LHC / HL-LHC Plan

Higgs Physics Reach at HL-LHC

Mingshui Chen (On behalf of the ATLAS & CMS Collaborations) Institute of High Energy Physics, CAS

Workshop on Physics at CEPC 10-12/08/2015, Beijing

LHC / HL-LHC Plan

Higgs Physics Reach at HL-LHC

Mingshui Chen (On behalf of the ATLAS & CMS Collaborations) Institute of High Energy Physics, CAS

Workshop on Physics at CEPC 10-12/08/2015, Beijing

LHC combined $m_{H} = 125.09 \pm 0.21$ (stat) ± 0.11 (syst) GeV

Spin/CP strongly favors the SM 0⁺ hypothesis

Consistent with SM prediction within current level of accuracy

Precision on signal strengths: 20-50%

Precision on coupling measurements: 15-40%

Coupling Deviations in BSM

- How well do we need to measure Higgs couplings ?
- Typical effect on coupling from heavy particle M or new physics at scale M:

$$\Delta \sim \left(\frac{\upsilon}{M}\right)^2 \sim 5\% \text{ (M)} - 1 \text{ TeV}$$

Han et al., hep-ph/0302188 Gupta et al., arXiv:1206.3560

Typical sizes of coupling modifications:

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

HL-LHC as a Higgs Factory

Higgs physics goals

- Rare decays and couplings
- CP mixing
- Higgs pair productions

•

Challenges at HL-LHC

High radiation level

ATLAS & CMS Phase II Upgrade

Common strategy to cope with high pile-up and high radiation dose and to obtain similar performance as that in RUN1

- Re-design L1 trigger logic to keep leptons pT thresholds and L1 trigger rate low
- New tracker with high granularity and radiation resistance and extended $\boldsymbol{\eta}$ coverage
- Extension of calorimeter and muon detectors coverage to increase acceptance and improve performances

Projection Approaches

ATLAS

- Detector response functions based on full Geant4 simulation
 - pileup $\langle \mu_{PU} \rangle = 60$ for 300 fb⁻¹ projection
 - pileup $\langle \mu_{PU} \rangle = 140$ for 3000 fb⁻¹ projection

CMS

- Extrapolated from RUN1 analyses
 - RUN1 pileup <m> ~20
- Assume detector upgrades keep current performance
 - Verified with full detector simulation in recent Phase II TP
- Two scenarios for systematic uncertainties
 - Scenario 1: systematics remain the same as RUN1
 - Scenario 2: theory uncertainties scale by 50%, others scale by 1/√L

Higgs Mass

<u>A fundamental parameter</u>

important input to precision Higgs measurement

- For HWW/HZZ: $(\Delta BR/BR)/\Delta m_{H} \approx 8\%/GeV$
- A 50 MeV of $\Delta m_H \rightarrow \sim 0.5\%$ uncertainty on BR measurement

Snowmass report (arXiv:1310.8361)

- Assuming both stat and syst uncertainties scale as 1/√L
 - projected from previous preliminary old results [±0.25 (stat) ±0.45(syst) GeV]
- Precision@3000fb⁻¹ **±15 (stat) ±25(syst) MeV**

ATL-PHYS-PUB-2015-024 CMS-NOTE-13-002

Total Width from Offshell Higgs

\sqrt{s}/σ	S (fb)	B (fb)	SBI (fb)	$qq \rightarrow ZZ$ (fb)
8 TeV	0.03	0.67	0.64	16.7
14 TeV	0.11	1.96	1.86	36.9

cross sections for $ZZ \rightarrow 2e2mu$, gen level cut on m4l >200 GeV for gg initiated processes and > 40 GeV for qqZZ

$$u_{\text{off-shell}}(\hat{s}) \equiv \frac{\sigma_{\text{off-shell}}^{gg \to H^* \to VV}(\hat{s})}{\sigma_{\text{off-shell}, SM}^{gg \to H^* \to VV}(\hat{s})} = \kappa_{g, \text{off-shell}}^2(\hat{s}) \cdot \kappa_{V, \text{off-shell}}^2(\hat{s})$$

$$\mu_{\text{on-shell}} = \frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}}{\sigma_{\text{on-shell}, SM}^{gg \to H \to ZZ}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{Z,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{SM}}$$

The ratio of $\mu_{off-shell}$ to $\mu_{on-shell}$ provides a measurement of the total width of the Higgs boson, under several assumptions*:

$$\Gamma_{H}^{(L2)} = 4.2^{+1.5}_{-2.1}$$
 MeV (stat+sys)

L2: 3000 fb⁻¹ scenario

*see backup

CP-mixing in $H \rightarrow ZZ \rightarrow 4I$

Rare Decay: $H \rightarrow \mu\mu$

Probe the second generation couplings

- BR (2.2 x 10⁻⁴), benefit largely from dataset increase @ HL
- Main backgrounds from Z+jets, ttbar and WW
 - high $p_T^{\mu\mu}$ to suppress Drell-Yan
 - need excellent dimuon mass resolution

Expected significance > 7 σ with 3000 fb⁻¹

		µ-hat error				
	ℒ(fb⁻¹)	Scenario I	Scenario 2			
ATLAS	300	± 0.39	± 0.38			
CMS	300	± 0.42	± 0.40			
 ATLAS	3000	± 0.16	± 0.12			
CMS 3000 ± 0.20 ± 0.14						
ATLAS scenarios: 1- full sys 2- no theory sys						
CMS sce	enarios: 1-	run-1 sys 2-	reduced sys			

Rare Decay: $H \rightarrow Z\gamma$

Sensitive to new physics via decay loops

- SM BR is only 10⁻⁴ (including $Z \rightarrow ee/\mu\mu$)
- Large backgrounds from Z+γ and Z+jets

Higgs to Invisible

Search for the invisible branching ratio of the Higgs boson

- Projection studies use $ZH \rightarrow II + invisible$
- Look for excess in high missing E_{T} tail

Expected 95% CL upper limits on the inv. branching fraction

L (fb ⁻¹)	ATLAS	CMS
300	[23, 32]%	[17,28]%
3000	[8,16]%	[6,17]%

Numbers in brackets are estimated under [Scenario2, Scenario1] for CMS, and [realistic scenario (~2-3% unc.), conservative scenario (~5% exp and 5% theo unc)] for ATLAS

Signal Strengths

LHC only allows to measure σxBR

• Express a ratio μ to SM value

Coupling Fits

- Model-dependent fits
 - single resonance
 - Narrow width approximation
 - CP even tensor structure

$$\sigma(i \to H \to f) = \frac{\sigma_i(\kappa_j) \cdot \Gamma_f(\kappa_j)}{\Gamma_H(\kappa_j)}$$

$$k_i^2 = \frac{\Gamma_i}{\Gamma_I^{SM}} \quad k_H^2 = \frac{\sum k_j^2 \Gamma_j^{SM}}{\Gamma_H^{SM}}$$

• Without further assumptions, LHC can measure ratios: $\lambda_{ij} = \kappa_i / \kappa_j$, $\kappa_{ij} = \kappa_i \kappa_j / \kappa_H$

20

ATL-PHYS-PUB-2014-016 CMS-NOTE-13-002 CERN-LHCC-2015-010

Couplings vs. Particle Mass

Couplings are mass dependent in SM

- assume no new Higgs decay modes
- loops resolved

Percent level precision for most of the couplings

Effective Couplings for Loops

Allow new physics entering in loops

Ultimate precision 2-10%, varies by coupling Similar sensitivity for ATLAS

Coupling Ratios

Most generic fit, removing assumption on the total width

- only ratios of coupling scale factors can be determined at LHC
- also probe for new physics contributions in loop processes

ATLAS Simulation Preliminary

Theory Uncertainties

What is needed to keep it below 10% of total (30% of the expected total experimental uncertainty)

Scenario	Status	Status Deduced size of uncertainty to increase total uncertainty				nty			
	2014	by ≲	10% for	300 fb ⁻¹	by $\leq 10\%$ for 3000 fb ⁻¹				
Theory uncertainty (%)	[10–12]	κ _{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	κ _{gZ}	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{\tau Z}$	λ_{tg}
$gg \rightarrow H$									
PDF	8	2	-	-	1.3	-	-	-	-
incl. QCD scale (MHOU)	7	2	-	-	1.1	-	-	-	-
p_T shape and $0j \rightarrow 1j$ mig.	10–20	-	3.5–7	-	-	1.5–3	-	-	-
$1j \rightarrow 2j$ mig.	13–28	-	-	6.5–14	-	3.3–7	-	-	-
$1j \rightarrow VBF 2j mig.$	18–58	-	-	-	-	-	6–19	-	-
VBF $2j \rightarrow VBF 3j$ mig.	12–38	-	-	-	-	-	-	6–19	-
VBF									
PDF	3.3	-	-	-	-	-	2.8	-	-
tĪH									
PDF	9	-	-	-	-	-	-	-	3
incl. QCD scale (MHOU)	8	-	-	-	-	-	-	-	2

Recent Improvements in Theory Prediction

For 125 GeV ggH, PDF uncertainty decreases from $7\% \rightarrow 3\%$

From C. Duhr @ Higgs Hunting 2015

Recent Improvements in Theory Prediction

Inclusive gluon fusion cross section now available at N³LO, scale variation is only 3%, a big reduction for the uncertainty due to missing higher order QCD corrections

Higgs Pair Production

Probe Higgs self-interaction

- directly probe the Higgs field potential
- crucial to test the Higgs sector to its full extent

Two interfering diagrams (destructive)

SM cross section @ 14 TeV: 40.8 fb (NNLO)

HH→bbγγ

- Branching ratio 0.26%, total yield 320 events for 3000 fb⁻¹
- Much larger resonant and non-resonant backgrounds

 Both experiments expect 8-9 events after event selections corresponding to ~1.3 σ for ATLAS and 67% uncertainty on signal strength for CMS

HH→bbττ

- Branching ratio 7.3%, total yield 8900 events for 3000 fb⁻¹
- CMS studied it in $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$ final states, expects a combined bb $\tau\tau$ significance 0.9 σ

- 1.9 σ expected by combing bbγγ and bbττ, with an uncertainty 54% on signal strength
- Significant improvements are expected by adding more channels and using MVA techniques

Summary

- The discovery of the Higgs boson has opened the door towards a deeper understanding of particle physics
- The HL-LHC with a ten times more luminosity will offer unique opportunities to explore the Higgs sector
 - Coupling measurements within 2-10% precision
 - Study of the Higgs boson self-couplings
- Detector upgrade foreseen by ATLAS and CMS will ensure optimal performances despite the very harsh conditions
- + Improvement on theory prediction progresses faster than expected

Stay tuned: Run 2 has started

Event display of a SM ZZ \rightarrow 2e2µ candidate @ 13TeV

Thanks !

References

- CMS Public Projected Physics Results
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsFP</u>
- ATLAS Public Projected Physics Results
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>UpgradePhysicsStudies</u>

Backup

From D. Contardo at EPS

Minimal Composite Higgs Model (MCHM)

- Higgs boson composite, pseudo-Nambu-Goldstone boson
 - Couplings modified as a function of compositeness scale $f: \xi = v^2/f^2$

• MCHM4:
$$\kappa = \kappa_{\rm V} = \kappa_{\rm F} = \sqrt{(1-\xi)}$$

• MCHM5:
$$\kappa_{\rm V} = \sqrt{(1-\xi)}; \ \kappa_{\rm F} = 1-2\xi / \sqrt{(1-\xi)}$$

Model	300 fb^{-1}		3000 fb^{-1}		
	All unc.	No theory unc.	All unc.	No theory unc.	
MCHM4	620 GeV	810 GeV	710 GeV	980 GeV	
MCHM5	780 GeV	950 GeV	1.0 TeV	1.2 TeV	

Expected 95% CL lower limit on Higgs boson compositeness scale

Higgs Portal to Dark Matter

- Additional WIMP as DM candidate
- Interact very weakly with SM, except Higgs boson
- Expected 95% CL upper limit BR (H→inv) at 3000 fb⁻¹
 - ATLAS: BR_{inv} < 0.13 (0.09)
 Run-1: VBF: BR_{inv} < 0.29
 - → CMS: $BR_{inv} < 0.11 (0.07)$

nominal (improved sys) scenarios (no theory for ATLAS, Scenario 2 for CMS)

Sub System	ATLAS	CMS
Design	46 m	EC 22 m
Magnet(s)	Solenoid (within EM Calo) 2T 3 Air-core Toroids	Solenoid 3.8T Calorimeters Inside
Inner Tracking	Pixels, Si-strips, TRT PID w/ TRT and dE/dx $\sigma_{p_T}/p_T\sim5 imes10^{-4}p_T\oplus0.01$	Pixels and Si-strips PID w/ dE/dx $\sigma_{p_T}/p_T \sim 1.5 imes 10^{-4} p_T \oplus 0.005$
EM Calorimeter	Lead-Larg Sampling w/ longitudinal segmentation $\sigma_E/E \sim 10\%/\sqrt{E} \oplus 0.007$	Lead-Tungstate Crys. Homogeneous w/o longitudinal segmentation $\sigma_E/E\sim 3\%/\sqrt{E}\oplus 0.5\%$
Hadronic Calorimeter	Fe-Scint. & Cu-Larg (fwd) $~\gtrsim 11\lambda_0 \ \sigma_E/E \sim 50\%/\sqrt{E} \oplus 0.03$	Brass-scint. $~\gtrsim 7\lambda_0~$ & Tail Catcher $\sigma_E/E\sim 100\%/\sqrt{E}\oplus 0.05$
Muon Spectrometer System Acc. ATLAS 2.7 & CMS 2.4	Instrumented Air Core (std. alone) $\sigma_{p_T}/p_T \sim$ 4 % (at 50 GeV) \sim 11 % (at 1 TeV)	Instrumented Iron return voke $\sigma_{p_T}/p_T \sim 1\% \; ({ m at} \; 50 { m GeV})$ $\sim 10\% \; ({ m at} \; 1 { m TeV})$

Analyses used in coupling projections

$\Delta \mu / \mu$	3	800 fb ⁻¹	3000 fb ⁻¹	
	All unc.	No theory unc.	All unc.	No theory unc.
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.13	0.09	0.09	0.04
(0j)	0.19	0.12	0.16	0.05
(1j)	0.27	0.14	0.23	0.05
(VBF-like)	0.47	0.43	0.22	0.15
(WH-like)	0.48	0.48	0.19	0.17
(ZH-like)	0.85	0.85	0.28	0.27
(ttH-like)	0.38	0.36	0.17	0.12
$H \rightarrow ZZ \text{ (comb.)}$	0.11	0.07	0.09	0.04
(VH-like)	0.35	0.34	0.13	0.12
(ttH-like)	0.49	0.48	0.20	0.16
(VBF-like)	0.36	0.33	0.21	0.16
(ggF-like)	0.12	0.07	0.11	0.04
$H \rightarrow WW$ (comb.)	0.13	0.08	0.11	0.05
(0j)	0.18	0.09	0.16	0.05
(1j)	0.30	0.18	0.26	0.10
(VBF-like)	0.21	0.20	0.15	0.09
$H \rightarrow Z\gamma$ (incl.)	0.46	0.44	0.30	0.27
$H \rightarrow b\bar{b}$ (comb.)	0.26	0.26	0.14	0.12
(WH-like)	0.57	0.56	0.37	0.36
(ZH-like)	0.29	0.29	0.14	0.13
$H \rightarrow \tau \tau$ (VBF-like)	0.21	0.18	0.19	0.15
$H \rightarrow \mu\mu$ (comb.)	0.39	0.38	0.16	0.12
(incl.)	0.47	0.45	0.18	0.14
(ttH-like)	0.74	0.72	0.27	0.23

ATLAS

Analyses used in coupling projections

CMS

H decay	prod. tag	exclusive final states	cat.	res.
	untagged	$\gamma\gamma$ (4 diphoton classes)	4	1-2%
0,0,0	VBF-tag	$\gamma\gamma + (j\bar{j})_{\rm VBF}$	2	<1.5%
	VH-tag	$\gamma\gamma + (e, \mu, MET)$	3	<1.5%
	ttH-tag	$\gamma\gamma$ (lep. and had. top decay)	2	<1.5%
77 _\ 10	$N_{\rm jet} < 2$	10 111 20211	3	1_7%
	$N_{\rm jet} \ge 2$	$\pm c, \pm \mu, 2c 2\mu$	3	1-2/0
	0/1-jets	(DF or SF dileptons) \times (0 or 1 jets)	4	20%
WW $\rightarrow \ell \nu \ell \nu$	VBF-tag	$\ell \nu \ell \nu + (jj)_{\text{VBF}}$ (DF or SF dileptons)	2	20%
	WH-tag	$3\ell 3\nu$ (same-sign SF and otherwise)	2	
	0/1-jet	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) \times (low or high p_T^{\tau})$	16	
	1-jet	$ au_h au_h$	1	15%
ττ	VBF-tag	$(\mathbf{e}\tau_h, \mu\tau_h, \mathbf{e}\mu, \mu\mu, \tau_h\tau_h) + (jj)_{\mathrm{VBF}}$	5	
	ZH-tag	$(ee, \mu\mu) \times (\tau_h \tau_h, e\tau_h, \mu\tau_h, e\mu)$	8	
	WH-tag	$ au_h \mu \mu, au_h \mathbf{e} \mu, \mathbf{e} au_h au_h, \mu au_h au_h$	4	
	VH-tag	($\nu\nu$, ee, $\mu\mu$, e ν , $\mu\nu$ with 2 b-jets)×x	13	10%
bb	ttH_tag	(ℓ with 4, 5 or \geq 6 jets) × (3 or \geq 4 b-tags);	6	
	tti i-tag	(ℓ with 6 jets with 2 b-tags); ($\ell\ell$ with 2 or \geq 3 b-jets)	3	
Ζγ	inclusive	(ee, $\mu\mu$) × (γ)	2	
μμ	0/1-jets	μμ	12	1-2%
	VBF-tag	$\mu\mu + (jj)_{\text{VBF}}$	3	1-2/0
invisible	ZH-tag	(ee, $\mu\mu$) × (MET)	2	

$L (fb^{-1})$	$\gamma\gamma$	WW	ZZ	bb	ττ	$Z\gamma$	μμ	inv.
300	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[40,42]	[17, 28]
3000	[4, 8]	[4, 7]	[4,7]	[5,7]	[5, 8]	[20, 24]	[20,24]	[6, 17]

ttH Production

- Directly sensitive to Top Yukawa coupling
 - the largest Yukawa coupling
 - indirectly from ggH and Hγγ loops


```
ATLAS projection for ttH(\gamma\gamma): > 8 \sigma with 3000 fb<sup>-1</sup>
```

Both CMS and ATLAS projected sensitivity on $\kappa_{top} \sim 10\%$ with 3000 fb⁻¹

Higgs total width via offshell measurement

$$\frac{\mathrm{d}\sigma_{pp\to H\to ZZ}}{\mathrm{d}M_{4l}^2} \sim \frac{g_{Hgg}^2 g_{HZZ}^2}{(M_{4l}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2}$$

- Assuming identical on-shell and off-shell Higgs couplings, the ratio of $\mu_{off-shell}$ to $\mu_{on-shell}$ provides a measurement of the total width of the Higgs boson.
 - This assumption is particularly relevant to the running of the effective coupling κ_g (s^) for the loop-induced gg \rightarrow H production process, as it is sensitive to new physics that enters at higher mass scales and could be probed in the high-mass m_{ZZ} signal region of this analysis.
- It is also assumed that any new physics which modifies the off-shell signal strength $\mu_{off-shell}$ and the off-shell coup- lings $\kappa_{i,off-shell}$ does not modify the predictions for the backgrounds.
- Further, neither are there sizeable kinematic modifications to the off-shell signal nor new, sizeable signals in the search region of this analysis unrelated to an enhanced off-shell signal strength.
- The projection on the off-shell Higgs boson coupling can be translated into a projected determination of the Higgs boson total width at 3000 fb-1 (10% systematic uncertainty on R_B), assuming that the on-shell couplings will be measured at high luminosity with much higher precision:

$$\Gamma_H^{(L2)} = 4.2^{+1.5}_{-2.1}$$
 MeV (stat+sys).

Complex pole scheme

In this section, we consider the signal (S) in the complex-pole scheme (CPS) of Refs. $[54,\,74,\,75]$

$$\sigma_{gg \to ZZ}(S) = \sigma_{gg \to H \to ZZ}(M_{ZZ}) = \frac{1}{\pi} \sigma_{gg \to H}(M_{ZZ}) \frac{M_{ZZ}^4}{\left|M_{ZZ}^2 - s_H\right|^2} \frac{\Gamma_{H \to ZZ}(M_{ZZ})}{M_{ZZ}}, \quad (2.8)$$

where s_H is the Higgs complex pole, parametrized by $s_H = \mu_H^2 - i \mu_H \gamma_H$. Note that γ_H is not the on-shell width, although the numerical difference is tiny for low values of μ_H , as shown in Ref. [54].

Away (but not too far away) from the narrow peak the propagator and the off-shell ${\cal H}$ width behave like

$$D_H(M_{\rm ZZ}^2) \approx \frac{1}{(M_{\rm ZZ}^2 - \mu_H^2)^2}, \qquad \frac{\Gamma_{H \to ZZ}(M_{\rm Z})}{M_{\rm ZZ}} \sim G_{\rm F} M_{\rm ZZ}^2$$
(2.9)

Higgs production @ 14 TeV

	M _H =125 GeV					
Process	Cross section	Scale uncertainty		PDF+α _s uncertain		
ggF ^a	50.35 pb	+7.5%	-8.0%	+7.2%	-6.0%	
VBF ^b	4.172 pb	+0.4%	-0.3%	+1.9%	-1.5%	
WH °	1.504 pb	+0.3%	-0.6%	+3.8%	-3.8%	
ZH °	0.8830 pb	+2.7%	-1.8%	+3.7%	-3.7%	
ttH °	0.6113 pb	+5.9%	-9.3%	+8.9%	-8.9%	
bbH ^d	0.5805 pb	+13.0%	-24.0%	+6.1%	-6.1%	

Branching Fractions

Process	Branching ratio	Uncertainty		
$H \rightarrow bb$	5.77 x 10 ⁻¹	+3.2%	-3.3%	
$H \rightarrow \tau \tau$	6.32 x 10 ⁻²	+5.7%	-5.7%	
$H \rightarrow \mu \mu$	2.20 x 10 ⁻⁴	+6.0%	-5.9%	
$H \rightarrow cc$	2.91 x 10 ⁻²	+12.2%	-12.2%	
$H \rightarrow gg$	8.57 x 10 ⁻²	+10.2%	-10.0%	
$H \rightarrow \gamma \gamma$	2.28 x 10 ⁻³	+5.0%	-4.9%	
$H \rightarrow Z\gamma$	1.54 x 10 ⁻³	+9.0%	-8.8%	
$H \rightarrow WW$	2.15 x 10 ⁻¹	+4.3%	-4.2%	
$H \rightarrow ZZ$	2.64 x 10 ⁻²	+4.3%	-4.2%	
Г _Н [GeV]	4.07 x 10 ⁻³	+4.0%	-3.9%	

Process	Branching ratio	Uncertainty
H → 4I (I=е,µ,т)	2.76 x 10 ⁻⁴	±4.3%
$H ightarrow$ 41 (l=e, μ)	1.25 x 10 ⁻⁴	±4.3%
$H \rightarrow eeee$	3.27 x 10 ⁻⁵	±4.3%
$H ightarrow ee \mu \mu$	5.93 x 10 ⁻⁵	±4.3%
$\textit{H} \rightarrow \textit{2l2v} ~\textit{(l=e,\mu,\tau, v=any)}$	2.34 x 10 ⁻²	±4.3%
H ightarrow 2l2v (l=e,µ, v=any)	1.06 x 10 ⁻²	±4.3%
$H \rightarrow e^+ v e^- v$	2.52 x 10 ⁻³	±4.3%
<i>H</i> → e ⁺ νμ⁻ν	2.52 x 10 ⁻³	±4.3%

