Ramond Equations of Motion in Superstring Field Theory

Theodore Erler
(with I. Sachs and S. Konopka)

SFT 2015

Problems with the Ramond Sector

We'd like to write a free action

$$
S=\frac{1}{2}\langle\Psi, Q \Psi\rangle
$$

but \langle,$\rangle requires picture -2$. Thus ψ must have picture -1 .

OK for NS sector, but not OK for Ramond sector.

Let's find EOM instead

Review of NS Sector

(Open Superstring with Witten Vertex)

NS string field: Φ_{N}, picture -1 .

EOM:

$$
0=Q \Phi_{\mathrm{N}}+M_{2}\left(\Phi_{\mathrm{N}}, \Phi_{\mathrm{N}}\right)+\ldots
$$

M_{2} must carry picture +1 .

Witten inserts picture changing operator at midpoint of open string star product. This is problematic. Instead we use contour integral of picture changing operator:

Compute associator of M_{2} :

This is not zero!
We need an A_{∞} algebra

EOM:

$$
0=Q \Phi_{\mathrm{N}}+M_{2}\left(\Phi_{\mathrm{N}}, \Phi_{\mathrm{N}}\right)+M_{3}\left(\Phi_{\mathrm{N}}, \Phi_{\mathrm{N}}, \Phi_{\mathrm{N}}\right)+\ldots
$$

$M_{n} \mathrm{~s}$ satisfy A_{∞} relations.
A_{∞} relations require:

$$
\text { Associator of } \left.M_{2}=Q \text { (3-string product } M_{3}\right)
$$

Pretend picture changing operator is BRST exact.

$$
X=[Q, \xi]
$$

Then we can simply factor Q out of M_{2} associator to find M_{3}

Oops. X is not BRST exact.
At least not in the small Hilbert space.

Have to make sure that M_{3} is in the small Hilbert space. Upshot is that we have to add to the stuff under the parentheses of Q the BRST variation of

This works! We have a solution to the A_{∞} relations, and therefore the EOM, out to third order.

Need equations to go along with these pictures

Signs: degree $(\Psi)=$ Grassmann parity $(\Psi)+1$ (Don't ask...)
Act string products on any number of copies of state space \mathcal{H} :

$$
\begin{aligned}
Q \mathcal{H}= & Q \mathcal{H} \\
Q(\mathcal{H} \otimes \mathcal{H})= & (Q \mathcal{H}) \otimes \mathcal{H}+\mathcal{H} \otimes(Q \mathcal{H}) \\
Q(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H})= & (Q \mathcal{H}) \otimes \mathcal{H} \otimes \mathcal{H}+\mathcal{H} \otimes(Q \mathcal{H}) \otimes \mathcal{H} \\
& +\mathcal{H} \otimes \mathcal{H} \otimes(Q \mathcal{H}) \\
\vdots & \\
M_{2}(\mathcal{H})= & 0 \\
M_{2}(\mathcal{H} \otimes \mathcal{H})= & M_{2}(\mathcal{H}, \mathcal{H}) \\
M_{2}(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H})= & M_{2}(\mathcal{H}, \mathcal{H}) \otimes \mathcal{H}+\mathcal{H} \otimes M_{2}(\mathcal{H}, \mathcal{H})
\end{aligned}
$$

For example:

$$
m_{2}=\text { Witten's open string star product }
$$

Bosonic SFT axioms can be expressed:

* BRST operator is nilpotent: $\quad[Q, Q]=0$
* BRST operator is derivation: $\left[Q, m_{2}\right]=0$
* Star product is associative: $\quad\left[m_{2}, m_{2}\right]=0$

More generally, and A_{∞} algebra is defined by a sequence of products Q, M_{2}, M_{3}, \ldots which satisfy A_{∞} relations:

$$
\left[Q, M_{n}\right]+\left[M_{2}, M_{n-1}\right]+\ldots+\left[M_{n-1}, M_{2}\right]+\left[M_{n}, Q\right]=0
$$

Or, even more simply, we can take the sum

$$
M=Q+M_{2}+M_{3}+M_{4}+\ldots
$$

The A_{∞} relations imply that M is nilpotent:

$$
[M, M]=0
$$

Now let's put equations to the pictures.

Since we're pretending that X is BRST exact, the product M_{2} in the EOM is BRST exact:

$$
\begin{aligned}
M_{2} & =\left[Q, \mu_{2}\right] \\
m_{2} & =\left[\eta, \mu_{2}\right]
\end{aligned}
$$

μ_{2} is the same as M_{2} with the replacement $X \rightarrow \xi$. Again, m_{2} is the ordinary star product.

Note

$$
\left[\eta, M_{2}\right]=-\left[Q, m_{2}\right]=0
$$

Now let's derive the 3-product M_{3}. (Bear with me.) Pretending X is BRST exact, we can pull Q out of third A_{∞} relation:

$$
\begin{aligned}
0 & =2\left[Q, M_{3}\right]+\left[M_{2}, M_{2}\right] \\
& =\left[Q, 2 M_{3}-\left[M_{2}, \mu_{2}\right]\right]
\end{aligned}
$$

Therefore

$$
M_{3}=\frac{1}{2}\left(\left[Q, \mu_{3}\right]+\left[M_{2}, \mu_{2}\right]\right)
$$

[Q, μ_{3}] is the extra term needed to make sure M_{3} is in small Hilbert space. Defining $m_{3}=\left[\eta, \mu_{3}\right]$ we must have

$$
0=\left[\eta, M_{3}\right]=\left[Q, m_{3}\right]+\left[M_{2}, m_{2}\right]=\left[Q, m_{3}-\left[m_{2}, \mu_{2}\right]\right]
$$

so

$$
m_{3}=\left[m_{2}, \mu_{2}\right]
$$

Note $\left[\eta, m_{3}\right]=0$. Surrounding m_{3} with ξ defines μ_{3}, and therefore the product that we want!

This is how it works at all orders: Defining

$$
\begin{aligned}
M(t) & =Q+t M_{2}+t^{2} M_{3}+t^{3} M_{4}+\ldots \\
\mu(t) & =\mu_{2}+t \mu_{3}+t^{2} \mu_{4}+\ldots \\
m(t) & =m_{2}+t m_{3}+t^{2} m_{4}+\ldots
\end{aligned}
$$

The products are defined by solution of the equations

$$
\begin{aligned}
\frac{d}{d t} M(t) & =[M(t), \mu(t)] \\
\frac{d}{d t} m(t) & =[m(t), \mu(t)] \\
{[\eta, \mu(t)] } & =m(t)
\end{aligned}
$$

Finally, we have the EOM for the NS open superstring!

Ramond Equations of Motion

(Open Superstring with Witten Vertex)

Include Ramond string field Ψ_{R} with picture $-1 / 2$.
EOM:

$$
\begin{aligned}
& 0=Q \Phi_{\mathrm{N}}+M_{2}\left(\Phi_{\mathrm{N}}, \Phi_{\mathrm{N}}\right)+m_{2}\left(\Psi_{\mathrm{R}}, \Psi_{\mathrm{R}}\right)+\ldots \\
& 0=Q \Psi_{\mathrm{R}}+M_{2}\left(\Psi_{\mathrm{R}}, \Phi_{\mathrm{N}}\right)+M_{2}\left(\Phi_{\mathrm{N}}, \Psi_{\mathrm{R}}\right)+\ldots
\end{aligned}
$$

Define composite string field $\tilde{\Phi}=\Phi_{\mathrm{N}}+\Psi_{\mathrm{R}}$. EOM can be written

$$
0=Q \tilde{\Phi}+\tilde{M}_{2}(\tilde{\Phi}, \tilde{\Phi})+\ldots
$$

with

$$
\begin{aligned}
& \tilde{M}_{2}(N, N)=M_{2}(N, N), \\
& \tilde{M}_{2}(N, R)=M_{2}(N, R), \\
& \tilde{M}_{2}(R, N)=M_{2}(R, N), \\
& \tilde{M}_{2}(R, R)=m_{2}(R, R)
\end{aligned}
$$

Want \tilde{M}_{3}

$$
0=Q \tilde{\Phi}+\tilde{M}_{2}(\tilde{\Phi}, \tilde{\Phi})+\tilde{M}_{3}(\tilde{\Phi}, \tilde{\Phi}, \tilde{\Phi})+\ldots
$$

so that third A_{∞} relation is obeyed:

$$
2\left[Q, \tilde{M}_{3}\right]+\left[\tilde{M}_{2}, \tilde{M}_{2}\right]=0
$$

Again we just want to pull a Q out of the associator to find the 3 -product.
Since \tilde{M}_{2} is different depending on the number of R states being multiplied, we have to do this separately for the 8 possible ways three NS and R states can multiply. Upshot:

$$
\begin{aligned}
& \tilde{M}_{3}(N, N, N)=M_{3}(N, N, N) \\
& \tilde{M}_{3}(N, N, R)=M_{3}(N, N, R) \\
& \tilde{M}_{3}(N, R, N)=M_{3}(N, R, N) \\
& \tilde{M}_{3}(R, N, N)=M_{3}(R, N, N) \\
& \tilde{M}_{3}(N, R, R)=m_{2}\left(\mu_{2}(N, R), R\right)-\mu_{2}\left(N, m_{2}(R, R)\right) \\
& \tilde{M}_{3}(R, N, R)=m_{2}\left(\mu_{2}(R, N), R\right)+m_{2}\left(R, \mu_{2}(N, R)\right) \\
& \tilde{M}_{3}(R, R, N)=-\mu_{2}\left(m_{2}(R, R), N\right)+m_{2}\left(R, \mu_{2}(R, N)\right) \\
& \tilde{M}_{3}(R, R, R)=-\mu_{2}\left(m_{2}(R, R), R\right)-\mu_{2}\left(R, m_{2}(R, R)\right)
\end{aligned}
$$

Whew!

Note $\tilde{M}_{3}(R, R, R) \neq 0$.
What about $\tilde{M}_{4}(R, R, R, R)$? Must vanish by ghost and picture counting.

EOM is precisely cubic in the Ramond string field.

Finding all ways NS and R states multiply seems like a pain Key technical idea: Ramond number:

$$
\begin{aligned}
\text { Ramond number }= & \text { Number of Ramond inputs } \\
& - \text { Number of Ramond outputs }
\end{aligned}
$$

Denote
$\stackrel{\underbrace{b_{n}}{ }_{N} \underbrace{}_{\text {number of inputs }} \text { Ramond number }}{ }$

Can decompose products into components of definite Ramond number:

$$
b_{n}=\left.b_{n}\right|_{-1}+\left.b_{n}\right|_{0}+\left.b_{n}\right|_{1}+\ldots+\left.b_{n}\right|_{n}
$$

We can write the composite 2-product:

$$
\tilde{M}_{2}=\left.M_{2}\right|_{0}+\left.m_{2}\right|_{2}
$$

We can write the composite 3-product:

$$
\tilde{M}_{3}=\left.M_{3}\right|_{0}+\left.m_{3}^{\prime}\right|_{2}
$$

with

$$
\left.m_{3}^{\prime}\right|_{2}=\left[\left.m_{2}\right|_{2},\left.\mu_{2}\right|_{0}\right]
$$

Ramond number restriction of products in commutator automatically takes care of different NS and R multiplications

All composite products have components at Ramond number 0 and 2 :

$$
\tilde{M}_{n}=\left.M_{n}\right|_{0}+\left.m_{n}^{\prime}\right|_{2}
$$

Products of 4 or more Ramond states vanish.

This is how it works at all orders: Defining

$$
\begin{aligned}
M(t) & =Q+\left.t M_{2}\right|_{0}+\left.t^{2} M_{3}\right|_{0}+\left.t^{3} M_{4}\right|_{0}+\ldots \\
\mu(t) & =\left.\mu_{2}\right|_{0}+\left.t \mu_{3}\right|_{0}+\left.t^{2} \mu_{4}\right|_{0}+\ldots \\
m(t) & =\left.m_{2}\right|_{0}+\left.t m_{3}\right|_{0}+\left.t^{2} m_{4}\right|_{0}+\ldots \\
m^{\prime}(t) & =\left.m_{2}\right|_{2}+\left.t m_{3}^{\prime}\right|_{2}+\left.t^{2} m_{4}^{\prime}\right|_{2}+\ldots
\end{aligned}
$$

The products are defined by solution of the equations

$$
\begin{aligned}
\frac{d}{d t} M(t) & =[M(t), \mu(t)] \\
\frac{d}{d t} m(t) & =[m(t), \mu(t)] \\
\frac{d}{d t} m^{\prime}(t) & =\left[m^{\prime}(t), \mu(t)\right] \\
{[\eta, \mu(t)] } & =m(t)
\end{aligned}
$$

Finally, we have the NS + R equations of motion for the NS open superstring!

Solving the differential equations gives a set of recursive equations for the products. The recursion is solved by following the diagram:

Ramond Equations of Motion

(heterotic string)

The story for the NS+R equations of motion of the heterotic string is similar but more intricate. In the end you solve for a bunch of products by following a recursion illustrated by the diagram:

Ramond Equations of Motion

(type II closed superstring)

The story for the NS-NS+R-NS+NS-R + R-R equations of motion for the type II closed superstring is similar but even more complicated. You find the 2-string products by following the diagram:

$\left.L_{2}{ }^{(0,0)}\right|_{2,2}$

Then the 3-string products by following the diagram:

Then the 4-string products by following the diagram:

And so on.

Supersymmetry

Easiest to describe SUSY in another set of field variables $\tilde{\phi} \rightarrow \tilde{\phi}$ where the equations of motion take the form

$$
0=(Q-\eta) \tilde{\phi}+\tilde{\phi}^{2}
$$

(See Okawa's talk)
SUSY transformation takes the form:

$$
\begin{aligned}
& \delta \phi_{\mathrm{N}}=q \psi_{\mathrm{R}}+\left[\psi_{\mathrm{R}}, q_{\xi} \phi_{\mathrm{N}}\right] \\
& \delta \psi_{\mathrm{R}}=q_{X} \phi_{\mathrm{N}}+q_{\xi}\left(\psi_{\mathrm{R}}\right)^{2}
\end{aligned}
$$

Now we can ask whether SFT solutions are supersymmetric. For example, can translate reference BPS D-brane with analytic solution

$$
\phi_{\mathrm{N}}=\Psi_{\mathrm{tv}}-\Sigma \Psi_{\mathrm{tv}} \bar{\Sigma}
$$

SUSY invariance is easy to check.

Thank you!

