Tracking Trigger Schemes

Wu, Jinyuan Fermilab Apr, 2015

Introduction

- Charged track parameters such as momentum and angles have been important event selection primitives since the early age of experimental high energy physics.
- LHC see very high hit rate with possible pile up of 200 interactions in each beam bunch crossing.
- The outline of this talk:
 - **Tracking Trigger in the Old Days**
 - Contemporary Tracking Trigger Challenges
 - Double-Layer Detectors
 - Track Finding
 - Track Fitting

Tracking Trigger in the Old Days

Apr. 2015, Wu Jinyuan, Fermilab jywu168@fnal.gov

BNL E850 (EVA), Color Transparency Measurements

- Scintillation counters H1 & H2.
- Straw tube cylinders C1, C2, C3 & C4.
- Measuring the two high PT protons.

BNL E850 (EVA), Decommissioning

2004 🛞

Detector

- Level 1 trigger: (H1, H2)
- Level 2 trigger: high PT proton tracks in (C2, C3, C4).

High PT Tracking Trigger

- High PT tracks are bent in magnetic field and hit detector cylinders C2, C3 and C4.
- Middle two layers in each chamber are used for the trigger.
- The position differences (l-n) and (m-n) provide PT information.

TEVA ASIC Array

- Hits from C2, C3 and C4 are sent into the TEVA ASIC.
- Each chip processes 4 inputs from each layer.
- Hit locations on C2 and C4 are encoded and sent to left and right.
- When the codes from C2 and C4 meet C3 hit, the distances of the hits are calculated.
- The hit distances are used to address the external RAM and the outputs of the RAM are combined as level 2 decision.

Apr. 2015, Wu Jinyuan, Fermilab jywu168@fnal.gov

Logic Block Diagram of the TEVA Chip

- Any hit in C2 or C4 is encoded and sent to left and right.
- When there is no hit in C2 or C4, any code from left side is passed to right side and added by 4.
- Same for right to left passing.
- Codes are passed up to 4 chips, i.e., 16 straw tubes.
- When any C3 hit exists, hit distances are calculated.

Trigger Example

- The hit locations of C2 and C4 are sent to the chip (III) containing a C3 hit.
- Hit distances ADD2 and ADD4 are calculated and used to address the RAM.
- Trigger acceptance map are preloaded in the RAM and the outputs of the RAM make trigger decision.

Apr. 2015, Wu Jinyuan, Fermilab jywu168@fnal.gov

Tracking Trigger

- Hit Data Transmission.
- Hit Data Matching (Pattern Recognition, Track Finding)
- Tracking Parameter Calculation (Track Fitting)
- Trigger Decision.

Contemporary Tracking Trigger Challenges

Very Messy Detector Hits in Every Beam Crossing

CMS Detector

PP Collisions at 10³²

- Most beam crossings (BX) look empty.
- A few tracks are seen in triggered physics events.

10^33

• Several minimum bias collisions are seen in each BX.

10^34

• Many minimum bias events are seen in each BX.

10^35

Hundreds minimum bias events are seen in each BX.

- In each beam crossing (BX), there could be up to 200 pileups in LHC detectors.
- All BX look similar, with or without physics events.

Very Large Channel Count

- In high rate tracking detector, silicon pixel or strip detectors are used.
- The detector pitch is fine => large channel counts.

Double-Layer Detectors

Apr. 2015, Wu Jinyuan, Fermilab jywu168@fnal.gov

A Large Curvature Track

Apr. 2015, Wu Jinyuan, Fermilab jywu168@fnal.gov

Tangent Angle Measurements

- There are various techniques to measure the tangent angle of the track segment (or "doublet", or "stub").
- Sometimes extra "ghost" segments may exist.
- The ghost segments may be resolved in track recognition process later.

An Example of Track Recognition: Event

An Example of Track Recognition: Hits

An Example of Track Recognition: Histogram

An Example of Track Recognition: Clustering

An Example of Track Recognition: Tracks

Simulation Results

Without Full Track Recognition

$$\alpha_0 = 2\phi - \alpha$$
$$c_0 = \frac{25cm}{R} = \frac{50cm}{r}\sin(\alpha - \phi)$$

- Two track parameters can be calculated for each doublet.
- Useful trigger primitives can be found without full track recognition.
- For example...

Example: Finding "Soft Jets"

A simulated event with 200 tracks. Flat distributions. Min. R = 55 cm 16 soft tracks are added. They are grouped in 2 small initial angle regions, i.e., 2 "soft jets".

CMS Double-Layer Silicon Tracking Detector

- Two layers of silicon detector.
- Send only High PT stubs to the readout system.

Track Finding

Hit Matching

	Software	FPGA Typical	FPGA Resource Saving Approaches
	O(n ²) for(){ for(){} }	O(n)*O(N) Comparator Array	Hash Sorter O(n)*O(N): in RAM
	O(n ³) for(){ for(){ for(){} } }	O(n)*O(N ²) CAM, AM Hugh Trans.	Tiny Triplet Finder O(n)*O(N*logN)
Apr. 2b	O(n ⁴) for(){ for(){ for(){ for() {} }}} al.gov	Tracking Trigger Sc	hemes 35

Track Fitting

Apr. 2015, Wu Jinyuan, Fermilab jywu168@fnal.gov

Coefficient Table, Least Square Fitter

Half-length of the Track														
	1	6	1	4	12		1(00	8		6		4	
z-z ₀	e,	e[i]	e,	e[i]	e,	e[i]	ei	e[i]	ei	e[i]	e _i	e[i]	e _i	e[i]
-16	5.3	6												
-14	3.3	2	7.5	8										
-12	1.6	2	4.3	4	11.3	12								
-10	0.1	0	1.6	2	5.6	5	17.9	18						
-8	-1.1	0	-0.7	-2	1.0	1	7.2	7	31.0	31				
-6	-2.0	-3	-2.4	-2	-2.6	-4	-1.2	-1	7.8	8	61.0	56		
-4	-2.6	-3	-3.6	-5	-5.1	-5	-7.2	-8	-8.9	-9	0.0	12	146.3	144
-2	-3.0	-3	-4.4	-4	-6.6	-5	-10.7	-9	-18.8	-20	-36.6	-40	-73.1	-64
0	-3.2	-2	-4.6	-2	-7.2	-8	-11.9	-14	-22.2	-20	-48.8	-56	-146.3	-160
2	-3.0	-3	-4.4	-4	-6.6	-5	-10.7	-9	-18.8	-20	-36.6	-40	-73.1	-64
4	-2.6	-3	-3.6	-5	-5.1	-5	-7.2	-8	-8.9	-9	0.0	12	146.3	144
6	-2.0	-3	-2.4	-2	-2.6	-4	-1.2	-1	7.8	8	61.0	56		
8	-1.1	0	-0.7	-2	1.0	1	7.2	7	31.0	31				
10	0.1	0	1.6	2	5.6	5	17.9	18						
12	1.6	2	4.3	4	11.3	12								
14	3.3	2	7.5	8										
16	5.3	6												
Error	2.91	3.02	3.05	3.15	3.22	3.26	3.41	3.43	3.65	3.65	3.93	3.99	4.28	4.29
Ratio		1.04		1.03		1.01		1.00		1.00		1.02		1.00

Apr. 2015, Wu Jinyuan, Fermilab jywu168@fnal.gov

Inaccuracy Doesn't Matter, A Lot of Time

Coefficient Table, ML Fitter

Half-length of the Track															
	1	6	1	14		12		10		8		6		4	
z-z _o	e,	e[i]	e _i	e[i]	e,	e[i]	ei	e[i]	ei	e[i]	e _i	e[i]	e _i	e[i]	
-16	5.3	6		-											
-14	3.3	2	7.5	8											
-12	1.6	2	4.3	4	11.3	12									
-10	0.1	0	1.6	2	5.6	5	17.9	18							
-8	-1.1	0	-0.7	-2	1.0	1	7.2	7	31.0	31					
-6	-2.0	-3	-2.4	-2	-2.6	-4	-1.2	-1	7.8	8	61.0	56			
-4	-2.6	-3	-3.6	-5	-5.1	-5	-7.2	-8	-8.9	-9	0.0	12	146.3	144	
-2	-3.0	-3	-4.4	-4	-6.6	-5	-10.7	-9	-18.8	-20	-36.6	-40	-73.1	-64	
0	-3.2	-2	-4.6	-2	-7.2	-8	-11.9	-14	-22.2	-20	-48.8	-56	-146.3	-160	
2	-3.0	-3	-4.4	-4	-6.6	-5	-10.7	-9	-18.8	-20	-36.6	-40	-73.1	-64	
4	-2.6	-3	-3.6	-5	-5.1	-5	-7.2	-8	-8.9	-9	0.0	12	146.3	144	
6	-2.0	-3	-2.4	-2	-2.6	-4	-1.2	-1	7.8	8	61.0	56			
8	-1.1	0	-0.7	-2	1.0	1	7.2	7	31.0	31					
10	0.1	0	1.6	2	5.6	5	17.9	18							
12	1.6	2	4.3	4	11.3	12									
14	3.3	2	7.5	8											
16	5.3	6													
Error	2.91	3.02	3.05	3.15	3.22	3.26	3.41	3.43	3.65	3.65	3.93	3.99	4.28	4.29	
Ratio		1.04		1.03		1.01		1.00		1.00		1.02		1.00	

Fitting Errors From Approximations

Apr. 2015, Wu Jinyuan, Fermilab jywu168@fnal.gov

Some Efforts in FNAL

Apr. 2015, Wu Jinyuan, Fermilab jywu168@fnal.gov

Next Generation: Pulsar IIb

The Pulsar IIb represents a big increase in I/O bandwidth, FPGA logic, and power. It was designed with the CMS L1 tracking trigger in mind.

Xilinx Virtex 7 FPGA

• XC7VX415T – XC7VX690T

Up to 80 GTH transceivers

- 40 for RTM
- 28 for Fabric
- 12 for Mezzanines

Four FMC Mezzanines

- Up to 35W each
- LVDS up to 34 Gbps
 unidirectional
- 3 x GTH up to 30 Gbps bidirectional

IPMC Mezzanine Card

Backplane clock distribution

• M-LVDS on CLK3A and CLK3B

25 September 2014

Pulsar IIb and RTM

25 September 2014

GTH Transceiver Tuning

- The quality of all 80 GTH transceiver channels tested with the Xilinx IBERT tool
- Statistical "eye diagrams" based on BER measurements determine RX margins
- GTH transceiver tuning parameters
 - TX_DIFF_SWING
 - TX Pre/Post Cursor
 - RX termination
 - RX LPM/DFE
- IBERT-like functionality built into user firmware using MicroBlaze processor (Northwestern U.)
- Remotely tuning individual transceivers is possible, but not anticipated.

Example RTM channel with 0dB QSFP+ loopback adapter, after tuning transceiver parameters

Pulsar IIb Backplane Fabric Channel Testing

- Full shelf tests with all lanes running at 10 Gbps
 - No bit errors after several days
 - BER = 2x10⁻¹⁶
- We are currently evaluating the latest high performance 40G+ full mesh backplanes from ASIS-PRO, COMTEL, and Pentair/Schroff
- No apparent signal degradation across the width of the backplane

25 September 2014

Next Steps: CMS L1 Tracking Trigger Vertical Slice Demo

- 6 x 8 towers
- Nearest neighbor sharing
- 1 tower = 1 ATCA shelf
- ~350 input links/tower
- Parallel track finder engines on Mezzanine cards
 - AM / VIPRAM Based
- Use the full mesh backplane to maximum effect...

Input links use a fixed length 8 BX frame. The number of stubs per BX is variable, up to a maximum of 12 stubs.

25 September 2014

Mesh Transfer

51

protoVIPRAM - our first prototym

A Tested, Functioning Chip ermilab

52

TWEPP 2014

Aix-en-Provence

Fermilab Institutional Review, June 6-9,

The Existing 2D protoVIPRAM

The Control Cell

Aix-en-Provence

The Existing 2D protoVIPRAM

· The Koad Cell Cell

- 4 CAM Cells with one Control Cell
- The layout of the cells themselves requires an area 25x125 µm²
- An area 10x125 µm²
 was added to allow for routing *within* the Road

Control

CAM4

CAM3

TWEPP 2014

CAM1

CAM2

Ce

hoi

Summary

- Tracking Trigger Processes:
 - □ Hit Data Transmission.
 - Hit Data Matching (Pattern Recognition, Track Finding)
 - Tracking Parameter Calculation (Track Fitting)
 - Trigger Decision.
- High rate causes challenges to all stages.
- There exist many resource saving schemes for each stage.

The End

Thanks