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Problems with the Ramond Sector

We’d like to write a free action

S =
1

2
〈Ψ,QΨ〉

but 〈, 〉 requires picture −2. Thus Ψ must have picture −1.

OK for NS sector, but not OK for Ramond sector.

Let’s find EOM instead



Review of NS Sector
(Open Superstring with Witten Vertex)

NS string field: ΦN, picture −1.

EOM:
0 = QΦN + M2(ΦN,ΦN) + ...

M2 must carry picture +1.

Witten inserts picture changing operator at midpoint of open
string star product. This is problematic. Instead we use contour
integral of picture changing operator:



Compute associator of M2:

This is not zero!

We need an A∞ algebra

EOM:

0 = QΦN + M2(ΦN,ΦN) + M3(ΦN,ΦN,ΦN) + ...

Mns satisfy A∞ relations.



A∞ relations require:

Associator of M2 = Q(3-string product M3)

Pretend picture changing operator is BRST exact.

X = [Q, ξ]

Then we can simply factor Q out of M2 associator to find M3



Oops. X is not BRST exact.

At least not in the small Hilbert space.

Have to make sure that M3 is in the small Hilbert space. Upshot is
that we have to add to the stuff under the parentheses of Q the
BRST variation of

This works! We have a solution to the A∞ relations, and therefore
the EOM, out to third order.



Need equations to go along with these pictures

Signs: degree(Ψ) = Grassmann parity(Ψ) +1 (Don’t ask...)

Act string products on any number of copies of state space H:

QH= QH
Q(H⊗H) = (QH)⊗H+H⊗ (QH)

Q(H⊗H⊗H) = (QH)⊗H⊗H+H⊗ (QH)⊗H
+H⊗H⊗ (QH)

...

M2(H) = 0

M2(H⊗H) = M2(H,H)

M2(H⊗H⊗H) = M2(H,H)⊗H+H⊗M2(H,H)
...



For example:

m2 = Witten’s open string star product

Bosonic SFT axioms can be expressed:

* BRST operator is nilpotent: [Q,Q] = 0

* BRST operator is derivation: [Q,m2] = 0

* Star product is associative: [m2,m2] = 0



More generally, and A∞ algebra is defined by a sequence of
products Q,M2,M3, ... which satisfy A∞ relations:

[Q,Mn] + [M2,Mn−1] + ...+ [Mn−1,M2] + [Mn,Q] = 0

Or, even more simply, we can take the sum

M = Q + M2 + M3 + M4 + ...

The A∞ relations imply that M is nilpotent:

[M,M] = 0



Now let’s put equations to the pictures.

Since we’re pretending that X is BRST exact, the product M2 in
the EOM is BRST exact:

M2 = [Q, µ2]

m2 = [η, µ2]

µ2 is the same as M2 with the replacement X → ξ. Again, m2 is
the ordinary star product.

Note
[η,M2] = −[Q,m2] = 0



Now let’s derive the 3-product M3. (Bear with me.) Pretending X
is BRST exact, we can pull Q out of third A∞ relation:

0 = 2[Q,M3] + [M2,M2]

= [Q, 2M3 − [M2, µ2]]

Therefore

M3 =
1

2

(
[Q, µ3] + [M2, µ2]

)
[Q, µ3] is the extra term needed to make sure M3 is in small
Hilbert space. Defining m3 = [η, µ3] we must have

0 = [η,M3] = [Q,m3] + [M2,m2] = [Q,m3 − [m2, µ2]]

so
m3 = [m2, µ2]

Note [η,m3] = 0. Surrounding m3 with ξ defines µ3, and therefore
the product that we want!



This is how it works at all orders: Defining

M(t) = Q + tM2 + t2M3 + t3M4 + ...

µ(t) = µ2 + tµ3 + t2µ4 + ...

m(t) = m2 + tm3 + t2m4 + ...

The products are defined by solution of the equations

d

dt
M(t) = [M(t), µ(t)]

d

dt
m(t) = [m(t), µ(t)]

[η, µ(t)] = m(t)

Finally, we have the EOM for the NS open superstring!



Ramond Equations of Motion
(Open Superstring with Witten Vertex)

Include Ramond string field ΨR with picture −1/2.

EOM:

0 = QΦN + M2(ΦN,ΦN) + m2(ΨR,ΨR) + ...

0 = QΨR + M2(ΨR,ΦN) + M2(ΦN,ΨR) + ...



Define composite string field Φ̃ = ΦN + ΨR. EOM can be written

0 = QΦ̃ + M̃2(Φ̃, Φ̃) + ...

with

M̃2(N,N) = M2(N,N),

M̃2(N,R) = M2(N,R),

M̃2(R,N) = M2(R,N),

M̃2(R,R) = m2(R,R)

Want M̃3

0 = QΦ̃ + M̃2(Φ̃, Φ̃) + M̃3(Φ̃, Φ̃, Φ̃) + ...

so that third A∞ relation is obeyed:

2[Q, M̃3] + [M̃2, M̃2] = 0



Again we just want to pull a Q out of the associator to find
the 3-product.

Since M̃2 is different depending on the number of R states being
multiplied, we have to do this separately for the 8 possible ways
three NS and R states can multiply. Upshot:

M̃3(N,N,N) = M3(N,N,N)

M̃3(N,N,R) = M3(N,N,R)

M̃3(N,R,N) = M3(N,R,N)

M̃3(R,N,N) = M3(R,N,N)

M̃3(N,R,R) = m2(µ2(N,R),R)− µ2(N,m2(R,R))

M̃3(R,N,R) = m2(µ2(R,N),R) + m2(R, µ2(N,R))

M̃3(R,R,N) = −µ2(m2(R,R),N) + m2(R, µ2(R,N))

M̃3(R,R,R) = −µ2(m2(R,R),R)− µ2(R,m2(R,R))

Whew!



Note M̃3(R,R,R) 6= 0.

What about M̃4(R,R,R,R)? Must vanish by ghost and picture
counting.

EOM is precisely cubic in the Ramond string field.



Finding all ways NS and R states multiply seems like a pain

Key technical idea: Ramond number:

Ramond number = Number of Ramond inputs
−Number of Ramond outputs

Denote

bn|N
6
 number of inputs

6
 Ramond number

Can decompose products into components of definite Ramond
number:

bn = bn|−1 + bn|0 + bn|1 + ...+ bn|n



We can write the composite 2-product:

M̃2 = M2|0 + m2|2

We can write the composite 3-product:

M̃3 = M3|0 + m′3|2

with
m′3|2 = [m2|2, µ2|0]

Ramond number restriction of products in commutator
automatically takes care of different NS and R multiplications

All composite products have components at Ramond number 0
and 2:

M̃n = Mn|0 + m′n|2
Products of 4 or more Ramond states vanish.



This is how it works at all orders: Defining

M(t) = Q + tM2|0 + t2M3|0 + t3M4|0 + ...

µ(t) = µ2|0 + tµ3|0 + t2µ4|0 + ...

m(t) = m2|0 + tm3|0 + t2m4|0 + ...

m′(t) = m2|2 + tm′3|2 + t2m′4|2 + ...

The products are defined by solution of the equations

d

dt
M(t) = [M(t), µ(t)]

d

dt
m(t) = [m(t), µ(t)]

d

dt
m′(t) = [m′(t), µ(t)]

[η, µ(t)] = m(t)

Finally, we have the NS+R equations of motion for the NS open
superstring!



Solving the differential equations gives a set of recursive equations
for the products. The recursion is solved by following the diagram:

µ2|0 µ3|0 µ4|0

m'3|2 m'4|2 m'5|2M2|0 M3|0 M4|0

m3|0 m4|0

. . .

m2|0

µ5|0

m'6|2M5|0

m5|0 m6|0



Ramond Equations of Motion
(heterotic string)

The story for the NS+R equations of motion of the heterotic string
is similar but more intricate. In the end you solve for a bunch of
products by following a recursion illustrated by the diagram:

M2
(0)|0 M3

(0)|2 M3
(0)|0

M3
(1)|0 M4

(1)|2 M4
(1)|0

M4
(2)|0

M4
(0)|2 M4

(0)|0M4
(0)|4

M5
(2)|2 M5

(2)|0

M5
(3)|0

M5
(1)|2 M5

(1)|0M5
(1)|4

M5
(0)|2 M5

(0)|0M5
(0)|4

M2
(1)|0

Q M2
(0)|2

M3
(1)|0

M3
(2)|0

M4
(1)|4

M4
(2)|2

M4
(3)|0

M5
(2)|4

M5
(3)|2

M5
(4)|0



Ramond Equations of Motion
(type II closed superstring)

The story for the NS-NS+R-NS+NS-R +R-R equations of motion
for the type II closed superstring is similar but even more
complicated. You find the 2-string products by following the
diagram:

L2(1,0)|0,2

L2(0,0)|0,2

L2(0,0)|2,2

L2(0,0)|0,0

L2(1,1)|0,0

L2(0,0)|2,0

L2(0,1)|2,0

L2(1,0)|0,0 L2(0,1)|0,0



Then the 3-string products by following the diagram:

L3(2,2)|0,0

L3(2,1)|0,0 L3(1,2)|0,0

L3(1,1)|0,0 L3(0,2)|0,0

L3(0,1)|0,0 L3(1,2)|2,0

L3(1,1)|2,0

L3(2,0)|0,0

L3(2,1)|0,2 L3(1,0)|0,0

L3(1,1)|0,2 L3(0,0)|0,0

L3(0,1)|0,2 L3(1,0)|2,0

L3(1,1)|2,2

L3(2,0)|0,2

L3(1,0)|0,2

L3(0,0)|0,2

L3(1,0)|2,2 L3(0,1)|2,2

L3(0,0)|2,2

L3(0,1)|2,0

L3(0,0)|2,0

L3(0,2)|2,0



Then the 4-string products by following the diagram:

L4(3,3)|0,0

L4(3,2)|0,0 L4(2,3)|0,0

L4(2,2)|0,0 L4(1,3)|0,0

L4(1,2)|0,0 L4(0,3)|0,0

L4(0,2)|0,0

L4(3,1)|0,0

L4(3,0)|0,0 L4(2,1)|0,0

L4(2,0)|0,0 L4(1,1)|0,0

L4(1,0)|0,0 L4(0,1)|0,0

L4(0,0)|0,0

L4(3,2)|0,2

L4(2,2)|0,2

L4(1,2)|0,2

L2(0,2)|0,2 L4(2,0)|2,0

L4(2,2)|2,2

L4(2,2)|2,0

L4(2,1)|2,0

L4(2,3)|2,0

L4(3,1)|0,2

L4(2,1)|0,2L4(3,0)|0,2

L4(2,0)|0,2L4(3,1)|0,4

L4(2,1)|0,4L4(3,0)|0,4

L4(2,0)|0,4

L4(1,1)|0,2

L4(1,0)|0,2

L4(0,0)|0,2L4(1,1)|0,4

L4(0,1)|0,4L4(1,0)|0,4

L4(0,0)|0,4

L2(0,1)|0,2

L4(1,3)|2,0

L4(0,3)|2,0L4(1,2)|2,0

L4(0,2)|2,0 L4(1,3)|4,0

L4(0,3)|4,0L4(1,2)|4,0

L2(0,2)|4,0

L4(1,1)|2,0

L4(0,1)|2,0L4(1,0)|2,0

L4(0,0)|2,0 L4(1,1)|4,0

L4(0,1)|4,0L4(1,0)|4,0

L4(0,0)|4,0

L4(1,2)|2,2

L4(0,2)|2,2L4(1,1)|2,2

L4(0,1)|2,2 L4(1,2)|4,2

L4(0,2)|4,2L4(1,1)|4,2

L4(0,1)|4,2

L4(2,0)|2,2

L4(1,0)|2,2L4(2,1)|2,4

L4(1,1)|2,4 L4(0,0)|2,2

L4(1,0)|4,2L4(0,1)|2,4

L4(1,1)|4,4

L4(2,1)|2,2

L4(2,0)|2,4

L4(1,0)|2,4

L4(0,0)|2,4

L4(1,0)|4,4

L4(0,0)|4,2

L4(0,1)|4,4

L4(0,0)|4,4

And so on.



Supersymmetry

Easiest to describe SUSY in another set of field variables Φ̃→ φ̃
where the equations of motion take the form

0 = (Q − η)φ̃+ φ̃2

(See Okawa’s talk)

SUSY transformation takes the form:

δφN = qψR + [ψR, qξφN]

δψR = qXφN + qξ(ψR)2

Now we can ask whether SFT solutions are supersymmetric. For
example, can translate reference BPS D-brane with analytic
solution

φN = Ψtv − ΣΨtvΣ

SUSY invariance is easy to check.



Thank you!


