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A motivation: (but not all)

Q1: In interacting field theory in flat space, how to compute
entanglement entropy (or Renyi entropy)?
Al: ...

----- perturbative way, with small coupling A

_____ numerical study

AZ2: For CFT, formulate the problem on sphere and compute

the path integral exactly (with supersymmetry)!
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Renyi entropy of CFT in 1+1,

|
A
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AV —
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i
pa = lrpp
1
Sq = log Tr(p%)  Tr(ply) = Z4/(Z1)"

l1-gq
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Renyi entropy of CFT in d+1 r € [0,27)
O

A

@ =

l

ds?/0* = d6? + ¢* sin? 0d7? + cos? O(dp? + sin ¢p?dx?)

1

Sg= 7 logTe(py)  Te(ply) = Zo/(Z1)°



Refine the Renyi entropy to be supersymmetric

and compute it exactly.



Part 1. gSCFT3



Claim: 3D N=2 SCFT on g-branched 3-sphere S}
ds? = (% (d6? + cos” 0d¢* + ¢* sin” 0d7?)

dual to BPS topological black hole in AdS4 (Euclidean)

1
ds? = — f(r)dt? + dr? + r2d X (H?

s f(r) f(r)?“ 2 (1) 2
2

)= gatn= S,

< 3D N=2 Killing spinor equation

<> localization of partition function

<> 4D charged topological black hole
< qSCFT3/TBH4 correspondence



1.1. 3D N=2 Killing spinor equation



Killing Spinors on S3 Nishioka-Yaakov '2013

-- characterize rigid SUSY on curved spacetime

3D N=2 Killing spinors with £ U(1) R charge on 3-sphere (or deformed)
satisfy generally

: 1
(vu — @Au) ¢ = —§H%LC ;
: ~ 1 ~
(VM + ZA'UJ) C = _§H7“C .
solutions:
S8 2 constant Killing spinors with
vanishing background vector field,

and H = —1



Resolved sphere S:(¢)
ds? = f. (0)* d0? + ¢*¢? sin® 0d7r? + £2 cos? 0d¢?

¢, 0 0
ﬂ@){q ”

0, e<f<1I

Killing spinors:

ﬁ@f_0d7+%(ﬂéf_0d¢

S; as the e — 0 limit of §3(e) , as we will see the partition function
on resolved space 7 [§§(e)] by localization will not depend on
resolving function f<(0), therefore not sensitive to the singular
limite — 0.



General branched spaces gf;,q with U(1)xU(1)

. . 2 2 2 2
branched ellipsoid e L )
Iz /2

= 1

ds? = f(0)2d6* + p% cos? 0d¢? + 2% sin? 0dr? ,  f(6) = \/ 2 sin2 0 + 2 cos? 6

1
branched squashed sphere ds? = ¢2 (172“1“1 + Pt u3u3)

1 in? 2 1
ds? = d6%+—; (cos’ Bg>dr? + sin® Bp>dg?) +cos?  sin? O(¢ dr’+p*dp?) — L 0 (——2 + 1) dpdr
(

2 v
2
f(0)
A general space:

with various choices of f function, this metric can cover all the known spheres

with U(1)xU(1) isometry, including different resolved spheres. The same Killing
spinors exist, provided the following backgrounds

(4

vf (@)
= S v? — 1) cos 20 — —1 T d v? — 1) cos —l
A = ( 22 10 ((v* —1)cos20 — 1) 2)d +(2®2f(9) ((v* —1)cos260 + 1) 2)d¢

H = —




1.2 SUSY localization of partition function



Localization principle  witten 1988, Pestun ‘07,
Kapustin-Willett-Yaakov '09

0 represents a fermionic symmetry (off shell)  §S5 = ().

Preserved operator 0O = 0.

The path integral value of the operator < O >= /D[gb]eiSO
does not change under the deformation < () >,= /@[¢]6i5+t5‘/o ,

This can be examined by

d . .
- <0 >= / D[B] (V)5 TV 9 =5( / D[PV e TV 0) =0
Take t — oo the actual integral we need to compute becomes
< O >guc= hm @[qb]e_s_t(sv(‘) :/ (Dol ! S[¢a]0(¢a)

ol e T
4 i

saddle point (locus)::d V|¢a]= 0 quadratic fluctuations around locus.



Lagrangians of 3D N=2 CS-matter

Hama-Hosomichi-Lee ’11,

_ _ Closset-Dumitrescu-Festuccia-Komargodski ‘12
vector multiplet (a,, A, A\, o, D)

1 1 - 1 - o
—F F* + §DMO'D’MO' — MDA — i(D +oH)? —i)o, \] + ;H)\)\]

Lyy = Tr 1

YM:xact, used to localize the vector part. Solving it = 0 gives

locus: a, =0, o=o0p, D = —Hog
nontrivial k . 21 -

_ L L = —Tr |ie"P(a,0,a, + —a,aya,) — 2Do + 212\
classical contribution: > A { (auduap + 3 auasap) ] |

chiral multiplet (¢, ¥, F)
matter Lagrangian (¢ Lmatter g (W + 2%50@75)

. 0 exact, used to localize matter part. It gives

6=0, F=0



Partition function

general form after localization: CS+FI are the only classic contribution on the
locus. And one loop determinants only come from ¢ exact deformation.

Z[k7 N7 g, A7 M3(bla b2)] — /[dOO] eikf(bbln)Tr JgDetV(O-Oa b17 b27 a)DetCh(007 b17 b27 A? /0) ’

Round sphere: Nishioka-Yaakov 2013
Ellipsoid: Zuaae = €2 %0 bt = gl by = pe
Deten (00, b1, b2, A; p) = s [’iQ(12_ = T 3([;1%]
Dety(0g,b1,b2; ) ~ OE[O [a<;0)2 x 4sinh 77046(100> sinh 7Tab(200)]
Squashed sphere: addte = €503 70 pr =Y py =
q p
Deten (00, b1, b2, A; p) = sp [iQ(lz_ 2 T 3([)01705)2]
Dety (09, b1, b2; ) ~ OEIO [a(;})z x 4sinh W&b(lao) sinh %;0)]



One-loop determinant, chiral matter

matter Lagrangian on branched ellipsoid
G Lmatter = 0¢0F (VY + 2igod)
2i(A —1) 2A% — 3A N AR
f(0) 2f(0)2 4
Aw — —i’}/MD,u — iO'O —

Kinetic operators:
Ay =—D,D" —

v D, + af +
1 n A—1 9
Duw - (vu T i<A - 1)Au>¢

EOMs Aypth = At s
Up = 87
A¢¢ — )\s¢ ' '
matching condition: As = A¢p(Ap + 2i0p)

un-cancelled modes give the one-loop determinant

s, oy i G B [iQ(l—A) p(00)
det Ay >0 ﬁ+%+%<ﬁ+ﬁ>+igo 2 vV 0102

bg q [7
b: —::b — b = — :b 1b
Vbl O\/;a 0 \/;7 Q + /

Detq, =




Universal result on conic spheres with U(1)xU(1)

Killing vector (Reeb) K = (4#(0, = b10; + bady

partition function solely depends

on b1 and b2:

1

Z[k7N7g7A7b1ab2] — /Hd(Jo) b1b2Tr 0 H4Slﬂh b( si 7TOé 00 H (
=1

List of K vectors:
round
ellipsoid
squashed
branched round
branched ellipsoid

branched squashed

a>0 p

Kl =0, + 6’¢
Kt = %;(97- + 8¢
K/l = ’087- +U8¢
1 1
Kl =-0,+ —6¢
q p ; 1
Kg — —~87- —|_ _a¢
qt P
v (%

Kl =-0,+ —8¢
q p




Large N (for fixed k)

define an effective parameter p = , /Z_Z, the partition functions only
1

depend on b, up to an overall constant.
For a certain class of CS matter theories (non-chiral, 2 k_i=0,..), which

have M theory dual, the following scaling law is satisfied in the large N

limit Imamura-Yokoyama 11, Martelli-Passias-Sparks ’11

~ 1 1\?
log Z[S}] = - (b + —) log Zp—1

4 b
Particularly, for g-branched sphere, the scaling law becomes ( 0=v4):
2
Sg log Z, = lg+1) log 74

_qlogZy —logZ;  3q+1
h qg—1 4

Renyi entropy Sq S1

g=1 gives entanglement entropy (= free energy on round sphere)

ST = IOg A= —@ 7T\/§k1/2N3/2
ABJM



From CFT on S} to CFT on Sé % H?

ds? = £% (d6? + cos? Bd¢? + ¢* sin® dr?) S;
sinhn = —cot 6
T =qrl, TR € 0,2mql)
ds® = sin® ¢ (dTl% + ¢*(dn? + sinh? ndqbQ))
1 dropping a Weyl factor

ds? = dTL% — 52(d772 + sinh? ndng) Scll w H?

no Weyl anomaly in odd dimension:
Z[S3) = Z[S; x H7]

which motivates us to search for AdS dual with boundary Scll x H? |

Note: the AdS with original g-deformed sphere boundary is difficult to find!



1.3. charged topological black hole in AdS4



Euclidean black hole with boundary S! x H?

proceed in Lorentzian first, solution in AdS4
1

f(r)
dY(H?) = dn? 4 sinh? nd¢?

such solution exists in 4D N=2 gauged supergravity, with L =

ds® = —f(r)dt* + dr? + r2dX(H?)

— 2
f(r):ﬁ_l_,{_7+r_2 QKL— 1 for H
ATBH = (? — M) dt
properties of black hole
Q f'(rn)
- — — T p—
K Th f(rn) 4
Killing spinor equation . .
@Me =0 ﬁu =V, —igA, + ig% -+ %prvypfyﬂ
BPS condition )
2 2
m- — K
Qe = det@:( Q) =0



more about topological black hole

massless uncharged:
£(r) A L Ty = —
r) = — — — = —
L? ' 7 orL

Hyperbolic horizon can be mapped to Ryu-Takayanagi surface in pure AdS.

L=/

charged BPS:
7“2 m

2
2 __ 2 _ _ -
Q7 = xm f(r) TER (1 /{T)
to find explicit Killing spinors, it is helpful to use the integrability condition,
through a projection operator

Oe=0, 6= f(r)+g’l“71+(;—/€—)i%Q



1.4. qSCFT3/TBH4 correspondence



black hole computation

first fix the temperature and chemical potential by matching
the boundary conditions

T(q) = To/q

mw:-(%g)i gATER(r — 00) = A(S?)

state variables: (/is Euclidean on-shell action I :=log Z(u,T), 8 =1/T)
E = <g> _H <g) |
B 1 B\ ou 3
ol
S = Bl==] -1,
5(36)M

A 1 /01
Q‘—‘ﬁ(aﬁﬁ°

holographic super-Renyi entropy:

log Z L
g = 1 <long_og q)zi/ an(logZ(T,u))dn
q

g1 1 q




black hole results

total derivative inside the integral

5 (10gZ(T7u)) S Qi)
! q G 1o

given charge and Bekestein-Hawking entropy
~ 21 A% %5

Q= g—QZ = (g—gz> plq)rn SBH = 27T€—27“121
p p p

where horizon is also evaluated as a function of q

z(q) ::%h :%(1+3>

Putting all together, holographic Renyi entropy is obtained
L\? q L/ 2(n)? 3qg+ 1
Sq =27 (@) qu_ 1L ( 2 _233(”)“(”)#/(”)) dn = 4q S1
It immediately gives the holographic free energy

> precisely agree with field
7 (q+1) 7 theory results!
q — 44 1




further details

mass-charge relation

e _%L <1 _ q}) BPS !
mio) = =32 (1-7)

4d Killing spinor eq.

:
Vo =0+ iwm o~ iV 0

~ Q
V., =0 ——«/ e X
n n 9 f(T)’Yl2+2L’Y2 @2T701’727
1 1

) 1 , . Q.
Vg =04 — 5\/ f(r)y13sinhn — 5723 coshn + STAME sinhn — is sinh 70173 .

@tZC{?t—ZE(Q—%)JrE\/T%—Z \/771+ f 7)Y015



simplified as (with the help of projection operator P)

(8t — — (1 +2m/ry)

1

5 _ =
( 27071%

5. + m 1 m _
"o (r +m) 2[,,/ r—l—m B

1
((% 3 coshnyes — - Smhn Y0173 ) = 0

solution: 1
e(t,r,n, ) = e2dL 62%7”262”23 (r)

1 — /
)= (T + VIO -7 - VI ()
KSE reduce to 3D, which is identifiable with KSE on S1xH2

| i
(vﬂ — ZA,UJ -+ z—ge”v,/ym) e=10




Part 2. qSCFT4



Claim: 4D N=4 SYM on g-branched 4-sphere S;l
ds?/0? = d6* + ¢* sin® OdT? + cos? O(d¢? + sin p>dx?)

dual to STU topological black hole in AdS5
1
f(r)

2 .
f(r)=k—@2+%¢z2 M= H,H,Hy, H,=1+%

ds? = —’;'-[_4/3]”(fr)dlt2 + 213 ( dr? + r2d23,k)

<~ Killing spinor equation on S;l

< partition function (heat kernel + localization)
< 5D STU topological black hole

< TBH5/qSCFT4 correspondence



2.1. 4D Killing spinor equation



Killing Spinors on S
-- characterize rigid SUSY on curved spacetime

4-sphere (deformed) conformal Killing spinors generally satisfy

1 /

DMC = +2_€7,u§
, 1

DMC = _2_€7u<

To have solution on g-deformed sphere, we need to add background
U(1) field through the covariant derivative

D,=v,+iA,

We take the following gamma matrices (in terms of Pauli matrices)

_ 0 7:7_1 _ 0 ’1;7'2
n= —iTl 0 ’ 2= —iTQ 0

B 0 ’iTg . 0 12><2
V3 = —’iTg 0 T 12><2 0



Round 4-sphere can be considered as 3-sphere fibered on a segment
ds?/0% = dp? + sin p*(d6? + sin® Od7? + cos® 0dd?)
We take the vielbein
e/l = sin psin(7 + ¢)df + sin pcos(7 + ¢) sin @ cos (dr — d¢) |
e?/l = —sin pcos(7 + ¢)df + sin psin(7 + @) sin @ cos O(dr — do) |
e/l = sin p (sin 0°dr + cos 0de) , e*/l=dp .

and find the identity

Zw,u - ’Y,LLT(p) ) ,u - (97 7-7 ¢

where T matrix is defined as

(0 0 —% tan 2 0 \
0 0 0 —Ltan?
T()) = 2 2
(p) %Cotg 0 0 0
\ 0 %cotg 0 0 )



It implies constant 4-spinor satisfy 1 =6,7,¢ components of KSE, provided

1 I ._
25 T T(p)¢

After taking care of the p-component KSE, the solution is

( C1 \ ( Sin g O O O \
Co 0 sin2 0 0
- S S(p) = 2
¢=5(p) C3 (p) 0 0 cos§f O
\ 1 ) \ 0 0 0 cost)
When the 4-sphere is deformed by g, the above solution still valid provided
( 1 000 \
. 0-10 0 qg-—1
D,UJ = VM + ZA,LL 0010 AS;L = TdT

L0 0 0-1)



U(1)*3 R-symmetry of N=4 SYM

There could be 3 different U(1) background field A7, (i=1,2,3), which couple
to dynamical fields as

Table 1: charges under three U(1)’s

wl wQ ¢3 wﬁl A,u ¢1 ¢2 ¢3
kh +3 -+ -1+ 0 +1 0 0
ke -3 +2 -2 +2 0 0 +1 0
ks -3 -2 +3 +z 0 0 0 +1

Note: Killing spinors charged under all 3 U(1)s, £1/2. We are particularly
interested in those sharing the same sign for different U(1).



2.2. partition function (heat kernel + localization)



4D Renyi entropy with SUSY

The external gauge field we found before by solving the KSE, provides a
chemical potential, which makes the partition function SUSY invariant.

Therefore SUSY Renyi entropy is defined as
1 Z

Sy = log (1)

1 — q Zl(O)q

For N=4 SYM, there are 3 external gauge fields, the effective chemical
potential for each field is given by the weighted sum of individuals

= kif;
i = A, by definition.

For Killing spinors, the effective chemical potential has to be



From CFT on Sf]l to CFT on S! x H3

ds?/0? = dO* + ¢* sin? 6dr? + cos? 0dXg-2 +1
sinhn = —-cot 6
ds? = sin® @ (d7? + (2(dn? + sinh” ndS g2 1))

ds? = d72 + /2(dn? + sinh? nd¥g-2+1)

conformal invariance+
unitary transformation:

~ ~
Z[S¢ = Z[S; xH" "], dodd
a[S¢] =a[S; xH*"], deven

N e




Super-Renyi entropy in free limit

The partition function Z(3) on S}g x HY can be computed by heat kernel of

the Laplacian operator, 5 = 27q.

08 2(8) = 5 [ Karugu (1)

Kglx]H[d (t) = Kgl (t) KHd (t)e(d—l)QWQt

5 _32,2
Kgl (t) = e 4t
V 4mt n*0,eZ
Kyss (1) = f P /g K (z,2,0) = V Ks (0, 1)
for a complex scalar: K]%g(o7 t) _ (47T2)d/2 6—(d—1)2772t o d=3

K7,(0,t) = 2055) @y g

for a Weyl fermion: (47T )d/2 ;



Turning on a background field along SM = a phase shift for the S kernel.
Taking use all the above formulae,

_n2 2 2 '
F°(, =—log Z°(B,u) = -V f l g T ] glinmp
(B,u) = g Z°(B, ) = 5 622 + \/E (47rt)3/2

[ %%2ﬂ1+§)
n=0, eZ 2 t VAt (47Tt)3/2

Evaluating this, one obtains
V(,u4+2,u3+,u2—%)

F2(p) = F(2 =
F(n) = F*(2mq, 1) ol

[240,u4 — 1202 + (30 — 360u2) ¢% + 7]
288073

F’JC(B7 M) -V ] 6i(27r,u—7r)n

Fl(p)=-V
Then super-Renyi entropy is obtained by

gsuper _ qFl(O) - FQ(M(Q))
q 1—¢




Reproduce the known result of non-SUSY Renyi entropy of N=4 SYM
Gnon-SUSY _ ¢ S_b+4xsf+sv: (1+q+7¢°+15¢°) V
1 2 4813
where we inserted Renyi entropy for a maxwell field
(912 + 31> +q+ 1)V
) 360mq3

which is valid even in the later super-Renyi entropy case, since vector field
IS uncharged under R-symmetry.

S’U

For convenience, we extract extra contribution due to the chemical potential

AS = Sq _Sgon—SUSY

1)*p2V
A b :(:u"'
S = 1ar( - D
2(_9,,2 2
ASf(,u)z'u (-2u?+3¢°+1)V

24m(q - 1)q°



We are now ready to compute the super-Renyi entropy of N=4 SYM.

A single U(1): ks| = 1, s =q-1
-1
Sy = SpSUSY L AAS) (= To=) + ASy(n=q - 1)
Si_ |
S1 i1
Two U(1)s (with equal values): ki+ko|=1  p1=p2= 5
-1 ~1
Sy = Sy SUSY L 2AS (1 = =) + 288 (1 = 1)
Sq  3q+1
Sl - 4q

Three U(1)s (different values): k1 + ko + ka| = %

m=-05 . m=-D3. ms=@-D(1-2)



S, 1

S, = 2742 (CI2C2 +qCh + Co)

™
Y,

Cy = —a*(-3+b) —a(-3+b)*+3(9-3b+b?)
Cy=a*(2b-3)+a(2b* -9 +9)-3(b-3)b,
C() = —ab(a+b—3) .

Sq 3q+1 Sq  19¢+7g+1

S1 Sy 4q S 27q¢>




Exact partition function on resolved 4-sphere

ds® = £.(0)?d6? + (?(¢* sin* 0 d7? + cos® 0(d¢? + sin® pdx?))
gt , -0

0, e<0<3

Following the set up in arXiv:1206.6359 by Hama&Hosomichi, one can

construct 4D N=2 gauge theory on the resolved sphere.
The particular N=4 SYM case in € — 0. limit reduce to two U(1)s with equal

values we have just discussed,

L, 2 1 s q-—1
= — A=A = —
2(A + A%) 5

One can further show that the N=2 partition function is independent of f.(#)
and it is given by

AUy

-Szﬂ—QTr(&%) HaeA+ Tq(Z'CALO ' &)Tq(—i&() ' Ck)

/ = f Hd(&o)ze IyMm . |Zinst|2
i HI HpeRI Tq(ZClo‘p+ %)




Large N (planar limit)

The partition function of N=4 SYM

z= [ Tao)e 06 [ o T Cora) 7

ae; Tq(ZCALO -+ %)Tq(_ZdO Cor + %)
Recall that Y function is defined as the regularized product

YT, (z)= [] (mq1/2 +ng 2 +Q—x)(mq1/2 +ng V2 +:1:') Q=g+ 1
m,n>0 \/a

In the planar limit, it is governed the saddle point

f:dyp(y)K(l‘—y) = STWQ:L‘

| I T, (iz) Yy (~ia
)= § Lo (@) K= 0| T )

To solve it, we take the large x expansion, which is essentially the large

coupling limit (L2l (@-1)1
K(x) = — +

4qg =x 96¢%> x3

+O(z™%)



To leading order, - Q2 | 0 s |
N——— =4t —=

z V4
The saddle point eq. becomes that of N=4 SYM on round S*4 with a

redefined coupling

Z 1 812 ~ 2
][ dy p(y) ==, x-9)
—p -y A 4

It is solved by

] Vi VA
- 2 _ 22 _ _
p(z) = TV T p=o—=—0
Evaluating the partition function
F, = -log Z,
_ 8mAN? # NZ2 ()?

p p
p@)atde - - [ p() £ p(y)log(w - y)*dady
N Jo 2 4 L

—p
The relevant log term

1\ Q?
F,=--N*=1 ———N2—1
[ >NV og \ >V ogA:l




Log divergence can be recovered: Russo&Zarembo 12
log A - log A —log (£)

The universal log term

2 1 1\
Fq:%Flzi(\/a_F_) F1

V4
Super-Renyi entropy

Sq 3q+1 ]
S, 4g

which agrees with heat kernel result in the free limit.




2.3. STU topological black hole in AdS5



Euclidean black hole with boundary S! x H3

In Lorentzian first, solution in 5D N=2 gauged SUGRA Behrnd,Cvetic,Sabran '98

ds? = =H 43 £ (r)dt? + H?3 ( ——dr? + r?dX, k)

f(r)
(T) k——+—7‘[2 H2=H1H2H3, H_l-l—@
72

742
T [ (1 A
X_H%,A [k+@t—4)mkt

We focus on m=0, k=-1. And it can be checked that, it is a BPS solution.
To study this BH, we define rescaled charges

Qi

Th

K; =

It turns out that, all other physical quantities can be expressed as function of k
only, including horizon, temperature, total charge, entropy and so on.



Physical quantities

1 — KiKo — K1K3 — Koky — 2K1K9Ks3 1
T = Ty, Tp=——
(1+ k1) (1 + r2) (1 + K3) o TV T orL

S A Va3 1

BH = 4G5 - 4G5 (1+/€1)(1+/{)2)(1 +/£3)

@\' B %LQ 7;/{@'

" 87TG5 (1 +K,1)(1 +/ﬁ)2)(1 +/ﬁ)3)

. : 1
fii = Af oo =

k41

7



2.4. TBH5/qSCFT4 correspondence



Holographic super-Renyi entropy

First express Kk in term of q, therefore everything is in terms of q.
T = To/q
Then use the formula YZ-Huang-Rey '14

G0 [ (sBHm) Qi) ) .

qg-1Jqg n? 1o

which can be derived from
I, :=~log Z(T 1i;)

_ (91 _H<ﬂ)

b (%)M 5\ou),
ol

= 5(%),ﬂ’

A 1 /01
@ - ‘E(@)ﬁ‘



black hole results

For generic 3 charges, holographic super-Renyi entropy is

Eq _(a*+ab-3a)(¢—-1)[3¢—-b(q—1)] +3q[b(b-3)(¢—1) + 9(1]
Sl 27q2

S Sy _3q+1 S, 19¢*+Tq+ 1
S1 S1 4q S1 27q¢>
1)? 3
I, =1, [q_(CI+ )[1 I:(2q+1) 8
4q ! 27q>

:precisely agree with field theory results!




Conclusion and remarks

We proposed a class of TBH/qQSCFT correspondence and
show the precise agreements between field theory exact

computations and gravity results.

Other BPS observables, such as Wilson loop and correlation

functions (involving q) can be tested in TBH/qQSCFT.

Thanks for your attention.



