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1 Introduction

• Tachyon condensation to the tachyon vacuum is a universal phenomenon for bosonic

D-branes. The corresponding solution in OSFT can be expressed in the universal

sector by making only use of ghosts and Virasoro operators.

• In the superstring the situation is richer. An unstable D-brane system has tachyons

in the GSO(−) sector. However the spectrum and operator algebra of this sector

typically depends on the details of the system and it could not contain a universal

sector.

• In 2008, Bagchi and Sen found a numerical, level truncated non-universal solution in

the WZW-like OSFT on a separated D-D̄ system, describing the tachyon vacuum.

• A universal tachyon vacuum analytic solution in the WZW-like OSFT has been

found by Erler (2013) in the universal sector for a non-BPS D-brane and, with

straightforward generalization, on a coincident D-D̄ pair.

• I am going to present an exact non-universal solution for the separated D-D̄ system.

2 TV on a separated D-D̄ system

2.1 Separated D-D̄ system

A brane and an anti-brane are separated along a flat non-compact direction Y , by a

distance equal to 2πd. The string field on this system is a 2x2 matrix of the form

Ψ =

GSO(+) GSO(−)

GSO(−) GSO(+)

 (2.1)

The GSO(+) sector has internal Chan-Paton’s factor {1, σ3} for Grassmann even/odd

string fields and the GSO(−) carries {σ1, σ2}. The derivations Q and η = η0 carries inter-

nal multiplicative Chan-Paton σ3. These CP factors will be understood in the following.

The 11 entry contains the boundary fields of the D-brane boundary super conformal field

theory with Dirichlet boundary condition Y = 0, and the 22 entry the boundary fields of

the anti-D brane, with Dirichlet boundary condition Y = 2πd. The off diagonal terms 12

and 21 are twisted sector, describing the strings stretching from D to D̄ and from D̄ to

D, respectively. The ground state of the GSO(+) sector is given by the SL(2,R) vacuum
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while, in the GSO(-) sector, the lowest lying states are given by the bcc operators that

change the Dirichlet boundary condition Y = 0 to Y = 2πd, and viceversa. These are

given respectively by exponentials of the dual Y coordinate Ỹ (z, z̄) ≡ Y (z)− Ȳ (z̄).

∆ = eidỸ (2.2)

∆̄ = eidỸ , (2.3)

they are superconformal primaries of weight h = d2, and they are tachyonic for d < 1√
2
.

In the small Hilbert space and at picture –1, the zero momentum tachyon fields are given

by

tθ = e−φc

 0 eiθ∆

e−iθ∆̄ 0

 , (2.4)

where θ is a phase describing an hermitian linear combination of the two real tachyons,

connecting D with D̄ and viceversa.

In the large Hilbert space we have

ζ ′θ = ξtθ =

 0 eiθ γ−1∆

e−iθ γ−1∆̄ 0

 c (2.5)

γ−1 ≡ ξe−φ (2.6)

2.2 Cubic solution

We can start by searching for a solution to the cubic equation of motion

QΨ + Ψ2 = 0, (2.7)

where Ψ has ghost number one and picture number zero. This equation has the obvious

solution

Ψtv =

ψtv 0

0 ψtv

 (2.8)

Where ψtv is a tachyon vacuum solution on a single D-brane. A simple choice is the

(superstring generalization of) the Erler-Schnabl solution

ψtv = (c−Q(Bc))
1

1 +K
. (2.9)
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We can compute the energy from known results in the literature, to get (the traces over

the internal and external Chan-Paton’s are normalized with 1/2)

E = −S(cubic) =
1

6
trY−2 [ΨQΨ] = − 1

2π2
, (2.10)

which is the total energy carried by the system, with respect to the empty closed back-

ground (the tachyon vacuum). We can also check that the solution has the correct (van-

ishing) boundary state by computig the Ellwood invariant

trV−2 [Ψtv] = − 1

4πi

(
〈V−2(0)c(1)〉DDisk + 〈V−2(0)c(1)〉D̄Disk

)
. (2.11)

The cubic solution thus captures the bulk observables of the starting background. However

this is not completely satisfactory: from the direct world-sheet perspective we expect that

the process of condensation is driven by the stretched tachyons, while here it is really

the zero-momentum GSO(+) ”bosonic” tachyon c1|0〉 which condenses. It is therefore

useful to search for the corresponding solution in the WZW-like theory where, much more

physically, the GSO(–) sector will play a crucial role.

2.3 Berkovits’s solution

The action is given by

S = −
∫ 1

0

dt Tr[(ηΨt(t))ΨQ(t)], (2.12)

where Tr is the large Hilbert space BPZ trace form, and it is related to tr of the previous

slide by

tr[(small)] = Tr[ξ(small)]. (2.13)

The flat connections Ψt(t) and ΨQ(t) are defined by

Ψt(t) = g−1(t) ∂tg(t) (2.14)

ΨQ(t) = g−1(t)Qg(t), (2.15)

and the interpolating group element is such that

g(0) = 1 (2.16)

g(1) = g ≡ eΦ, (2.17)
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where Φ is the dynamical string field in the large Hilbert space, with picture and ghost

number zero. The equation of motion is given by

η(g−1Qg) = 0. (2.18)

A strategy to solve this equation (Erler, 2008), goes through the following steps

1. Solve the cubic equation

QΨ + Ψ2 = 0

2. Set

g−1Qg = Ψ (2.19)

3. Solve the more general equation

Qg − gΨ ≡ Q0Ψg = 0 ↔ g = Q0Ψ(β), (2.20)

4. CHALLENGE: Determine β such that g−1 exists. This last step is the most delicate

and, for example, it is responsible for the absence of a tachyon vacuum solution on a

BPS brane (inside the GSO+ {K,B, c, γ2, γ−2} algebra), despite the solution exists

in the cubic theory.

A prominent example is the solution for the tachyon vacuum on a non-BPS D-brane (Erler

2013) which comes from the choice

β = (−γ−2c) + q (γ−1c)
B

1 +K
≡ α + q ζ

B

1 +K
(2.21)

where q 6= 0 is a gauge parameter and α = −γ−2c is the trivializer of Q in the large

Hilbert space, Qα = 1. The invertibility of g = Q0Ψβ is guaranteed by a non zero vev for

the zero momentum tachyon ζ = γ−1c, which is why we need q 6= 0.

2.3.1 Naive attempt

A physically motivated choice for β is pretty obvious

β = α + q ζ ′θ
B

1 +K
(?), (2.22)
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since this just substitutes the zero momentum tachyon on a coincident D-D̄ system, with

the zero momentum tachyon on a separated system. Setting q = 1 (for simplicity), this

choice of ”gauge fixing fermion” gives

g′tv = 1 + ζ ′θ + (Qζ ′θ − c)
B

1 +K
(?) (2.23)

By construction this proposed group element obeys

Qg′ = Ψtvg
′ (2.24)

Ψtv = (c−Q(Bc))
1

1 +K
. (2.25)

However, to have a genuine inverse, we need (at least) the string fields

ζ2
θ , ζθQζθ, (Qζθ)ζθ

to be finite. But the contact term behaviour of the bcc operators ∆ and ∆̄ , makes the ζζ

OPE divergent for d > 1/
√

2, which is where the stretched tachyons stops being tachyonic

ζ ′θ(s)ζ
′
θ(0) ∼ s1/2−d2γ−2c∂c(0) + (less singular). (2.26)

This might be in a sense acceptable (no tachyons, so no tachyon condensation!). However

it is not satisfactory, for at least two reasons

1. In the sigma model description an arbitrarily separated D-D̄ system can undergo

an exactly marginal boundary deformation which brings the branes together2, then

the stretched tachyons can trigger a boundary RG flow to the tachyon vacuum.

2. In the level truncation analysis by Bagchi and Sen, after including in the string field

the marginal field controlling the D-branes’ distance, the tachyon potential had a

non trivial minimum also for d > 1√
2
.

Therefore we need something more.

2This marginal direction is lifted quantum mechanically (i.e. when closed strings are taken into account
by open strings loops) and this results in the well known effective attraction between branes of opposite
charge.
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2.3.2 Resolution of contact singularities, algebra and solution

We can resolve the contact term singularity by substituting

∆ → eidX
0

∆ = eid(X0+Ỹ ) ≡ σ (2.27)

∆̄ → e−idX
0

∆̄ = e−id(X0+Ỹ ) ≡ σ̄ (2.28)

These are weight-zero matter superconformal primaries obeying

σσ̄ = σ̄σ = 1. (2.29)

Their BRST variation is given by

Qσ = c∂σ − d√
2
γψ+σ (2.30)

Qσ̄ = c∂σ̄ +
d√
2
γψ+σ̄, (2.31)

where ψ+ is the light-cone world sheet fermion

ψ+ = ψ0 + ψY . (2.32)

It is then natural to define a new (time-dependent) tachyon as

ζθ ≡ γ−1
θ c, (2.33)

γ±1
θ ≡

 0 eiθ γ±1σ

e−iθ γ±1σ̄ 0

 . (2.34)

Computing the BRST variation we find

Qζθ = cVθ + γθ, (2.35)

where

Vθ =
1

2
γ−1
θ ∂c− d√

2

 0 eiθ ψ+σ

−e−iθ ψ+σ̄ 0

 ≡ 1

2
γ−1
θ ∂c− d√

2
ψ+
θ . (2.36)

Then one can easily show that all the properties listed in eq (3.10) of Erler’s paper

1308.4400 are satisfied by the substitution

there → here

ζ → ζθ (2.37)

V → Vθ (2.38)

γ±1 → γ±1
θ . (2.39)
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Which is quite remarkable and not obviously expected!

We can now immediately write down the searched-for tachyon vacuum solution as

gθ,q = Q0Ψtv

(
α + qζθ

B

1 +K

)
= (1 + qζθ)

[
1−

(
(1− q2)c− qQζθ

) B

1 +K

]
(2.40)

g−1
θ,q =

[
1 +

(
(1− q2)c− qQζθ

) B

q2 +K + qVθ

]
(1− qζθ) (2.41)

Notice that θ is a phase in the two-dimensional tachyon space while q > 0 is the modulus.

The tachyon qζθ lives in the whole tachyon-plane, but the point q = 0 (the origin) is a

singularity which corresponds to the disappearance of the GSO(–) sector. It is elementary

to show that

g−1
θ,qgθ,q = gθ,qg

−1
θ,q = 1, (2.42)

and

g−1
θ,qQgθ,q = (c−Q(Bc))

1

1 +K
, (2.43)

and therefore

η
(
g−1
θ,qQqθ,q

)
= 0. (2.44)

It is also worth noting that, just as in 1308.4400, the solution is part of a GL(2) subgroup

of the star algebra, which is spanned by string fields of the form

Mθ = −γθB X1 ζθ + cB X2 + γθB Y1 − cB Y2 ζθ ∼

X1 Y1

Y2 X2

 , (2.45)

where

[B,Xi] = [B, Yi] = 0. (2.46)

2.3.3 Time dependence is a gauge artifact

One curious property of the solution we are considering is that it is explicitly time depen-

dent. To check this consider the time-translation operator, which is given by the following

topological defect operator

Dτ = eiτP0 , (2.47)
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where P0 is the even derivation

P0 =

∮
dz

2πi
i∂X0 (2.48)

[P0, Q] = [P0, η] = 0. (2.49)

This operator distributes over the star product

Dτ (A ∗B) = (DτA) ∗ (DτB), (2.50)

and it has the effect of changing

X0 → DτX0 = X0 + τ. (2.51)

It is not difficult to see that a time translation changes our solution in the following way

Dτ gθ,t = gθ+dτ,t, (2.52)

so the (opposite) phases of the two stretched tachyons (2.5) are translated by an (opposite)

amount proportional to the time translation. Therefore time dependence of our solution

can be interpreted as a rotation (in opposite directions for the the two stretched sectors)

along the orbit spanned by θ. But the orbit spanned by θ is a gauge orbit. This can be

made explicit by noticing that (q = 1, for simplicity)

gθ1 = U12 gθ2 (2.53)

U12 = (1 + ζ1)

(
1 +Q(ζ1 − ζ2)

B

1 +K + V2

)
(1− ζ2) = U−1

21 (2.54)

QU12 = 0. (2.55)

Therefore the time dependence of the solution is a motion at constant angular velocity

(depending linearly on the distance between the branes) along a circular gauge orbit,

around the singularity at q = 0. In particular time dependence is a gauge artifact.

2.3.4 Energy

Because of the identical GL(2) structure, the analytic computation of the action can be

read-off from 1308.4400, as far as the algebraic part is concerned. When we come to the

the evaluation of world-sheet correlators we find two sources of difference wrt 1308.4400.
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• The string field Vθ contains the world sheet fermion ψ+
θ . However, thanks to its

light-cone nature, we have

〈ψ+
θ (s1)...ψ+

θ (sn)〉 = 0, n > 0, (2.56)

so the ψ+ part of V decouples from the energy computation.

• The ghost correlators of 1308.4400 will always be accompanied by (X0, Ỹ ) correla-

tors of the form

〈eidX̃+

(s1)e−idX̃
+

(s2)...eidX̃
+

(s2n−1)e−idX̃
+

(s2n)〉, (2.57)

where

X̃+ = X0 + Ỹ , (2.58)

which is again a light-cone coordinate which makes the previous correlator trivially

equal to one.

Therefore we obtain

S =
1

2π2
. (2.59)

The Ellwood invariant also (trivially) works, because it can be computed from the cubic

solution Ψtv.

3 Conclusion and comments

• The Berkovits tachyon vacuum solution on a separated D-D̄ system is not universal,

but it can be expressed algebraically in a way which is identical to the universal case

of a non-BPS or a coincident D-D̄ pair. In particular the solution exists for any

initial value of the separation. The solution has a periodic time dependence which

is however a gauge artifact, since time translations correspond to gauge transforma-

tions which don’t change the (time independent) cubic solution.

• This is yet another example which shows that OSFT deals well in handling large

changes in the BCFT moduli. Another interesting example is given by the solutions

for marginal deformations in the bosonic string, described in 1402.3546 (CM). The

solution is directly described in terms of the BCFT modulus λBCFT and one can

explicitly compute the coefficient of the marginal field in the solution (typically

called λSFT) in terms of λBCFT
3. This was summarized in some detail in my talk at

3This work, in collaboration with M. Schnabl will appear soon.
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SFT2104,

http://www.sissa.it/tpp/activity/conferences/SFT2014/talks/Maccaferri.pdf.

• The previous item suggests that we can directly get a time independent tachyon

vacuum solution by taking inspiration from my previous work (1402.3546), defining

the Takahashi-Tanimoto (TT) bcc- operators

σ = ei d
∫ i∞
0

dz
2πi

f(z)Ỹ (z,z̄), (3.1)

σ̄ = e−i d
∫ i∞
0

dz
2πi

f(z)Ỹ (z,z̄), (3.2)

where f(z) is a regulating function, which spread the chiral current ∂Y into the bulk

and thus automatically regulates the contact term divergences. However this meets

with a subtle open problem that is not present in the bosonic string. The BRST

variation of σ generates (by construction) the TT-solution σQσ̄ which is in general

not so well-behaved in the presence of 1
1+K

, which has non-vanishing support on the

identity. As shown 1402.3546, this renders the computation of the observables quite

ambiguous. In the bosonic case we can easily create solutions which have support

on strictly positive wedge state, but this is not known in the Berkovits superstring

and it actually turns out to be quite a challenge.

• The difficulty in defining a Berkovits’ tachyon vacuum based on strictly positive

wedge states also prevents to write down a fully regular solution describing the

transition between two superstring background BSCFT0 and BSCFT∗. A cubic

solution can be immediately written as 1406.3021 (Erler, CM)

Ψ0→∗ = Ψtv − Σ0∗ΨtvΣ̄0∗ (3.3)

However the choice of the Erler-Schnabl tachyon vacuum turns out to be too much

identity-like, because of the superstring correction Bγ2. This is not a real problem in

the cubic theory, however, because it is enough to choose a K,B, c tachyon vacuum

with strictly positive security strips, and define the Σ’s accordingly.

When we go to the Berkovits theory we can write in principle

g0→∗ = g
(0)
tv (1− ΣU

(∗)
tv Σ̄), (3.4)

where

U
(∗)
tv = 1− (g

(∗)
tv )−1.
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However U
(∗)
tv still contains identity based pieces (for example ζ) and the collision

Σ-Σ̄ is not protected by a finite piece of world-sheet.

Therefore further study is needed to improve our analytic techniques in the Berkovits

theory, if we want to cleanly describe the superstring landscape.
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