L_{∞}-relations in WZW-like

string field theory

Hiroaki Matsunaga (YITP, Kyoto)
based on upcoming paper
with Keiyu Goto (Univ. Tokyo)
China, May, $12^{\text {th }}, 2015$.

When you ask questions,

Please, speak slowly and use easy words.

L_{∞}-relations in WZW-like

string field theory

Hiroaki Matsunaga (YITP, Kyoto)
based on upcoming paper
with Keiyu Goto (Univ. Tokyo)
China, May, $12^{\text {th }}, 2015$.

Introduction.

Witten's Cubic Theory

Witten $\mathbf{8 6}^{\prime}$

- Interaction term inclucles local insertion of PCO.
\rightarrow clivergent contact terms, broken gauge inv.
- To remedy these, various approaches are proposed.

In my talk, two successive formulations are picked up.

Introduction.

Witten's Cubic Theory

Witten

The small Hillbert space
Some attempts...

The large Hillbert space (WZW-like actions)
 NS open
 Berkovits 95'
 NS closed
 Berkovits, Okawa, Zwiebach 04’

Gauge fixing . . . Not Yet

In 2013

Witten's Cubic Theory

Witten

The small Hillbert space
(A_{∞} / L_{∞}-type actions)

NS open
Erler, Konopka, Sachs $\mathbf{1 3}^{3}$

The large Hillbert space (WZW-like actions)

NS open
Berkovits 95'
NS closed
Berkovits, Okawa, Zwiebach 04’

Gauge fixing . . . OK!

In 2014

Witten's Cubic Theory

Witten

The small Hilbert space
(A_{∞} / L_{∞}-type actions)

NS open

NS closed

NS-INS closed
Erler, Konopka, Sachs $\mathbf{1 4}^{3}$

Gauge fixing . . . OK!

The large Hillbert space (WZW-like actions)

NS open
Berkovits 95'
NS closed
Berkovits, Okawa, Zwiebach 04’

Gauge fixing . . . Not Yet

In 2014

Witten's Cubic Theory

Witten

The small Hilbert space
(A_{∞} / L_{∞}-type actions)

NS open

NS closed

NS-INS closed
Erler, Konopka, Sachs $\mathbf{1 4}^{\prime}$

Gauge fixing . . . OK!

The large Hillbert space (WZW-like actions)

NS open
Berkovits 95'
NS closed
Berkovits, Okawa, Zwiebach $04^{\text { }}$
NS-INS closed

H.M $\mathbf{1 4}^{\prime}$

Gauge fixing . . . Not Yet

Toclay's Topic !!

Witten's Cubic Theory

Witten

The small Hillbert space
(A_{∞} / L_{∞}-type actions)

NS open

NS closed

NS-INS closed
Erler, Konopka, Sachs $\mathbf{1 4}^{\prime}$

The large Hillbert space (WZW-like actions)

NS open
Berkovits 95'
NS closed
Berkovits, Okawa, Zwiebach 04’
NS-INS closed
H.M 14^{\prime}

Gauge fixing . . . OK
Gauge fixing . . . Possible!

Today’s Topic !!

Witten's Cubic Okaawa-san explained

 WittenThe small Hillbert space
(A_{∞} / L_{∞}-type actions)
large Hillbert space
(WZW-like actions)
Z_{2}-reversed
NS open
Berkovits $0=$
NS closed
Berkovits, Okawa, Zwiebach $04{ }^{\text { }}$
NS-INS closed

H.M 14^{4}

Today’s Topic !!

Witten's Cubic Topic in my talk

 WittenThe small Hillbert space
(A_{∞} / L_{∞}-type actions)

NS open

INS closed arge Hillbert space (WZW-like actions)

NS open

NS closed
Berkovits, Okawa 7wkoach 04^{3}
NS-INS closed
Erler, Konopka, Sachs 14^{3}

NS-INS closed

```
H.M 14'
```

Gauge fixing . . . Possible!

Plan
O. Introduction

1. Two formulations: L, Qq
2. Similarity Transformations
3. Equivalence of on-shell conclitions

1. A short review of Two Formulations

- Resolving singularities -

We start with Witten's cubic superstring field theory.

Picture \# anomaly

There exists ghost \& picture \# anomaly !!

Witten's Action : $\quad S=\frac{1}{2}\langle\Psi, Q \Psi\rangle+\frac{1}{3}\langle\Psi, \underline{X(i)}(\Psi * \Psi)\rangle$

$$
X(i): \text { Picture Changing Operator }
$$

Two formulations

- OPE of PCOs $X(i)$ is singular. . .
\rightarrow Contact terms become DIVERGENT !!
- Broken gauge invariance. . .

Two Formulations for Superstring Field Theory
(A) WZW-like Formulation (the large Hillbert space)
(B) A_{∞} / L_{∞}-type Formulation (the small Hillbert space)

(A) WZW-like Formulation

(the large Hillbert space)

Changing the $\#_{\text {ghost }} \& \#_{\text {picture }}$ of string fielcls.

Large-space string fields

In the "large" Hillbert space. . . ($\eta \xi \phi$-system)

$$
\begin{array}{ccc}
\text { Vertex Op. } & \text { String Field } & \left(\#_{\text {qh }} \mid \#_{\text {pic }}\right) \\
\text { Large : } \mathcal{V}(z)=\xi(z) c e^{-\phi} V_{m} & \rightarrow \quad \Phi & (0 \mid 0)
\end{array}
$$

There exists conformal weight 1 current: $\eta(z)$
\rightarrow Zero mode $\eta:=\eta_{\circ}$ also becomes a derivation !!

Note that "\# of Q " $=(1 \mid 0)$ ancl "\# of η " $=(1 \mid-1)$

The free Action (NS open)

Free Action
EOM
Gauge transf.
$S=\frac{1}{2}\langle\eta \Phi, Q \Phi\rangle$
$Q \eta \Phi=0$
$\delta \Phi=Q \Lambda+\eta \Omega$
\rightarrow Two generators of gauge transf. : Q \& η

- Interacting terms . . . ??

Note that "\# of ϕ " $=(\mathrm{O} \mid \mathrm{O})$!
\rightarrow We can make a function of ϕ
without 'picture-changing problems'.

Berkovits' open Superstring Field Theory

Berkovits WZW-"type" Action

$$
S=\frac{1}{2}\left\langle e^{-\Phi} Q e^{\Phi}, e^{-\Phi} \eta e^{\Phi}\right\rangle+\frac{1}{2} \int_{0}^{1} d t\left\langle e^{-t \Phi} \partial_{t} e^{t \Phi}, \llbracket e^{-t \Phi} Q e^{t \Phi}, e^{-t \Phi} \eta e^{t \Phi} \rrbracket\right\rangle
$$

EOM : $\quad \eta\left(e^{-\Phi} Q e^{\Phi}\right)=0$
Gauge transf. : $\quad e^{-\Phi} \delta e^{\Phi}=Q_{\mathcal{G}} \Lambda+\eta \Omega$

$$
Q_{\mathcal{G}}:=Q+\frac{\llbracket e^{-\Phi}\left(Q e^{\Phi}\right),}{\uparrow}
$$

A (formal) pure-gauge g is the key.

WZW-like form

- The action takes the WZW-like form

$$
S=\int_{0}^{1} d t\left\langle A_{\partial_{t}}(t), \underline{Q_{\mathcal{G}(t)}} A_{\eta}(t)\right\rangle
$$

$\rightarrow \quad$ The g-shifted BRST operator : $Q_{\mathcal{G}(t)}=Q+\left[e^{-\phi}\left(Q e^{\Phi}\right), \quad\right]$
Associated fields : $\quad \partial_{\tau} A_{\eta}(\tau)=\eta \Phi+\left[\Phi, A_{\eta}(\tau)\right]$

We can similarly construct the action for closed superstrings.

- In the Berkovits open NS theory, we can take

$$
\begin{gathered}
\mathbf{Z}_{\mathbf{2}} \text {-reversing }:(\mathbf{Q}, \boldsymbol{\eta}, \boldsymbol{\phi}) \rightarrow(\boldsymbol{\eta}, \mathbf{Q},-\boldsymbol{\phi}) \\
S=\int_{0}^{1} d t\left\langle\tilde{A}_{\partial_{t}}(t), Q \tilde{A}_{\eta}(t)\right\rangle
\end{gathered}
$$

(B) A_{∞} / L_{∞}-type Formulation (the small Hillbert space)

Aclding the regulators satisfying A_{∞} / L_{∞}-relations.

Recall the Witten's Cubic Action

$$
S=\frac{1}{2}\langle\Psi, Q \Psi\rangle+\frac{1}{3}\langle\Psi, X(i)(\Psi * \Psi)\rangle
$$

$X(i)$: Picture-Changing Operator (Singular OPE !!)

This Procluct is Associative !!
But contact terms become DIVERGENT !!

EKS's A_{∞}-type NS open theory

Using line integral $X=\int \frac{d z}{2 \pi i} f(z) X(z)$, we can clefine
a new 2 -string product M_{2} :

$$
M_{2}\left(\Psi_{1}, \Psi_{2}\right)=\frac{1}{3}\left(X\left(\Psi_{1} * \Psi_{2}\right)+\left(X \Psi_{1}\right) * \Psi_{2}+\Psi_{1} *\left(X \Psi_{2}\right)\right)
$$

M_{2} is non-associative !!

$$
M_{2}\left(M_{2}(A, B), C\right) \neq M_{2}\left(A, M_{2}(B, C)\right)
$$

Higher products satisfying $A_{\infty} \& \eta$-clerivation

Acld appropriate 'higher proclucts' as 'the regulator'!!

$$
S=\frac{1}{2}\langle\Psi, Q \Psi\rangle+\frac{1}{3}\left\langle\Psi, M_{2}\left(\Psi^{2}\right)\right\rangle+\frac{1}{4}\left\langle\Psi, M_{3}\left(\Psi^{3}\right)\right\rangle+\frac{1}{5}\left\langle\Psi, M_{4}\left(\Psi^{4}\right)\right\rangle+\ldots
$$

\rightarrow Satisfying A_{∞} / L_{∞}-relations :

$$
\left(Q+M_{2}+M_{3}+\ldots\right)^{2}=0
$$

\rightarrow Satisfying η-clerivation relations:

$$
\eta M_{n}(\phi \ldots \phi)=\Sigma M_{n}(\phi \ldots \eta \phi \ldots \phi)
$$

- Constructing these products, one can obtain an action.

How to construct $M=\left\{M_{n}\right\}_{n=1}^{\infty}$?

- Let us introduce a generating function of the products.

$$
M(\tau)=\Sigma \tau^{n} M_{n+1}
$$

- The NS string products are given by the cliff. eq.

$$
\partial_{\tau} M(\tau)=[M(\tau), \mu(\tau)]
$$

Cyclicity

where $\mu(\tau)=\Sigma \tau^{n} \mu_{n+1}$ is the EKS's "GAUGE" PRODUCTS.

So . . . There exist Two Formulations !!

based on the large Hillbert space WZW-like actions
based on the small Hillbert space
$\wedge_{\infty} / L_{\infty}$-type actions

Does they relate to each other. . . ?

based on the large Hillbert space
WZW-like actions
???
based on the small Hilbert space
A_{∞} / L_{∞}-type actions

We will see that

based on the large Hilbert space WZW-like actions

Embeclding

Partial Gauge Fixing
based on the small Hillbert space
A_{∞} / L_{∞}-type actions

(Ex.) NS closed string field theory

Large-space NS string field

$$
V: \text { ghost } \#=1 \text {, picture } \#=0
$$

Small-space NS string field
Ф : ghost $\#=2$, picture $\#=-1$

For example . . . Free actions

Large-space Action (NS closed)

$$
S_{2}=\frac{1}{2}\langle\eta V, Q V\rangle
$$

- Q-gauge sym.
- η-gauge sym.

Small-space Action (NS closed)

$$
S_{2}=\frac{1}{2}\langle\xi \Phi, Q \Phi\rangle=\frac{1}{2}\langle\Phi, Q \Phi\rangle_{\text {small }}
$$

For example . . . Free actions

Large-space Action (NS closed)

$$
S_{2}=\frac{1}{2}\langle\eta V, Q V\rangle
$$

Partial Gauge Fixing

$$
V=\xi \Phi
$$

Small-space Action (NS closed)

$$
S_{2}=\frac{1}{2}\langle\xi \Phi, Q \Phi\rangle=\frac{1}{2}\langle\Phi, Q \Phi\rangle_{\text {small }}
$$

NS closed 3-point Interaction

Large-space Action (NS closed)

$$
S=\frac{1}{2}\langle\eta V, Q V\rangle+\frac{\kappa}{3!}\langle\eta V,[Q V, V]\rangle
$$

- Q-gauge sym.
- η-gauge sym.

Small-space Action (NS closed)

$$
S=\frac{1}{2}\langle\xi \Phi, Q \Psi\rangle+\frac{\kappa}{3!}\langle\xi \Phi,[X \Phi, \Phi]\rangle
$$

- Q-gauge sym.

NS closed 3-point Interaction

Large-space Action (NS closed)

$$
S=\frac{1}{2}\langle\eta V, Q V\rangle+\frac{\kappa}{3!}\langle\eta V,[Q V, V]\rangle
$$

- Q-gauge sym.
- η-gauge sym.

Partial Gauge Fixing

$$
V=\xi \Phi
$$

Small-space Action (NS closed)

$$
S=\frac{1}{2}\langle\xi \Phi, Q \Psi\rangle+\frac{\kappa}{3!}\langle\xi \Phi,[X \Phi, \Phi]\rangle
$$

- Q-gauge sym.

NS closed 3-point Interaction

Large-space Action (NS closed)

$$
S=\frac{1}{2}\langle\eta V, Q V\rangle+\frac{\kappa}{3!}\langle\eta V,[Q V, V]\rangle
$$

- Q-gauge sym.
- η-gauge sym.

Partial Gauge Fixing (up to $O\left(\phi^{3}\right)$)

$$
V=\xi \Phi+\frac{\kappa}{3!} \xi[\xi \Phi, \Phi]+\mathcal{O}\left(\kappa^{2}\right)
$$

Small-space Action (NS closed)

$$
S=\frac{1}{2}\langle\xi \Phi, Q \Psi\rangle+\frac{\kappa}{3!}\langle\xi \Phi,[X \Phi, \Phi]\rangle
$$

- Q-gauge sym.

NS closed 4-point Interaction

Large-space NS Action
$S=\frac{1}{2}\langle\eta V, Q V\rangle+\frac{\kappa}{3!}\langle\eta V,[Q V, V]\rangle+\frac{\kappa^{2}}{4!}\langle\eta V,[Q V, Q V, V]+[[Q V, V], V]\rangle$

- Q-gauge sym.
- η-gauge sym.

Partial Gauge Fixing (up to $O\left(\phi^{4}\right)$)

$$
\begin{aligned}
V= & \xi \Phi+\frac{\kappa}{3!} \xi[\xi \Phi, \Phi] \\
& +\frac{\kappa^{2}}{4!}(\xi[\xi \Phi,(Q \xi+X) \Phi, \Phi]+\xi[\xi[\Phi, \Phi], \xi \Phi] \\
& \left.+\frac{2}{3} \xi[\xi[\xi \Phi, \Phi], \Phi]+\frac{2}{3}[\xi[\xi \Phi, \Phi], \xi \Phi]\right)
\end{aligned}
$$

Small-space NS Action

$$
S=\frac{1}{2}\langle\xi \Phi, Q \Phi\rangle+\frac{\kappa}{3!}\langle\xi \Phi,[X \Phi, \Phi]\rangle+\frac{\kappa^{2}}{4!}\left\langle\xi \Phi L_{3}(\Phi, \Phi, \Phi)\right\rangle
$$

- Q-gauge sym.

Up to O $\left(\phi^{4}\right)$

Witten's Cubic Theory

Witten

Gauge fixing . . . OK
Gauge fixing . . . Possible!

Up to O $\left(\phi^{4}\right)$

Witten's Cubic Theory

Witten

Small-space theory (A_{∞} / L_{∞}-type actions)	Large-space theory (WZW-type actions)
NS open	INS open
NS closed	NS closed
NS-INS closed	NS-INS closed
Erler, Konopka, Sachs 14'	H.M 14^{\prime}

Gauge fixing . . . OK
Gauge fixing . . . Possible!

How to obtain a closed form expression ?

2. Similarity Transformations

- Path-orclered exponential : G, E_{V}
- $L=G Q G^{\dagger}$ \& $Q_{q}=E_{V} Q E_{V}{ }^{\dagger}$

Path-ordered exp. $A[\tau]$ of operators $O[\tau]$

- We consider a path-ordered exponential :

$$
\begin{aligned}
\mathcal{A}[\tau] & =\overrightarrow{\mathcal{P}} \exp \left(\int_{0}^{\tau} d \tau^{\prime} \mathcal{O}_{\left[\tau^{\prime}\right]}\right) \\
& =\mathbb{1}+\left(\int_{0}^{\tau} d \tau_{1} \mathcal{O}_{\left[\tau_{1}\right]}\right)+\sum_{n=2}^{\infty}\left(\int_{0}^{\tau} d \tau_{1} \mathcal{O}_{\left[\tau_{1}\right]}\right)\left(\int_{0}^{\tau_{1}} d \tau_{2} \mathcal{O}_{\left[\tau_{2}\right]}\right) \cdots\left(\int_{0}^{\tau_{n-1}} d \tau_{n} \mathcal{O}_{\left[\tau_{n}\right]}\right)
\end{aligned}
$$

- $A[\tau]$ is the solution of cliff. eq. $\quad(A[O]=1)$

$$
\partial_{\tau} \mathcal{A}[\tau]=\mathcal{O}_{[\tau]} \cdot \mathcal{A}[\tau]
$$

- Reversing the clirection \& sign, we obtain its inverse :

$$
\begin{aligned}
\mathcal{A}^{-1}[\tau] & =\overleftarrow{\mathcal{P}} \exp \left(-\int_{0}^{\tau} d \tau^{\prime} \mathcal{O}_{\left[\tau^{\prime}\right]}\right) \\
& =\mathbb{1}-\int_{0}^{\tau} d \tau_{1} \mathcal{O}^{\dagger}\left[\tau_{1}\right]+\sum_{n=2}^{\infty}(-)^{n} \int_{0}^{\tau} d \tau_{1} \cdots \int_{0}^{\tau_{n-1}} d \tau_{n} \mathcal{O}_{\left[\tau_{n}\right]} \cdots \mathcal{O}_{\left[\tau_{2}\right]} \mathcal{O}_{\left[\tau_{1}\right]} .
\end{aligned}
$$

Path-orclered exp. gives a solution.

- $\mathcal{A}_{[\tau]}=\overrightarrow{\mathcal{P}} \exp \left(\int_{0}^{\tau} d \tau^{\prime} \mathcal{O}_{\left[\tau^{\prime}\right]}\right)$ satisfies $\partial_{\tau} \mathcal{A}[\tau]=\mathcal{O}_{[\tau]} \cdot \mathcal{A}_{[\tau]}$ and

$$
\mathcal{A}^{-1}[\tau]=\overleftarrow{\mathcal{P}} \exp \left(-\int_{0}^{\tau} d \tau^{\prime} \mathcal{O}_{\left[r^{\prime}\right]}\right) \text { satisfies } \partial_{\tau} \mathcal{A}^{-1}[\tau]=-\mathcal{A}^{-1}[\tau] \cdot \mathcal{O}_{[\tau]} .
$$

- Hence, when the operator $L(\tau)$ satisfies

$$
\partial_{\tau} L(\tau)=[O(\tau), L(\tau)] \text { with } L(O)=Q \text {, }
$$

a solution is given by $L(\tau)=A(\tau) Q A^{-1}(\tau)$!!
\rightarrow Application: NS string products in the small-space.

Recall L_{∞}-type and WZW-like actions

- Let us introduce a generating function of the products.

Small-space L_{∞}-type Action (NS closed)

$$
S_{\mathrm{EKS}}=\int_{0}^{1} d t\left\langle\boldsymbol{\pi}\left(\boldsymbol{\xi}_{t} e^{\wedge \Phi(t)}\right), \boldsymbol{\pi}\left(\mathbf{L}\left(e^{\wedge \Phi(t)}\right)\right)\right\rangle
$$

- $\mathbf{L}[\tau]=\sum_{n=1}^{\infty} \tau^{n-1} \mathbf{L}_{n} \quad$: Generating finc. of the NS products
- $e^{\wedge \Phi}=\operatorname{Id}+\Phi+\frac{1}{2} \Phi \wedge \Phi+\frac{1}{3!} \Phi \wedge \Phi \wedge \Phi+\ldots \quad$: Group-like element
\rightarrow NS string products are given by the diff. eq.

$$
\partial_{\tau} \mathbf{L}[\tau]=\llbracket \mathbf{L}[\tau], \boldsymbol{\Xi}[\tau] \rrbracket \boldsymbol{\Xi}_{[\tau]}=\sum^{\infty} \tau^{n-2} \boldsymbol{\Xi}_{n} \quad \begin{gathered}
\text { Cyclicity } \\
(\boldsymbol{\Xi}(\kappa))^{\dagger}=- \\
\text { BPZ oclcl } \\
\text { is EKS gauge products. }
\end{gathered}
$$

NS products = Similarity Transformation of Q
Solution of the diff. eq. $\partial_{\tau} \mathbf{L}[\tau]=\llbracket \mathbf{L}[\tau], \boldsymbol{\Xi}[\tau] \rrbracket$

- Consider path-orclered exp. obtained from ミ

$$
\mathbf{G}=\overrightarrow{\mathcal{P}} \exp \left(-\int_{0}^{1} d \tau \boldsymbol{\Xi}[\tau]\right) \quad \mathbf{G}^{\dagger}[\tau]=\overleftarrow{\mathcal{P}} \exp \left(\int_{0}^{\tau} d \tau^{\prime} \boldsymbol{\Xi}_{\left[\tau^{\prime}\right]}\right)
$$

- 三 is $B P P Z$ odd and $B P Z$ conjugate reverse $\overrightarrow{\mathcal{P}}$ to $\overleftarrow{\mathcal{P}}$

$$
\rightarrow\left[\mathrm{G}^{\dagger}: \mathrm{BIPZ} \text { conjugate }\right]=\left[\mathrm{G}^{-1}: \text { Inverse }\right]!!
$$

- Since $L(O)=Q$, a solution is given by Similarity Transf.

$$
\mathbf{L}=G Q G^{-1}
$$

Large space WZW-like action (NS closed)

Recall the shifted bosonic string products:

$$
\begin{aligned}
Q_{A} B & =Q B+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{n!} \overbrace{A, \ldots, A}^{n}, B] \\
{[B, C]_{A} } & =[B, C]+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{n!}[\overbrace{A, \ldots, A}^{n}, B, C]
\end{aligned}
$$

- (formal) pure-gauge \mathcal{G} is clefined by $\partial_{\tau} \mathcal{G}[\tau]=Q_{\mathcal{G}[\tau]} V$
- Ψ_{η}, Ψ_{t} are defined by

$$
\partial_{\tau} \Psi_{\eta}[\tau]=\eta V+\kappa\left[V, \Psi_{\eta}[\tau]\right]_{\mathcal{G}[\tau]}
$$

$$
\partial_{\tau} \Psi_{\partial_{t}}[\tau]=\partial_{t} V+\kappa\left[V, \Psi_{\partial_{t}}[\tau]\right]_{\mathcal{G}[\tau]}
$$

$$
S=\int_{0}^{1} d t\left\langle\Psi_{t}, Q_{\mathcal{G}} \Psi_{\eta}\right\rangle
$$

The g-shifted BRRST op. Qq (NS closed)

- Note that

$$
\begin{aligned}
\frac{\partial}{\partial \tau} Q_{\mathcal{G}[\tau]} A & =\left[Q_{\mathcal{G}[\tau]} V, A\right]_{\mathcal{G}[\tau]} \\
& =\left[V, Q_{\mathcal{G}[\tau]} A\right]_{\mathcal{G}[\tau]}-Q_{\mathcal{G}[\tau]}[V, A]_{\mathcal{G}[\tau]}
\end{aligned}
$$

- Using $\widehat{V}(\tau):=[V,] g_{(\tau)}$, Qg satisfies

$$
\partial \tau \mathrm{Qq}_{(\tau)}=-\left[\mathrm{Qq}_{(\tau)}, \widehat{v}(\tau)\right]
$$

Commutator

Shifted BRRST = Similarity Transformation of Q

- Q_{q} is also given by Similarity Transformation

$$
Q_{\mathcal{G}}=\mathcal{E}_{V} Q \mathcal{E}_{V}{ }^{-1}
$$

Where E_{V} and $\mathrm{E}_{V^{-1}}$ are given by path-ordered exponentials

$$
\begin{aligned}
\mathcal{E}_{V}:= & \overrightarrow{\mathcal{P}}
\end{aligned} e^{\int d \kappa \hat{v}(\kappa)} \quad \mathcal{E}_{V}^{-1}:=\overleftarrow{\mathcal{P}} e^{-\int d \kappa \hat{v}(\kappa)}
$$

- The following choice gives our WZW-like actions

$$
\hat{v}(\kappa) \equiv[V, \quad]_{\mathcal{G}}
$$

Similarity Transf. F connecting L and Q_{q}

- Since $L=G Q G^{\dagger}$ and $Q_{q}=E_{V} Q E_{V}{ }^{\dagger}$,

$$
F=E_{V} G^{\dagger} \text { satisfies } F L F^{\dagger}=Q_{q}!
$$

3. Equivalence of on-shell conclitions

- Similarity transf. gives L_{∞}-morphism
- We clerive the corresponclence of fields preserving the on-shell conclition.

Similarity Transf. connecting L and Q_{q}

Similarity Transf. is generated by $\mathrm{F}:=\mathcal{E}_{V} \mathbf{G}^{\dagger}$

\rightarrow Invertible map !!

$$
\begin{aligned}
\mathbf{F} \mathbf{L F}^{-1} & =\left(\mathcal{E}_{V} \mathbf{G}^{\dagger}\right) \mathbf{G} \mathbf{Q} \mathbf{G}^{\dagger} \underline{\left(\mathbf{G} \mathcal{E}_{V}{ }^{\dagger}\right)} \\
& =\underline{\mathcal{E}_{V} Q \mathcal{E}_{V}^{\dagger}} \\
& =Q_{\mathcal{G}} .
\end{aligned}
$$

- L and Q_{q} are connected by $\mathrm{F}: \mathrm{FL}=Q_{\mathcal{G}} \mathrm{F}$

$$
\rightarrow F \text { is a } L_{\infty} \text {-morphism }
$$

Equivalence of two on-shell conditions

$$
\begin{array}{c||c}
\text { Small-space EOM } & \text { Large-space EOM } \\
\mathbf{L}\left(e^{\wedge \Phi}\right)=0 & Q_{\mathcal{G}} \Psi_{\eta}=0
\end{array}
$$

The correspondence (or Field redefinition)

$$
\boldsymbol{\pi}\left(\mathrm{F}\left(e^{\wedge \Phi}\right)\right)=\Psi_{\eta}
$$

provides the equivalence of two EOMs :

$$
\begin{aligned}
\boldsymbol{\pi}\left(\mathrm{F} \mathbf{L}\left(e^{\wedge \Phi}\right)\right) & =\boldsymbol{\pi}\left(Q_{\mathcal{G}} \mathrm{F}\left(e^{\wedge \Phi}\right)\right) \\
& =Q_{\mathcal{G}} \Psi_{\eta}
\end{aligned}
$$

The corresponclence of fields

- Using E_{V}, associated string fields can be represent as

$$
\Psi_{\mathbb{X}}=\mathcal{E}_{V} \int_{0}^{1} d \tau \mathcal{E}_{V}^{\dagger}[\tau](\mathbb{X} V)
$$

- Therefore, $\boldsymbol{\pi}\left(\mathrm{F}\left(e^{\wedge \Phi}\right)\right)=\Psi_{\eta}$ is equivalent to

$$
\boldsymbol{\pi}\left(\mathbf{G}^{\dagger}\left(e^{\wedge \Phi}\right)\right)=\int_{0}^{1} d \tau \mathcal{E}_{V}^{\dagger}[\tau](\eta V)
$$

How about Actions?

L_{∞}-type Action $S_{\mathrm{EKS}}=\frac{1}{2}\langle\xi \Phi, Q \Phi\rangle+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{(n+2)!}\langle\xi \Phi, L_{n+1}(\overbrace{\Phi, \ldots, \Phi}^{n+1})\rangle$

$$
=\int_{0}^{1} d t \frac{\partial}{\partial t}(\sum_{n=0}^{\infty} \frac{\kappa^{n}}{(n+2)!}\langle\xi \Phi(t), L_{n+1}(\overbrace{\Phi(t), \ldots, \Phi(t)}^{n+1})\rangle)
$$

$$
=\int_{0}^{1} d t\left\langle\xi \partial_{t} \Phi(t), \mathcal{F}_{\Phi(t)}\right\rangle
$$

E.O.M.

Thus, the action becomes

$$
\mathcal{F}_{\Phi(t)}:=Q \Phi(t)+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{(n+1)!} L_{n+1}(\overbrace{\Phi(t), \ldots, \Phi(t)}^{n+1})
$$

$$
\begin{aligned}
S_{\mathrm{EKS}} & =\int_{0}^{1} d t\left\langle\boldsymbol{\pi}\left(\boldsymbol{\xi}_{t} e^{\wedge \Phi(t)}\right), \boldsymbol{\pi}\left(\mathbf{L}\left(e^{\wedge \Phi(t)}\right)\right)\right\rangle \\
& =\int_{0}^{1} d t\left\langle\boldsymbol{\pi}\left(\boldsymbol{\xi}_{t} e^{\wedge \Phi(t)}\right), \boldsymbol{\pi}\left(\mathbf{G} \mathbf{Q} \mathbf{G}^{-1}\left(e^{\wedge \Phi(t)}\right)\right)\right\rangle \\
& =\int_{0}^{1} d t\left\langle\boldsymbol{\pi}\left(\mathbf{G}^{-1}\left(\boldsymbol{\xi}_{t} e^{\wedge \Phi(t)}\right)\right), Q \boldsymbol{\pi}\left(\mathbf{G}^{-1}\left(e^{\wedge \Phi(t)}\right)\right)\right\rangle
\end{aligned}
$$

How about Actions ?

WZW-like Action $S_{\mathrm{WZW}}=\int_{0}^{1} d t\left\langle\Psi_{\partial_{t}}(t), Q_{\mathcal{G}(t)} \Psi_{\eta}(t)\right\rangle$

$$
=\int_{0}^{1} d t\left\langle\Psi_{\partial_{t}}(t),\left(\mathcal{E}_{V(t)} Q \mathcal{E}_{V(t)^{\dagger}}^{\dagger}\right) \Psi_{\eta}(t)\right\rangle
$$

Since $\Psi_{\mathbb{X}}=\mathcal{E}_{V} \int_{0}^{1} d \tau \mathcal{E}_{V^{\dagger}[\tau]}(\mathbb{X} V)$, the action is given by

$$
\begin{array}{cc}
S_{\mathrm{WZW}}=\int_{0}^{1} d t\left\langle\underline{\int_{0}^{1} d \tau \mathcal{E}_{V(t)^{\dagger}[\tau]\left(\partial_{t} V(t)\right)}}, Q\right. & Q \int_{0}^{1} d \tau \mathcal{E}_{\left.V(t)^{\dagger}[\tau](\eta V(t))\right\rangle} \\
\int_{0}^{1} d \tau \mathcal{E}_{V(t)}^{\dagger}[\tau](X V(t)) \equiv \pi\left(\mathbf{G}^{-1}\left(\boldsymbol{\xi}_{X} e^{\wedge \Phi(t)}\right)\right) & \text { The corresponcle } \\
\left(\mathbf{X}=\boldsymbol{\partial}_{\mathbf{t}}, \boldsymbol{\delta}\right) & \text { preserving E.O. } \\
S_{\mathrm{EKS}}=\int_{0}^{1} d t\left\langle\boldsymbol{\pi}\left(\mathbf{G}^{-1}\left(\boldsymbol{\xi}_{t} e^{\wedge \Phi(t)}\right)\right), Q \boldsymbol{\pi}\left(\mathbf{G}^{-1}\left(e^{\wedge \Phi(t)}\right)\right)\right\rangle
\end{array}
$$

To preserve the action, ϕ \& V must satisfy . . .

The corresponclence (or Field reclefinition)

$$
\begin{aligned}
\boldsymbol{\pi} \boldsymbol{G}^{-1}\left(e^{\wedge \Phi(t)}\right) & \equiv \int_{0}^{1} d \tau \mathcal{E}_{V(t)^{\dagger}[\tau]}(\eta V(t)) \\
\boldsymbol{\pi} \boldsymbol{G}^{-1}\left(\boldsymbol{\xi}_{X} e^{\wedge \Phi(t)}\right) & \equiv \int_{0}^{1} d \tau \mathcal{E}_{V(t)^{\dagger}[\tau]}(X V(t))
\end{aligned}
$$

provicles the equivalence of two Actions:
L_{∞}-type Action
WZW-like Action

$$
\mathbf{f}^{-1} \mathbf{f}=1
$$

$S=\int_{0}^{1} d t\left\langle\xi \Phi, \mathbf{L}\left(e^{\wedge t \Phi}\right)\right\rangle$
$S=\int_{0}^{1} d t\left\langle\Psi_{t}, Q_{\mathcal{G}} \Psi_{\eta}\right\rangle$
\rightarrow It is nontrivial whether a solution exists. But. . . (We will cliscuss later. . .)

At least, perturbatively, we can seek a solution

We set $V=\Sigma_{n} \kappa^{n} V^{(n)}$ and impose $\xi V=0$.

In the actions, we solve

$$
\pi G^{-1}\left(e^{\wedge \Phi(t)}\right) \equiv \int_{0}^{1} d \tau \mathcal{E}_{V(t)}[\tau](\eta V(t))
$$

Then, we obtain the partial gauge fixing condition

$$
\begin{aligned}
V=\xi \Phi+ & \frac{\kappa}{3!} \xi[\xi \Phi, \Phi]+\frac{\kappa^{2}}{4!}(\xi[\xi \Phi,(Q \xi+X) \Phi, \Phi]+\xi[\xi[\Phi, \Phi], \xi \Phi] \\
& \left.+\frac{2}{3} \xi[\xi[\xi \Phi, \Phi], \Phi]+\frac{2}{3}[\xi[\xi \Phi, \Phi], \xi \Phi]\right)+\ldots
\end{aligned}
$$

Summary \& Discussion NS \& NS-NS sector of SFT

- String proclucts of two formulations are given by Similarity Transformations of Q.

$$
\rightarrow F L=Q_{q} F
$$

- F preserves the space of solutions of E.O.M.
\rightarrow This F incluces the field redefinition :

$$
\boldsymbol{\pi}\left(\mathbf{G}^{\dagger}\left(e^{\wedge \Phi}\right)\right)=\int_{0}^{1} d \tau \mathcal{E}_{V}^{\dagger}[\tau](\eta V)
$$

Equivalence of two on-shell conditions

Summary \& Discussion NS \& NS-INS sector of SFT

- Both actions can be represent by free-like forms:

$$
\begin{aligned}
& S_{\mathrm{EKS}}=\int_{0}^{1} d t\left\langle\boldsymbol{\pi}\left(\mathbf{G}^{-1}\left(\boldsymbol{\xi}_{t} e^{\wedge \Phi(t)}\right)\right), Q \underline{\pi\left(\mathbf{G}^{-1}\left(e^{\wedge \Phi(t)}\right)\right)}\right. \\
& \quad S_{\mathrm{WZW}}=\int_{0}^{1} d t\left\langle\int_{0}^{1} d \tau \underline{\left.\mathcal{E}_{V(t)}^{\dagger}[\tau]\left(\partial_{t} V(t)\right), Q \int_{0}^{1} d \tau \mathcal{E}_{V(t)}^{\dagger}[\tau](\eta V(t))\right\rangle}\right.
\end{aligned}
$$

- To obtain the equivalence of two actions, we have to fincl a solution of $\pi G^{-1}\left(e^{\wedge \Phi(t)}\right) \equiv \int_{0}^{1} d \tau \mathcal{E}_{V(t)}^{\dagger}[\tau](\eta V(t))$

$$
\pi G^{-1}\left(\xi_{X} e^{\wedge \Phi(t)}\right) \equiv \int_{0}^{1} d \tau \mathcal{E}_{V(t)}{ }^{\dagger}[\tau](X V(t))
$$

\rightarrow Then, partial gauge fixing conclitions will appear.

Discussion

- In Berkovits theory, WZW-like action is given

$$
\begin{gathered}
S=\int_{0}^{1} d t\left\langle A_{\partial_{t}}(t), Q_{\mathcal{G}(t)} A_{\eta}(t)\right\rangle \quad Q_{\mathcal{G}(t)}=Q+\left[e^{-\phi}\left(Q e^{\Phi}\right),\right] \\
\text { By } \mathbf{Z}_{2} \text {-reversing : }(\mathbf{Q}, \boldsymbol{\eta}, \boldsymbol{\phi}) \rightarrow(\eta, \mathbf{Q},-\boldsymbol{\phi}) \\
S=\int_{0}^{1} d t\left\langle\tilde{A}_{\partial_{t}}(t), Q \tilde{A}_{\eta}(t)\right\rangle
\end{gathered}
$$

- Then, we can obtain a clirect corresponclences of

$$
\begin{aligned}
& Z_{2} \text {-reversed } A_{\eta}, A_{\partial} \text { and reclefined fields } \\
& A_{\eta}=\pi G^{\dagger}[1 /(1-\phi)], \quad A_{\partial}=\pi G^{\dagger} \xi_{t}[1 /(1-\phi)] .
\end{aligned}
$$

Discussion

- And we can clirectly check that

$$
A_{\eta}=\pi G^{\dagger}[1 /(1-\phi)] \quad \& \quad A_{\partial}=\pi G^{\dagger} \xi_{t}[1 /(1-\phi)]
$$

satisfy the relation : $\quad \eta A_{\partial_{t}}+\partial_{t} A_{\eta}+\left[A_{\eta}, A_{\partial_{t}}\right]=0$.

- Then, without checking the defining eq. of asso. fields

$$
\partial_{\tau} A_{\eta}(\tau)=\eta \Phi+\left[\Phi, A_{\eta}(\tau)\right]
$$

we obtain the equivalence of actions.

Discussion

When we can't use Z_{2}-revesing, to obtain the equivalence,
A) Check $\partial_{\tau} A_{\eta}(\tau)=\eta \Phi+\left[\Phi, A_{\eta}(\tau)\right]$ in terms of reclefined field.
B) Check l.h.s. \& r.h.s. have the same algebraic properties. (It may not be WZW-relations)

$$
\begin{aligned}
\boldsymbol{\pi} \boldsymbol{G}^{-1}\left(e^{\wedge \Phi(t)}\right) & \equiv \int_{0}^{1} d \tau \mathcal{E}_{V(t)^{\dagger}[\tau]}(\eta V(t)) \\
\boldsymbol{\pi} \boldsymbol{G}^{-1}\left(\boldsymbol{\xi}_{X} e^{\wedge \Phi(t)}\right) & \equiv \int_{0}^{1} d \tau \mathcal{E}_{V(t)^{\dagger}[\tau](X V(t))}
\end{aligned}
$$

In the action, it is OK. But, as a state, it is not clear.

Thank you.

Appenclix : Mathematics

Construction of a cyclic A_{∞} / L_{∞}-morphism

- Let ($((H), L, \omega)$ and ($\left.S(H)^{\prime}, L^{\prime}, \omega^{\prime}\right)$ be cyclic L_{∞}-algebras. L_{∞}-morphism : A morphism of coalgebra $f: S(H) \rightarrow S(H)^{\prime}$

$$
\text { satisfying } f L=L^{\prime} f \text {. }
$$

Cyclic L_{∞}-morphism : L_{∞}-morphism f satisfying

$$
\begin{aligned}
& \omega(A, B)=\omega^{\prime}\left(f_{1}(A), f_{1}(B)\right) \text { andl } \\
& \Sigma \omega^{\prime}\left(f_{j}\left(A_{1}, A_{j}\right), f_{k}\left(B_{1}, B_{k}\right)\right)=0 .
\end{aligned}
$$

$\rightarrow \quad \mathrm{f}$ preserve the Equation of Motion !!

Consicler two EOMs

$$
\begin{gathered}
A_{\infty} / L_{\infty} \text {-type EOM } \\
\left(Q+L_{2}+L_{3}+\ldots\right) e^{\wedge \phi}=0 \\
L \\
L e^{\wedge \phi}=0 \\
-L_{\infty} \text {-algebra - } \\
\left(Q+L_{2}+L_{3}+\cdots\right)^{2}=0
\end{gathered}
$$

WZW-type EOM

$$
Q_{q} \psi_{\eta}=0
$$

- Trivial L_{∞}-algebra -

$$
\left(Q_{q}+O+\cdots\right)^{2}=0
$$

Find a isomorphism satisfying

$$
f L=Q_{q} f .
$$

