 Institute of High Energy Physics, CAS, Questions and Comments to jiayh@ihep.ac.cn

Outreach & education CEPC Outreach

0 一个内涵丰富的缩略语——CEPC1
I. CEPC 概貌
1.1 参照物——LHC1
1.2 超级巨无霸——CEPC4
II. 中国为何要建 CEPC?
2.1 粒子物理的重要地位5
2.2 粒子物理与加速器6
2.3 标准模型与希格斯粒子7
2.4 宇宙大爆炸、暗物质、暗能量7
2.5 难逢的机遇
2.6 国际反响巨大11
2.7 实现"四个率先"的强力支撑13
III. 中国能否建成 CEPC?14
3.1 政治家与科学家的决策14
3.2 国际其他未来高能量对撞机方案17
1. 国际直线对撞机 ILC17
2. 紧凑型直线对撞机 CLIC
3. 大型正负电子对撞机 LEP319
4. 极高能大型正负电子对撞机 TLEP
5. 未来环形对撞机 FCC20
6. 超大型强子对撞机 VLHC20
7. 缪子对撞机 MC20
3.3 巨大的挑战
3.4 中国建 CEPC 的优势22
1. 赶上了中国发展的好时机
2. BEPC 奠定了坚实的基础
3.5 投资从哪里来?
3.6 CEPC 的计划进度
IV. CEPC 建成后会发生什么?
4.1 世界的聚焦点 CEPC
4.2 科学技术的跨越发展
4.3 创新人才的高地
4.4 国际一流的科研机构
V. 结语
参考文献
中国科学院离婚物理研究所

н.	W
н.	~~~

4	4	(上)(日 (200)	
5	1.	什么是 SSC?	1
5	2.	美国当时为什么要建造 SSC?	1
6	3.	SSC 在建近 7 年留下了什么?	2
7	4.	SSC 为什么会夭折?	2
/		预算节节攀升	2
o 1		政治天平倾斜	2
3		科学家意见分歧	2
4		国际合作陷困境	
4		管理存在缺陷	3
7		公众宣传欠缺	3
7		其他原因	
8	5.	SSC 停建造成了哪些后果?	
9		美国失去了粒子物理领域的领袖地位	3
0		美国错失了重大科学机会	4
0		美国科学家心中永远的痛	4
0	6.	美国能否东山再起?	4
1		美国本土再无高能量的加速器大型实验	4
2		积极投入海外的大型粒子物理实验研究	
		保持实力,准备东山再起	
	7.	SSC 的经验教训引起哪些思考?	5500000000000000000000000000000000000
August 1	i 10, 2015		+щн+якаяеещнося 38 Y. Y. Zhong

十问"希格斯粒子"与"环形正负电子对撞机"

希格斯粒子究竟是什么?为什么全球数千位科学家,花费数十亿美元,坚持 50年在寻找它?它被喻为粒子物理标准模型"最后的一块拼图",可是为什么当 它终于被发现,科学家们却说这是人类探索基本粒子的新开端?中国科学家为什 么想要建造下一代环形正负电子对撞机来"批量生产"它?为什么这是我国高能 物理研究,甚至国家发展的难得机遇?

关于"希格斯粒子"与"环形正负电子对撞机",太多网友表示"不明觉厉", 小编这就联合高能所的粒子物理学家为你解开疑惑。

1、什么是粒子物理的"标准模型"?

粒子物理的"标准模型"是一个描述物质世界的基本构成(基本粒子)及其 相互作用的理论,于 20 世纪 60 至 70 年代在弱电统一理论以及量子色动力学的 基础上逐步完善起来。物理学家温伯格(Steven Weinberg)、萨拉姆(Abdus Salam)

和格拉肖 (Sheldom Lee Glaschow) 等 是标准模型的奠基人。

该模型把基本粒子分为夸克、轻子 和玻色子三大类别,共 62 种,这些粒 子后来陆续被高能物理实验所证实。

标准模型预言的希格斯粒子是自 旋为零的玻色子。与之相关的希格斯机 制为基本粒子的质量起源提供了动力 学解释,因此是整个标准模型的基石之 一。假如希格斯粒子不存在,那将成为 标准模型的重大缺陷。

粒子物理标准模型示意图

2、什么是希格斯粒子? 它为什么被称作"上帝粒子"?

希格斯粒子是粒子物理标准模型预言的一种自旋为零的玻色子,以英国理论 物理学家彼得•希格斯(Peter Higgs)的名字命名。标准模型中的一些其他基 本粒子受希格斯场的作用产生惯性,最终形成质量。因此可以说,希格斯机制为 物质世界的形成奠定了质量基础。基本粒子有了质量才能产生引力,才会形成宇 宙和生命。在过去几十年中,寻找希格斯粒子是许多大型高能粒子物理实验的最 重要目标。

公众宣传

3、什么是希格斯场和希格斯机制?

简单来说,希格斯场是一种不可见的、遍及整个宇宙的能量场;希格斯机制 是基本粒子的质量产生机制。在希格斯机制中,希格斯场引起弱电规范对称性的 自发破缺,将质量赋予传递弱相互作用的规范玻色子以及费米子。希格斯粒子是 希格斯场的量子激发,它通过自相互作用而获得质量。

根据粒子物理标准模型和宇宙大爆炸理论,宇宙起源于一次大爆炸,无数的 正反粒子同时产生,轻子和夸克通过与希格斯场的相互作用获得了质量。这些粒 子构成物质,通过长时间的演化形成了星系,最终形成今天的物质世界。

1993年, 英国科 技大臣曾向科学家们 发出挑战, 让他们用 一页纸的篇幅向他解 释清楚希格斯机制。 他共收到 117 份作品, 其中英国伦敦大学学 院的物理学家戴维• 米 勒 (David J. Miller)的解释被评 为最优。

用漫画来解释希格斯机制。作者: David J. Miller

米勒把希格斯场

比作在一个均匀分散着的一大群政客的房间,把一个没有质量的基本粒子比作前 英国首相撒切尔夫人 (Margaret Hilda Thatcher)。普通人可以任意穿过房间, 就像光子一样。但是撒切尔夫人的到场,一定会吸引大量的关注:人们会围拢在 她周围,减慢她穿行的速度,使她获得"质量"。这个类比形象地说明了没有质 量的基本粒子是如何通过与希格斯场的相互作用而获得质量的。

4、希格斯粒子为什么如此难以捕获?

希格斯粒子作为质量之源,在137亿年前的宇宙大爆炸初始就已经完成了它的使命。现在,物理学家要再次捕获希格斯粒子的踪迹,就只有建造高能对撞机, 通过高能粒子的对撞,来模拟宇宙起源的时刻,"复活"希格斯粒子。

Status and Progress

TRAINING & PROFESSIONAL DEVELOPMENT

Training and Professional development for CEPC

We need more professionals to undertake the CEPC-SppC project to good completion

Training young people to address manpower shortage

August 2014

11 Aug - 15 Aug Detector Simulation and Geometry editing

October 2013

19 Oct - 20 Oct CEPC Training: Physics Analysis, Detector Optimization and Software (1995

International Summer school on TeV Experimental Physics (iSTEP)

20-29 August 2014 IHEP Asia/Shanghai timezone

CEPC Study Group Pre. R&D and funding requests

- 1. IHEP internal investment ~10M RMB organize teams, initialize preliminary R&D
- 2. Seek funding from Chinese Ministry of Sci. & Tech. kick-off R&D
- Seek Chinese 13th 5 year plan approval for R&D and validation CDR, TDR and preparation for construction

CEPC Study Group CDR and IAC

In May 2015, the CEPC Study Group decided to begin the CDR process, with a preliminary target date of completion: end of 2016

An International Advisory Committee has been formed to advise the CEPC SG on int'l collaboration, organizational structures, governance, Science & Technology issues, etc.

CEPC Study Group Project evaluation

- The Ministry of Science and Technology (MOST) has been asked to lead the evaluation of the CEPC-SppC project, with several other central government agencies joining in the process
- In May MOST held a discussion session on CEPC-SppC
- We anticipate more actions by MOST, including possibly a formal project evaluation, later this year

SUMMARY

- Tremendous efforts have been made, real progress in all fronts on the CEPC-SppC study
- preCDR volumes have been reviewed and finalized; no technological show stoppers
- CEPC-SppC study group will make the case to the government
- Much work ahead: funding requests, project evaluation, CDR, ...;
- More internationalization expected for CEPC