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Introduction.

Witten’s Cubic Theory
Witten 86’

* Thteraction term includes local insertion of IPCO.

— divergent contact terms, broken gauge inv.

« To remedy these, various approaches are proposed.

In my talk, two successive formulations are picked up.
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O. Introduction

1. Two formulations : L, Qg

2. Similarity Transformations

3. Egquivalence of on-shell conditions




1. A short review of Two Formulations

- Resolving singularities -

We start with Witten's cubic superstring field theory.




Picture # anomaly
There exists ghost & picture # anomaly !!

1 1
Witten's Action: S = 5(\1}, QU) + 5(\1!, X (i) (VW)

X(i) : Picture Changing Operator

:
D

v

(T, X (1) (U + U))




Two formulations

= OPE of PCOs X (7) is singular. . .

=) Contact terms become DIVERGENT !!

* Broken gauge invariance. . .

¥

Two IFormulations for Superstring iField Theory

(A) WZW-like Formulation  ( the large Hilbert space )

(B) A, /L,-type Formulation ( the small Hilbert space )




(A) WZW-like Formulation

( the large Hilbert space )

& H

ghost picture

L Changing the # of string fields. 1




Large-space string fields

In the “large” Hilbert space. .. ( n&p-systerm )

Vertex Op. String Field  (#_, 1#,)
Large: V(2) =&(2)ece ™V, — O (0]0)

There exists conformal weight 1 current : 7 (2)

— Zero mode 7 = 71, also becomes a derivation !!

Note that “Hof Q"=(110) and “Hofn'=(11-1)




The free Action ( NS open )

4 )
Free Action EOM Gauge transft.
1
S = 5(77(1),@(1)} n® =0 00 = QA + nf)
- /
— Two generators of gauge transf. : Q & 7
* Interacting terms ... ??

Note that “Hof ¢  =(O10) !

—  We can make a function of ¢

without ‘picture-changing problems’.




Berkovits' open Superstring Field Theory

Berkovits WZW-"type” Action

1 1 [t
@ §< CI)QG —<I> <I>> 4+ 5/ dt<€_tq)(9t6tq), [[e—t¢Qet¢7€—t¢net®]]>
0

EOM ; 77(6_(1)@6@) =0
Gauge transf.: e ¥6e? = QgA + nQ
Qg = Q+ [e7%(Qe®), ]
T

A ( formal ) pure-gauge g is the key.




WZ\W-like form

* The action takes the WZW-like form

S = [ dtAa,(t), Qo 4y(0)
0

—  The g-shifted BRST operator : Qg =@ + e™(Qe®), ]
Associated fields :  0- A4, (1) = n® + [®, A, (7)]
We can similarly construct the action for closed superstrings.

= In the Berkovits open NS theory, we can take

Z,-reversing : (Q, n, ¢) = (0, Q, -¢)

S = [ dtda(0), QAy0)




(B) A /L -type Formulation

( the small Hilbert space )

LAcchinq the regulators satisfying AL -relations.




Recall the Witten's Cubic Action

S — %@p,@@ + %(\If,X(i)(\IJ  0))

X (7) : Picture-Changing Operator ( Singular OPE !!)

@
D

v

(0, X (i) (¥ + 0))

This Product is Associative !!

But contact terms become DIVERGENT !!




EKS's A -type NS open theory

Using line integral X = / (2)X(z), we can define

27m
a new 2Z-string procluct M, :

My (Wy, Uy) = %(X(\Ifl K Us) + (XU) % Uy + U (X\IJQ))

W

(U, Ma(W?)) = v

X
')

M. I1s non-associative !!

Mo (Ms(A, B), C) # My(A, My (B, C))




Higher products satisfying A, & n-derivation

Add appropriate ‘higher proclucts’ as ‘the requlator’!!
1 1 o 1 s 1 .
§= (0, QU) + (W, My(W?)) + (W, My(W)) + = (0, Ma(Wh)) + ...

—  Satisfying A/L_-relations :

(Q+My+Ms+...)2=0

—  Satistying n-derivation relations :

nM(d...¢)=ZM(d...7d...¢)

= Constructing these proclucts, one can obtain an action.




How to construct M={M_} _.® ?

* Let us introduce a generating function of the proclucts.

M(zx)=Z "M

N+ 1

* The NS string products are given by the diff. eq.

9. M (z) =[ M(z) , u(z) ] o

BPZ odd }

ul(@) = - p(z)

where i (t) = Z 7" w_,; is the EKS’s “GAUGE"" PRODUCTS.




So... There exist Two Formulations

basecl on the large Hilbert space

WZW-like actions

based on the small Hilbert space

A JL.-type actions




Does they relate to each other. .. ?

basecl on the large Hilbert space

WZW-like actions

based on the small Hilbert space

A JL.-type actions




We will see that

basecl on the large Hilbert space

WZW-like actions

N

Embedcding I l lPartial Gauge I=ixing

based on the small Hilbert space

A JL.-type actions




(Ex.) NS closed string field theory

Large-space NS string field

V: ghostH# =1, picture #=0

Small-space NS string field

®: ghost #=2, picture #=-1




For example ... Free actions

Large-space Action ( NS closed )

1

So = §<77V, QV) " m-gauge sym.

= Q-gauge sym.

Small-space Action ( NS closed )

1 1 . Q- .
52 =562, QP) = (P, Q®P)smal +aauge sym




For example . .. Free actions

Large-space Action ( NS closed ) - Q-gauge sym.
1

S9 = §<77V7 QV) . M

Partial Gauge Fixing

V =¢d

Small-space Action ( NS closed )

1 1 . Q- .
52 =562, QP) = (P, Q®P)smal +aauge sym




NS closed 3-point Interaction

Large-space Action ( NS closed )

S = SV, QV) + =V, [QV, V)

Small-space Action ( NS closed )

5= S (€2,QU) + - (60, (X2, )

= Q-gauge sym.

" 7M-gauge sym.

* Q-gauge sym.




NS closed 3-point Interaction

- i \
Large-space Action ( NS closed ) - Q-gauge sym.
1

S = 5 (V.QV) + 5 (V. [QV. V) © 7rgauge-sym.

[Partial Gauge Fixing

V =t

Small-space Action ( NS closed )

1 . -
§ = 3£, QU) + 1 (€0, [X2, ) crauge sy




NS closed 3-point Interaction

Large-space Action ( NS closed ) - Q-gauge sym

1
S = 5 (V.QV) + 5 (V. [QV. V) © 7rgauge-sym.

Partial Gauge Fixing ( up to O(¢3) )

V =0+ 66D, 9] + O()

Small-space Action ( NS closed )

1 - Q-
S = 5(60,QU) + 2 (¢d, [, ) craauge sym.




NS closed 4-point Interaction

Large-space NS Action * Q-gauge sym.

2%

= %mv, QV) + 2V, [QV, V1) + S0V, [QV, QV, V] + [QV, V1, V1) - sym.

Partial Gauge Fixing ( up to O(¢“) )

V= €D+ 5£[6@, O]
2

+ = (€[, (Q¢ + x)0, @] +¢[¢[@, 2], 2]

+ %g[ﬁ[@, P), @] + §[€[€<1>» 2], 2] )

Small-space NS Action

2
5= (E8,Q0) + = (€0,[XD,B]) + " (cBLy(2,2,8)) " Q-gauge sym.
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How to obtain a closed form expression ?




2. Similarity Transformations

* Path-orcdered exponential : G, E,,

- L=GQG' & Qg=E,QE,




Path-ordered exp. A[z] of operators O[z]

We consider a path-orcdered exponential :

s T
Alr] = Pexp ( / dT/O[T/]>
0
:]l—l—(/o d7'1071>—|—2(/ d7'107'1> </0 dTQO[Tg])(/O dTnO[Tn]>

Alz] is the solution of diff. eq. ( A[O]=1)
0 Alr] = O[r] - Alr]

Reversing the direction & sign, we obtain its inverse :

—1 _ py . " / p
A" 7] = Pexp dr O[]
0

_ _/ dﬁOT[nHZ(—)”/ dn---/ 1O - - - OOl
0 n=2 0 0




Path-orcdered exp. gives a solution.

A = 7_7>exp ( / dr’ O[T']) satisfies 0. Ajx] = O[] - Alr] and
0

A~ = Pexp (_/ dT’O[T’Q satisfies 9, A 1= -A"' - O .
0

Hence, when the operator L (z) satisfies
d.L()=[0(@),L(x)] with L(O)=Q,

a solution is given by L (z)=A (z) Q A'(z) !

— Application : NS string products in the small-space.




* Let us introduce a generating function of the proclucts.

Recall L _-type and WZW-like actions




Small-space L -type Action ( NS closed )

Suc= | dt (m(€, " *O), (L))
0

= L = Z L, : Generating fnc. of the NS products

1 1
=Id+ @+ FeAP+ 3,<I>/\(I)/\<I>+ : Group-like element

— NS string proclucts are given by the diff. eq.
Cychcnty

0, Lir] = [Lir), 2] sz odd N }

H P—
o L]
H T e

]

where E[r g e is EKS gauge products.




NS products = Similarity Transformation of Q

Solution of the diff. eq. O, Lir |[L = ]]

* Considler path-orclered exp. obtained from =

_ 1 — T ,
G =Pexp (—/ dTE[T]) GT[T] = Pexp (/ dr E[T'])
0 0

—
* = is BPZ odd and BIPZ conjugate reverse D to P

— [ G':BPZ conjugate ] = [ G : Inverse ] !!

* Since L(O) = Q, a solution is given by Similarity Transft.

L=GQG!




Large space WZW-like action ( NS closed )

Recall the shifted bosonic string products:

QB = QB+Z’:L—T[A ..... A, B]
n=1

n
oo n

[B,C4 = [B,C] +Z%[A,...,A‘,B,C]

n=1

* (formal) pure-gauge G is defined by 9-G[r] = QgV

0V, 1] =nV + k[V, ¥, [T]]gI>
V,, V; are defined by ! it ligl]
0; Uy, 7] = OV + K[V, Uy, [7]lgim

1
S:/o dt (Us, Qg¥y)




The g-shifted BRST op. Qg (NS closed )

* Note that

9,
— A= A
7-QarA = [QgV, Algpry
— [‘/, QQ[T] A]Q[T] — QQ[T] [V, A]gm

= Using vV (x)=[V., lgy. Qg satisfies

ot QC](,‘) = - [ QC_I(t) ) /\\/ (T) ] .
T

Commutator




Shifted BRST = Similarity Transformation of Q

* Q, is dlso given by Similarity Transformation

Qs =Ev Q&

Where E,, and E,,”! are given by path-orderec exponentials
— N — R
y 1= Pel 00 gy o faits
— E,, : Invertible map !!

* The following choice gives our WZW-like actions




Similarity Transf. F connecting L and Qg

* Since L=GQG' and Q, =By Q B,

F =E, G satisfies FLF'=Qqg !




3. Equivalence of on-shell conditions

= Similarity transf. gives L_-morphism

= We derive the correspondence of fields

preserving the on-shell condlition.




Similarity Transf. connecting L and Qg

Similarity Transf. is generated by F := &y, G'

—  Invertible map !!

FLF ! = (& GHGQGT (Gé&
=&y Q&
= Qg.

* Land Q, are connected by F: FL = (QgF

— |- is a L-morphism




Equivalence of two on-shell conditions

Small-space EOM Large-space EOM

L(e/\q)) =0 Qg V¥, =0

The correspondence ( or Field redefinition )

W(F(e/@)) = W,

provides the equivalence of two EOMs :

7T(F L(e/\q))) = W(Qg F(e/@))
= Qg ¥,.




The corresponcdence of fields

* Using E,,, associated string fields can be represent as

1
Vg = EV/ dt EVT[T] (XV)
0

* Therefore, =(F(e"?)) =¥, is equivalent to

(G (e"?)) = /0 dr &' (nV)

function of ¢, & function of nV, V }




How about Actions ?

L.-type Action Sy == (gcb QD) +Z

n

K

[d‘)(t) tcl)j7 dt_ n +2)

dt 587; fq)(t)>

(0. ¢] I{/n -
S . Faor) = QP(t) + ———— L1 (P(t
Thus, the action becomes o0 1= QO + D gy Bt ()

Sﬁﬁ::L/qcu<ﬂ«steA¢@h,w(I4eA¢@b)>
0

(ED(t), L1 (D(t), ..

:/ﬂMMawwmwmQG1WW%»
0

1
= [ drim(a el ). Qu(G e )




How about Actions ?
1
WZW-like Action Sy / dt (Va,(t), Qg Yn(t))
0
|

dt (Ua, (1), (Evip QEva)) Vn(t))

1
Since ¥x=¢v /O dr &' (XV) , the action is given by

S / dt { / a7 &m0V (1), Q / a7 Ev il (nV (1))

1
/O dr Ev (I (XV (1)) = (G (Ex D)) The correspondence
(X=9,,0) preserving E.O.M.
£
1
St :/ dt ((G~1(&,e W) t) /\@(t
0




To preserve the action, ¢ & V must satisfy . ..

The correspondence ( or Field redefinition )

1
WG_l(e/@(t)) E/O dTgV(t)T[T] (nV(t))

1
WG_l(EXe/@(t)) E/O dTgV(t)T[T](XV(t))

provides the eguivalence of two Actions :

L.-type Action WZIW-like Action
f1f=1

1 B 1
S = / dt (€@, L(eM?)) () S = / dt (U, Qg ¥y)
0 0

—> It is nontrivial whether a solution exists. But. . .

( We will discuss later. . . )



At least, perturbatively, we can seek a solution

Weset V=X k"VM andimpose £V =0.

1
In the actions, we solve | 7 G~ ! (W) = / dr Ey @l (nV ()
0

Then, we obtain the partial gauge fixing condition

/{2

V= 60+ 66, @] + 5 (¢[ee, (Q¢ + X)@, @] + €[]0, @], €0

+oefelen, @], @] + - [clew,a),62]) 4.




Summary & Discussion NS & NS-NS sector of SFT

= String proclucts of two formulations are given by

Similarity Transformations of Q.
- FL =QF
* |- preserves the space of solutions of E.QO.M.

—> This = incluces the field redefinition :
1
7 (GT(e"?)) = / dr &y (nV)
0

mm) Equivalence of two on-shell conditions




Summary & Discussion NS & NS-NS sector of SFT

* [Both actions can be represent by free-like forms:

Sus= [ dtim(G g 0), Qm(G (M)
0 —

1 1
SWZW:/O dt</0 dT&/()[T] ﬁt Q/ dTgV nV( )>>

* To obtain the equivalence of two actions, we have to

1
find a solution of TG (W) = / dr Ev i (nV (t))
0

1
G 1 (S'Xe/\q)(t)) E/O dTgV(t)T[T](XV(t))

— Then, partial gauge fixing conditions will appear.




Discussion
* In Berkovits theory, WZW-like action is given
! o
§= [ da0 (). Qe Ar) Qo =Q+[e7(Qe"). |

By Z,-reversing : (Qn d)—= (n Q,-9),

~

5= /0 0t (Ao, (1), Q A, (1))

* Then, we can obtain a direct corresponclences of

ZL,reversed A, A; and redefined fieldls

A,=n GT[1/(1-9) ], A;=nG & [1/(1-9)] .




Discussion

* And we can directly check that
A =r G [1[(1-¢)] & A;=nGT & [1/(1-9)]

satisfy the relation: nA4s, + 014, + A, Ap,] =0 .

* Then, without checking the defining eq. of asso. fields
Or Ap(1) = n® + [®, Ay (7)]

we obtain the equivalence of actions.




Discussion

9 . N .
When we can 't use Z,-revesing, to obtain the equivalence,

A) Check 0;4,(1)=n®+[®,A4,(7)] in terms of redefined field.

3) Check lhs. & r.hs. have the same dlgebraic properties.
( It may not be WZW-relations )

1
TG (e/\q)(t)) E/O dTg\/(t)T[T] (nV (1))

1
WG_l(EXe/@(t)) E/O dTgV(t)T[T](XV(t))

In the action, it is OK. [But, as a state, it is not clear.




Thank you.




Appendix : Mathematics




Construction of a cyclic A /L ,-morphism
* Let (S(H), L, ) and (S(H)', L', @") be cyclic L_-algebras.
L -morphism : A morphism of coalgebra f : S(H) — S(H)’
satisfying fL=L"f .
Cyclic L-morphism : L -morphism f satisfying

w(A,B)=w"(Ff (A),F (B)) and

Zw’(fj(A,,,Aj),fk(B,,,Bk))=O.

[ —  f preserve the Equation of Motion !! }




Consider two EOMs

A/l -type EOM WZW-type EOM
(Q+l+Ly+...)er® =0 Q, b, = O
L efqb =0
- L-algebra - - Trivial L -algebra -
Q+L,+Ly+++)2=0 (Qq+0+~~~)2=0

=)  Find a isomorphism satisfying L = Q, f




