SM predictions for electroweak precision observables

A. Freitas University of Pittsburgh

Workshop on Physics at the CEPC, 10-12 August 2015

1. Introduction

- 2. Electroweak precision observables
- 3. Current status of SM loop results
- 4. Future projections

Introduction

Standard Model after Higgs discovery:

- Good agreement between measured mass and indirect prediction
- Very good agreement over large number of observables

1/21

Surprisingly good agreement: $\chi^2/d.o.f. = 18.1/14 \ (p = 20\%)$

Most quantities measured with 1%–0.1% precision

Surprisingly good agreement: $\chi^2/d.o.f. = 18.1/14 \ (p = 20\%)$

Most quantities measured with 1%–0.1% precision

A few interesting deviations:

$$\begin{array}{ll} M_{\mathsf{W}} & (\sim 1.4\sigma) \\ \sigma_{\mathsf{had}}^{\mathsf{0}} & (\sim 1.5\sigma) \\ A_{\ell}(\mathsf{SLD}) & (\sim 2\sigma) \\ A_{\mathsf{FB}}^{b} & (\sim 2.5\sigma) \\ (g_{\mu}-2) & (\gtrsim 3\sigma) \end{array}$$

GFitter coll. '14

Electroweak precision observables

W mass

$$e^+e^- \rightarrow f\bar{f} \text{ for } \sqrt{s} \sim m_Z:$$

$$\sigma = \mathcal{R}_{\text{ini}} \bigg[12\pi \frac{\Gamma_{ee}\Gamma_{ff}}{(s-m_Z^2)^2 - m_Z^2\Gamma_Z^2} (1+\delta X) (1-\mathcal{P}_e\mathcal{A}_e) + \sigma_{\text{non-res}} \bigg],$$

$$\Gamma_{ff} = \mathcal{R}_V^f g_{Vf}^2 + \mathcal{R}_A^f g_{Af}^2, \qquad \Gamma_Z = \sum_f \Gamma_{ff},$$

$$\mathcal{A}_f = 2\frac{g_{Vf}/g_{Af}}{1+(g_{Vf}/g_{Af})^2} = \frac{1-4|Q_f|\sin^2\theta_{\text{eff}}^f}{1-4|Q_f|\sin^2\theta_{\text{eff}}^f} + 8(|Q_f|\sin^2\theta_{\text{eff}}^f)^2}.$$

$$A_{\text{FB}}^f = \frac{3}{4}\mathcal{A}_e\mathcal{A}_f \qquad A_{\text{LR}} = \mathcal{A}_e$$

$$e^+e^- \rightarrow f\bar{f} \text{ for } \sqrt{s} \sim m_Z:$$

$$\sigma = \mathcal{R}_{\text{ini}} \bigg[12\pi \frac{\Gamma_{ee}\Gamma_{ff}}{(s-m_Z^2)^2 - m_Z^2 \Gamma_Z^2} (1+\delta X) (1-\mathcal{P}_e \mathcal{A}_e) + \sigma_{\text{non-res}} \bigg],$$

$$\Gamma_{ff} = \mathcal{R}_V^f \vartheta_V^2 + \mathcal{R}_A^f \vartheta_A^2 f, \quad \Gamma_Z = \sum_f \Gamma_{ff},$$

$$\mathcal{A}_f = 2\frac{g_V f/g_A f}{1+(g_V f/g_A f)^2} = \frac{1-4|Q_f| \sin^2 \theta_{\text{eff}}^f}{1-4|Q_f| \sin^2 \theta_{\text{eff}}^f} + 8(|Q_f| \sin^2 \theta_{\text{eff}}^f)^2.$$

$$A_{\text{FB}}^f = \frac{3}{4} \mathcal{A}_e \mathcal{A}_f \qquad A_{\text{LR}} = \mathcal{A}_e$$

QED/QCD corrections on ext. fermions

Chetyrkin, Kataev, Tkachov '79 Dine, Saphirstein '79 Celmaster, Gonsalves '80 Gorishnii, Kataev, Larin '88,91 Chetyrkin, Kühn '90 Surguladze, Samuel '91 Kataev '92 Chetyrkin '93 etc...

$$e^+e^- \rightarrow f\bar{f} \text{ for } \sqrt{s} \sim m_Z:$$

$$\sigma = \underbrace{\mathcal{R}_{\text{ini}}}_{I2\pi} \underbrace{12\pi \frac{\Gamma_{ee}\Gamma_{ff}}{(s-m_Z^2)^2 - m_Z^2 \Gamma_Z^2} (1+\delta X) (1-\mathcal{P}_e \mathcal{A}_e) + \sigma_{\text{non-res}}}_{Iff},$$

$$\Gamma_{ff} = \mathcal{R}_V^f g_{Vf}^2 + \mathcal{R}_A^f g_{Af}^2, \quad \Gamma_Z = \sum_f \Gamma_{ff},$$

$$\mathcal{A}_f = 2 \frac{g_{Vf}/g_{Af}}{1+(g_{Vf}/g_{Af})^2} = \frac{1-4|Q_f|\sin^2\theta_{\text{eff}}^f}{1-4|Q_f|\sin^2\theta_{\text{eff}}^f + 8(|Q_f|\sin^2\theta_{\text{eff}}^f)^2}.$$

$$A_{\text{FB}}^f = \frac{3}{4} \mathcal{A}_e \mathcal{A}_f \qquad A_{\text{LR}} = \mathcal{A}_e$$

additional initial-state QED corrections

Kuraev, Fadin '85 Berends, Burgers, v. Neerven '88 Kniehl, Krawczyk, Kühn, Stuart '88 Beenakker, Berends, v. Neerven '89 Bardin et al. '89,91 Montagna, Nicrosini, Piccinini '97 etc...

$$e^+e^- \to f\bar{f} \text{ for } \sqrt{s} \sim m_Z;$$

$$\sigma = \mathcal{R}_{\text{ini}} \left[12\pi \frac{\Gamma_{ee}\Gamma_{ff}}{(s-m_Z^2)^2 - m_Z^2} (1+\delta X) (1-\mathcal{P}_e\mathcal{A}_e) + \sigma_{\text{non-res}} \right],$$

$$\Gamma_{ff} = \mathcal{R}_V^f g_{Vf}^2 + \mathcal{R}_A^f g_{Af}^2, \qquad \Gamma_Z = \sum_f \Gamma_{ff},$$

$$\mathcal{A}_f = 2\frac{g_{Vf}/g_{Af}}{1+(g_{Vf}/g_{Af})^2} = \frac{1-4|Q_f|\sin^2\theta_{\text{eff}}^f}{1-4|Q_f|\sin^2\theta_{\text{eff}}^f + 8(|Q_f|\sin^2\theta_{\text{eff}}^f)^2}.$$

$$A_{\text{FB}}^f = \frac{3}{4}\mathcal{A}_e\mathcal{A}_f \qquad A_{\text{LR}} = \mathcal{A}_e$$

electroweak corrections

Correction term first at NNLO: $\delta X_{(2)} = -(\operatorname{Im} \Sigma'_{Z(1)})^2 - 2\overline{\Gamma}_Z \overline{M}_Z \operatorname{Im} \Sigma''_{Z(1)}$ Grassi, Kniehl, Sirlin '01 Freitas '13

Low-energy observables

Test of running $\overline{\text{MS}}$ weak mixing angle $\sin^2 \overline{\theta}(\mu)$

 $(Q_W(^{133}Cs))$ Wood et al. '97 Guéna, Lintz, Bouchiat '05 10000

Current status of SM loop results

- Complete NNLO corrections (Δr , $\sin^2 \theta_{eff}^{\ell}$) Freitas, Hollik, Walter, Weiglein '00 Awramik, Czakon '02; Onishchenko, Veretin '02 Awramik, Czakon, Freitas, Weiglein '04; Awramik, Czakon, Freitas '06 Hollik, Meier, Uccirati '05,07; Degrassi, Gambino, Giardino '14
- "Fermionic" NNLO corrections (g_{Vf} , g_{Af}) Harlander, Seidensticker, Steinhauser '98 Freitas '13,14
- Partial 3/4-loop corrections to ρ/T -parameter $\mathcal{O}(\alpha_{t}\alpha_{s}^{2}), \mathcal{O}(\alpha_{t}^{2}\alpha_{s}), \mathcal{O}(\alpha_{t}\alpha_{s}^{3})$

Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05; Chetyrkin et al. '06 Boughezal, Czakon '06

$$(\alpha_{\mathsf{t}} \equiv \frac{y_{\mathsf{t}}^2}{4\pi})$$

	Experiment	Theory error	Main source
M_{W}	$80.385\pm0.015~{ m MeV}$	4 MeV	$\alpha^3, \alpha^2 \alpha_s$
${\sf F}_Z$	$2495.2\pm2.3~{ m MeV}$	0.5 MeV	$\alpha_{\rm bos}^2, \alpha^3, \alpha^2 \alpha_{\rm s}, \alpha \alpha_{\rm s}^2$
$\sigma_{\sf had}^{\sf 0}$	$41540\pm37~{ m pb}$	6 pb	$\alpha_{\rm bos}^2, \alpha^3, \alpha^2 \alpha_{\rm s}$
$R_b\equiv {\Gamma}^b_{ m Z}/{\Gamma}^{ m had}_{ m Z}$	0.21629 ± 0.00066	0.00015	$\alpha_{\rm bos}^2, \alpha^3, \alpha^2 \alpha_{\rm s}$
$\sin^2 heta_{ ext{eff}}^\ell$	0.23153 ± 0.00016	$4.5 imes 10^{-5}$	$\alpha^3, \alpha^2 \alpha_s$

Methods for theory error estimates:

- Parametric factors, *i*. *e*. factors of α , N_c , N_f , ...
- Geometric progression, $e. g. \frac{\mathcal{O}(\alpha^3)}{\mathcal{O}(\alpha^2)} \sim \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)}$
- Renormalization scale dependence (often underestimates error)
- Renormalization scheme dependence (may underestimate error)

Renormalization scheme dependence

Use of \overline{MS} renormalization for m_t reduces h.o. QCD corrections of $\mathcal{O}(\alpha_t \alpha_s^n)$: $\Delta \rho_{(n)}^{OS} / \left(\frac{3G_F m_t^2}{8\sqrt{2} - 2}\right)$ $\left(\frac{3G_F\overline{m}_t^2}{8\sqrt{2}\pi^2}\right)$ loops (n+1) $-0.193\left(\frac{\alpha_{s}}{\pi}\right)$ $-3.970\left(\frac{\alpha_s}{\pi}\right)$ 2 Djouadi, Verzegnassi '87 Kniehl '90 $-2.860\left(\frac{\alpha_{s}}{\pi}\right)^{2}$ $-14.59\left(\frac{\alpha_s}{\pi}\right)^2$ 3 Avdeev, Fleischer, et al. '94 Chetyrkin, Kühn, Steinhauser '95 $-1.680\left(\frac{\alpha_s}{\pi}\right)^3$ $-93.15\left(\frac{\alpha_s}{\pi}\right)^3$ 4 Schröder, Steinhauser '05 Chetyrkin, Faisst, Kühn, et al. '06 Boughezal, Czakon '06

No clear pattern of this kind known for $\mathcal{O}(\alpha^n)$ \rightarrow Only few results available that allow direct comparison e.g. Faisst, Kühn, Seidensticker, Veretin '03

Future projections

ILC:	$\sqrt{s}pprox M_{\sf Z}$ with 30 fb $^{-1}$,	$\sqrt{s}pprox 2M_{W}$ with 100 fb $^{-1}$
FCC-ee:	$\sqrt{s}pprox M_{\sf Z}$ with 4 $ imes$ 3000 fb $^{-1}$,	$\sqrt{s}pprox 2M_{ m W}$ with 4 $ imes$ 3000 fb $^{-1}$
CEPC:	$\sqrt{s}pprox M_{\sf Z}$ with 100–1000 fb $^{-1}$,	$\sqrt{s}pprox 2M_{W}$ with 100 fb $^{-1}$

	Current exp.	ILC	FCC-ee	CEPC	Current perturb.
M_{W} [MeV]	15	3–5	~ 1	3–5	4
Γ_Z [MeV]	2.3	\sim 1	~ 0.1	~ 0.5	0.5
$R_b [10^{-5}]$	66	15	\lesssim 5	17	15
$\sin^2 heta_{ ext{eff}}^\ell$ [10 $^{-5}$]	16	1.3	0.3	\sim 3	4.5

 \rightarrow Existing theoretical calculations adequate for LEP/SLC/LHC, but not future e^+e^- machines!

	ILC	CEPC	perturb. error with 3-loop [†]	Param. error ILC*	Param. error CEPC**
M_{W} [MeV]	3–5	3–5	1	2.6	2.1
Γ_Z [MeV]	\sim 1	~ 0.5	$\lesssim 0.2$	0.5	0.09
$R_b [10^{-5}]$	15	17	5–10	< 1	< 1
$\sin^2 \theta_{\text{eff}}^{\ell} [10^{-5}]$	1.3	3	1.5	2	2

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$ ($N_f^n = \text{at least } n \text{ closed fermion loops}$)

Parametric inputs:

* **ILC:** $\delta m_t = 100 \text{ MeV}, \, \delta \alpha_s = 0.001, \, \delta M_Z = 2.1 \text{ MeV}$

****CEPC:** $\delta m_t = 600 \text{ MeV}, \, \delta \alpha_s = 0.0001, \, \delta M_Z = 0.5 \text{ MeV}$

also: $\delta(\Delta \alpha) = 5 \times 10^{-5}$

Theory uncertainties in extraction of pseudo-observables 14/21

Subtraction of QED radiation contributions

→ Known to $\mathcal{O}(\alpha^2)$, $\mathcal{O}(\alpha^3 L^3)$ for ISR, $\mathcal{O}(\alpha^2)$ for FSR and $\mathcal{O}(\alpha^2 L^2)$ for A_{FB}

 $(L = \log \frac{s}{m_e^2})$

 $\log \frac{100}{m_e^2}$) Berends, Burgers, v.Neerven '88 Kniehl, Krawczyk, Kühn, Stuart '88 Beenakker, Berends, v.Neerven '89 Skrzypek '92; Montagna, Nicrosini, Piccinini '97

 $\rightarrow \mathcal{O}(0.1\%)$ uncertainty on σ_{Z} , A_{FB}

→ Improvement needed for ILC/FCC-ee

 Subtaction of non-resonant γ-exchange, γ-Z interf., box contributions, Bhabha scattering

see, e.g., Bardin, Grünewald, Passarino '99

- $\rightarrow \mathcal{O}(0.01\%)$ uncertainty within SM (improvements may be needed)
- \rightarrow Sensitivity to some NP beyond EWPO

Non-factorizable contributions

Factorization of massive and QED/QCD FSR:

 $\Gamma_{ff} \propto \mathcal{R}_V^f g_{Vf}^2 + \mathcal{R}_A^f g_{Af}^2$

Additional non-factorizable contributions, e.g.

 \rightarrow Known at $\mathcal{O}(\alpha \alpha_{s})$ Czarnecki, Kühn '96 Harlander, Seidensticker, Steinhauser '98

 \rightarrow Currently not known at $\mathcal{O}(\alpha^2)$ and beyond

→ $\mathcal{O}(0.01\%)$ uncertainty on Γ_Z , σ_Z , maybe larger for A_b (improvements may be needed)

Theory challenges

Full SM corrections at >2-loop:

- Large number of diagrams and tensor integrals, $\mathcal{O}(1000) \mathcal{O}(10000)$
 - \rightarrow Use of computer algebra tools
- Many different scales (masses and ext. momenta)
 - \rightarrow In general not possible analytically
 - \rightarrow Numerical methods must be automizable, stable, fastly converging
 - \rightarrow Need procedure for isolating divergent pieces

Analytic calculations

- Useful for diagrams with up to two scales (e. g. M_W & m_t or M_W & M_Z)
- Reduce to master integrals with integration-by-parts and Lorentz-invariance identities
 Chetyrkin, Tkachov '81; Gehrmann, Remiddi '00; Laporta '00; ...
- Evaluate master integrals with differential equations or Mellin-Barnes representations
 Kotikov '91; Remiddi '97; Smirnov '00,01; ...

Current status:

Single-scale problems: $Zf\overline{f}$ QED/QCD vertex corrections up to 4-loop Gorishnii, Kataev, Larin '88,91; Chetyrkin, Kühn, Kwiatkowski '96 Baikov, Chetyrkin, Kühn, Rittinger '12

Two-scale problems: $Zf\bar{f}$ electroweak 2-loop vertex diagrams with $m_f = 0$

Awramik, Czakon, Freitas, Weiglein '04

Extendability: Possible, but much work needed

Asymptotic expansions

- Exploit large mass ratios, $e. g. M_Z^2/m_t^2 \approx 1/4$
- Fast numerical evaluation

Current status:

Two-scale problems: $\mathcal{O}(\alpha \alpha_{s}^{n})$ corr. to $\Delta \rho$, Δr , ...

 \rightarrow Several expansion terms up to 3-loop, leading term up to 4-loop

Djouadi, Verzegnassi '87; Bardin, Chizhov '88 Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03

Up to three-scale problems: $Zf\bar{f}$ ew. 2-loop vertex corrections Barbieri et al. '92,93; Fleischer, Tarasov, Jegerlehner '93,95 Degrassi, Gambino, Sirlin '97; Awramik, Czakon, Freitas, Weiglein '04

Extendability: Promising, mostly limited by computing/algorithmic power

. . .

General form of Feynman integral:

$$I = \int_0^1 dx_1 \dots dx_n \, \delta(1 - \sum_i x_i) \frac{N(x_i)}{D(x_i)^{r+\varepsilon}}$$

 \rightarrow Can be integrated numerically (if finite)

Alternatives: Integration in momentum space, Mellin-Barnes space

Treatment of divergencies:

 Sector decomposition: Sub-divide integration space such that divergent terms factorize Binoth, Heinrich '00,03

 Subtraction terms: Remove divergencies with simple terms that can be integrated analytically
 Nagy, Soper '03

Becker, Reuschle, Weinzierl '10; Freitas '12

Direct numerical integration

- Automizable, but computing intensive
- Internal thresholds reduce numerical convergence

Current status:

Several 2-loop applications with many scales

Anastasiou et al., Petriello et al., Borowka et al.,

Individual 3-loop integrals

Extendability: Likely, but more work needed

Conclusions

- Current SM predictions for electroweak precision observables under good control (compared to experimental uncertainties)
- LHC will provide independent results for $\sin^2 \theta_{eff}$ and M_W , but overall precision not substantially improved
- ILC/CEPC/FCC-ee with $\sqrt{s} \sim M_Z$ will reduce exp. error of some EWPO by $\mathcal{O}(10)$
 - \rightarrow 3-loop (and maybe some 4-loop) corrections needed!
- Asymptotic expansion and numerical integration techniques are promising but more work needed
- Open questions in evaluation of theory errors, resummation and optimal choice of inputs

Backup slides

Goemetric perturbative series

$$\alpha_{t} = \alpha m_{t}^{2}$$

$$\begin{split} \mathcal{O}(\alpha^{3}) &- \mathcal{O}(\alpha_{t}^{3}) \sim \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha^{2}) \sim 0.26 \text{ MeV} \\ \mathcal{O}(\alpha^{2}\alpha_{s}) &- \mathcal{O}(\alpha_{t}^{2}\alpha_{s}) \sim \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.30 \text{ MeV} \\ \mathcal{O}(\alpha\alpha_{s}^{2}) &- \mathcal{O}(\alpha_{t}\alpha_{s}^{2}) \sim \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.23 \text{ MeV} \\ \mathcal{O}(\alpha\alpha_{s}^{3}) - \mathcal{O}(\alpha_{t}\alpha_{s}^{3}) \sim \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}^{2}) \sim 0.035 \text{ MeV} \end{split}$$

$$\mathcal{O}(lpha_{ t bos}^2)\sim\mathcal{O}(lpha_{ t bos})^2\sim 0.1~{ t MeV}$$

Parametric prefactors: $\mathcal{O}(\alpha_{\text{bos}}^2) \sim \Gamma_Z \alpha^2 \sim 0.1 \text{ MeV}$ $\mathcal{O}(\alpha \alpha_s^2) - \mathcal{O}(\alpha_t \alpha_s^2) \sim \frac{\alpha n_{\text{Iq}}}{\pi} \alpha_s^2 \sim 0.29 \text{ MeV}$

Total: $\delta \Gamma_Z \approx 0.5 \text{ MeV}$

Renormalization scheme dependence:

a) Uncertainty of $O(\alpha^2)$ corrections beyond leading $\alpha^2 m_t^4$ and $\alpha^2 m_t^2$ from comparison of $\overline{\text{MS}}$ and OS schemes: Degrassi, Gambino, Sirlin '96

 $\delta M_{
m W} \sim 2 \; {
m MeV}$ (for $M_{
m H} \sim 100 \; {
m GeV}$)

Actual remaining $\mathcal{O}(\alpha^2)$ corrections: Freitas, Hollik, Walter, Weiglein '00 $\delta M_{\rm W} \sim 3 \,{\rm MeV}$ (for $M_{\rm H} \sim 100 \,{\rm GeV}$)

b) Estimate of missing $O(\alpha^3)$ corrections from comparison of $\overline{\text{MS}}$ and OS results: Awramik, Czakon, Freitas, Weiglein '03 Degrassi, Gambino, Giardino '14

 $\delta M_{\rm W} \sim 4...5 \,\,{\rm MeV}$ (after accounting for $\mathcal{O}(\alpha_{\rm t} \alpha_{\rm s}^3)$ corrections)

 \rightarrow Saturates previous δM_W estimate!

Note: Differences in (implicitly) resummed higher-order contributions

Parametrization: Resummation

Parametrization of perturbation series: α vs. G_F ?

 G_F can resum some leading one-loop terms

$$\Delta \alpha \equiv 1 - \frac{\alpha(0)}{\alpha(M_Z)} \approx 0.059 \qquad \qquad \Delta \rho = \frac{3\alpha}{16\pi s^2 c^2} \frac{m_t^2}{M_Z^2}$$

But: Strong cancellations between $\Delta \alpha$ and $\Delta \rho$ terms beyond one-loop:

$$\Delta r_{\text{res}}^{(3)} = (\Delta \alpha)^3 - 3(\Delta \alpha)^2 \left(\frac{c^2}{s^2} \Delta \rho\right) + 6(\Delta \alpha) \left(\frac{c^2}{s^2} \Delta \rho\right)^2 - 5 \left(\frac{c^2}{s^2} \Delta \rho\right)^3$$

$$\approx (2.05 - 3.40 + 3.74 - 1.72) \times 10^{-4}$$

$$= 0.68 \times 10^{-4}$$

→ Not *the* numerically leading contribution anymore

Combination of theory errors

Add theory errors from each source linearly:
 Idea: each value within error range in equally likely
 Use flat prior in global fits

 Add theory errors from each source quadratically: Idea: different error sources are uncorrelated
 Use Gaussian prior in global fits (central limit theorm)

