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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)
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5
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(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)
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S =
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ηΦ = φ (3.35)
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1 Part 1 (15 minutes)

1.1 What is string field theory?

String field

Ψ = T (x)c−1|0⟩+Aµ(x)a
µ
−1c−1|0⟩+ . . . (1.1)

BPZ inner product vanishes except for 3

String Field Ψ and BRST operator Q has ghost number 1

V(z) = c(z)ek·X

V(z) = c(z)δ(γ)Vm

(1|− 1)

V(z) = ξ(z)ce−φVm

(0|0)

1.2 Introduction to Today’s talk

SFT map: Since 1985, 1993, 1995, 2004

N = 0 theories はよく分かってる。N = 1 small-space theories は単純には作れない？：singular

or Not gauge invariant。N = 1 large-space theories ならば作れる！
SFT map: 2014 March

N = 0 theoriesから N = 1, 2 small-space theoriesが作れる：正則化のためには無限個の vertices

が必要だった！しかも classical BV formalism にのる：仕組みは N = 0 と完全に等価。
SFT map: Today

N = 2 large-space theories も作れる：N = 1 small-space theories から出発すればよい。

今回の talk の目的は以下を説明する事。N = 0 theories から N = 2 large-space theories を
単純な方法で構成するのは難しかった。しかし、N = 1 small-space theories から単純な方法で
N = 2 large-space theories が構成できる！そのように作った N = 2 theories は、[N = 0 to 2] と
いう試みの未整理な点を自然にカバーするようなものとなっている。

Plan of Today’s talk:

1) Review of N = 0 SFT and recent developments

2) WZW-like formulation

3) NS-NS action
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2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.34)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.35)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.36)

Small and Large

ηΦ = φ (3.37)

EOM

QηΦ = 0 (3.38)

Gauge invariance

δΦ = QΛ+ ηΩ (3.39)

δΦ = QGΛ+ ηΩ (3.40)

NS open SFT

S =
1

2
⟨e−ΦQeΦ, e−ΦηeΦ⟩+ 1

2

∫ 1

0
dt⟨e−tΦ∂te

tΦ,
[[
e−tΦQetΦ, e−tΦηetΦ

]]
⟩ (3.41)

NS string field Φ has ghost and picture number (0|0). BPZ inner product ⟨A,B⟩ vanishes except
for (2|− 1).

EOM

η
(
e−ΦQeΦ

)
= 0 (3.42)

Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.43)

G(tΦ) = e−tΦQetΦ (3.44)

QG + G ∗ G = 0 (3.45)

Λ←→ Φ (3.46)

e−ΛQeΛ (3.47)
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Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)
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= 0 (3.30)
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S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.46)

Computation

AX := e−tΦ
(
XetΦ

)
(3.47)

X = Q, η, δ, ∂t (3.48)

S =

∫ 1

0
⟨ηA∂t , AQ⟩ (3.49)

XAY − (−)XY Y AX +
[[
AX , AY

]]
= 0 (3.50)

ηAQ = −QGAη (3.51)

δS =

∫ 1

0
dt⟨ηδA∂t , AQ⟩+ ⟨ηA∂t , δAQ⟩ (3.52)

=

∫ 1

0
dt⟨η∂tAδ, AQ⟩+ ⟨A∂t , QGAδ⟩ (3.53)
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Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.25)

Small and Large

ηΦ = φ (3.26)

EOM
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Gauge invariance

δΦ = QGΛ+ ηΩ (3.28)

NS open SFT

S =
1

2
⟨e−ΦQeΦ, e−ΦηeΦ⟩+ 1

2

∫ 1

0
dt⟨e−tΦ∂te

tΦ,
[[
e−tΦQetΦ, e−tΦηetΦ

]]
⟩ (3.29)

NS string field Φ has ghost and picture number (0|0). BPZ inner product ⟨A,B⟩ vanishes except
for (2|− 1).

EOM

η
(
e−ΦQeΦ

)
= 0 (3.30)

4

Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.25)

Small and Large

ηΦ = φ (3.26)

EOM

QηΦ = 0 (3.27)

Gauge invariance

δΦ = QGΛ+ ηΩ (3.28)

NS open SFT

S =
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∫ 1

0
dt⟨e−tΦ∂te

tΦ,
[[
e−tΦQetΦ, e−tΦηetΦ
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EOM

η
(
e−ΦQeΦ

)
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4

Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.31)

G(tΦ) = e−tΦQetΦ (3.32)

QG + G ∗ G = 0 (3.33)

Λ←→ Φ (3.34)

e−ΛQeΛ (3.35)

S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.36)

NS closed SFT

S =

∫ 1

0
dt⟨ηV,G(tV )⟩ (3.37)

NS string field V has ghost and picture number (1|0). BPZ inner product vanishes except for

(4|− 1).

EOM

ηG(V ) = 0 (3.38)

3.2 NS-NS action

NS-NS string field Φ has ghost and picture number (0|0, 0). BPZ inner product vanishes

except for (3|− 1,−1).

S =

∫ 1

0
dt⟨η̄Ψ,GL(t)⟩ (3.39)

S = (3.40)

A formulae

QV = 0 (A.41)

⟨⟨ξξ̄V,V, XX̄V⟩⟩ (A.42)
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QηXΨ+
κ

2
[QηXΨ, ηXΨ] +O(κ2) (A.136)

S =
1

2
⟨η̄Ψ, QηΨ⟩+ κ

3!
⟨η̄Ψ,

[
XQηΨ, ηΨ

]
⟩+O(κ2) (A.137)

κ

3 · 3!⟨η̄Ψ, X
[
QηΨ, ηΨ

]
− 2

[
XQηΨ, ηΨ

]
+

[
QηΨ, XηΨ

]
⟩ (A.138)

S =
1

2
⟨η̄Ψ, QηΨ⟩+ κ

3!
⟨η̄Ψ,

[
QηΨ, ηΨ

]L⟩+O(κ2) (A.139)

δS = ⟨δΨ, η̄QηΨ⟩+ κ

2
⟨δΨ, η̄

[
QηΨ, ηΨ

]L
+

[
η̄QηΨ, ηΨ

]L⟩+O(κ2) (A.140)

δΨ = QΛ− κ
(
[QηΨ,Λ]− 1

2
[ηΨ, QΛ]

)
+O(κ2) (A.141)

QΛ+
κ

2

[
QΛ,Λ

]
+

κ2

3!

([
QΛ, QΛ,Λ

]
+

[
[QΛ,Λ],Λ

])
+ . . . (A.142)

QG := Q+
[[
e−Φ(QeΦ),

]]
(A.143)
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6 Conclusion

G†(Φ ∧ eτΦ) = EτV †(ηV ) (6.1)

S =

∫ 1

0
dt⟨A∂t(t), QG(t)Aη(t)⟩

QG(t) = Q+ [e−φ(QeΦ), ]

S =

∫ 1

0
dt⟨Ã∂t(t), Q Ãη(t)⟩ (6.2)

∂τAη(τ) = ηΦ+ [Φ, Aη(τ)] (6.3)

ηA∂t + ∂tAη + [Aη, A∂t ] = 0 (6.4)

A Berkovits’ theory

B Coalgebraic representation in large Hilbert space
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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2.2 Recent developments of small-space theory
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3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)
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3.1 Review of WZW-like formulation

Free action
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1
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⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)
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⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)
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1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)
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3.1 Review of WZW-like formulation

Free action
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1
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⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action
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1
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⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)
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1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)
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M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)
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3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)
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3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

	


Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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Similarly, since ηGL = 0 and ψX = ηΨX, we obtain

⟨Ψt, δ(η̄GL)⟩ = ⟨Ψt, η̄QGLψδ⟩ = −⟨QGL η̄Ψt,ψδ⟩ = −⟨ψδ, QGL η̄Ψt⟩

= −⟨Ψδ, η(QGL η̄Ψt)⟩ = ⟨Ψδ, η̄QGLψt⟩+ κ⟨ψδ, [ηGL,ψt]
L
GL

⟩

= ⟨Ψδ, ∂t(η̄GL)⟩ − κ⟨ηGL, [Ψδ,ψt]
L
GL

⟩. (9.30)

Hence, the variation δS of the WZW-like action S is given by

δS =

∫ 1

0
dt
(
⟨δΨt, η̄GL(t)⟩+ ⟨Ψt, δ(η̄GL(t))⟩

)

=

∫ 1

0
dt ∂t⟨Ψδ(t), η̄GL(t)⟩ = ⟨Ψδ, η̄GL⟩, (9.31)

which does not include t-parametrized fields. The equation of motion is, therefore, given by

(9.27) and it is independent of t-parametrization of fields.

Since η̄GL is a QGL-, η-, and η̄-exact state, we find that the action is invariant under the

following nonlinear21 gauge transformations

Ψδ = QGLΛ+ η̄Ω, (9.32)

where Λ and Ω are gauge parameters whose ghost-and-picture numbers are (−1|0, 0) and (−1|0, 1)
respectively. Note that Ψδ is an invertible function of δΨ, at least in the expansion in powers of

κ. For instance, an explicit expression for η̄-gauge transformation δΩΨ is given by

δΩΨ = η̄Ω+
κ

2
[ηΨ, η̄Ω]L +

κ2

3

[
η̄Ω, QηΨ, ηΨ

]L
+
κ2

12

[
[η̄Ω, ηΨ], η,Ψ

]L
+O(κ3). (9.33)

10 Relations between A∞/L∞- and WZW-type formulations

In this section, we consider the action for NS closed string field theory. Note that identifying

the graded commutator of open strings with the 2-product of closed strings, we can obtain a

similar result in Berkovits’ theory. The free action in WZW-type formulation is given by

S2 =
1

2
⟨ηV,QV ⟩. (10.1)

Let Φ be a Grassmann-even and ghost-and-picture number (2| − 1) state in the small Hilbert

space. Using the partial gauge fixing condition V = ξΦ, this action becomes

S2 =
1

2
⟨ξΦ, QΦ⟩.

Under the identification of the BPZ inner products in the small and large Hilbert spaces

⟨A,B⟩small ≡ ⟨ξA,B⟩large, (10.2)

the free action in WZW-type formulation S2 reduces to that in L∞-formulation SEKS
2 , where

SEKS
2 :=

1

2
⟨Φ, QΦ⟩small. (10.3)

21Note that Ψδ = ηΩ′ is equivalent to δΨ = ηΩ̃ by parameter redefinition: Ω̃ ≡ Ω′ + κ
2 [ηΨ, Ω̃]L + . . . .
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⟨Ψt, δ(η̄GL)⟩ = ⟨Ψt, η̄QGLψδ⟩ = −⟨QGL η̄Ψt,ψδ⟩ = −⟨ψδ, QGL η̄Ψt⟩

= −⟨Ψδ, η(QGL η̄Ψt)⟩ = ⟨Ψδ, η̄QGLψt⟩+ κ⟨ψδ, [ηGL,ψt]
L
GL

⟩

= ⟨Ψδ, ∂t(η̄GL)⟩ − κ⟨ηGL, [Ψδ,ψt]
L
GL

⟩. (9.30)

Hence, the variation δS of the WZW-like action S is given by

δS =

∫ 1

0
dt
(
⟨δΨt, η̄GL(t)⟩+ ⟨Ψt, δ(η̄GL(t))⟩

)

=

∫ 1

0
dt ∂t⟨Ψδ(t), η̄GL(t)⟩ = ⟨Ψδ, η̄GL⟩, (9.31)

which does not include t-parametrized fields. The equation of motion is, therefore, given by

(9.27) and it is independent of t-parametrization of fields.

Since η̄GL is a QGL-, η-, and η̄-exact state, we find that the action is invariant under the

following nonlinear21 gauge transformations

Ψδ = QGLΛ+ η̄Ω, (9.32)

where Λ and Ω are gauge parameters whose ghost-and-picture numbers are (−1|0, 0) and (−1|0, 1)
respectively. Note that Ψδ is an invertible function of δΨ, at least in the expansion in powers of

κ. For instance, an explicit expression for η̄-gauge transformation δΩΨ is given by

δΩΨ = η̄Ω+
κ

2
[ηΨ, η̄Ω]L +

κ2

3

[
η̄Ω, QηΨ, ηΨ

]L
+
κ2

12

[
[η̄Ω, ηΨ], η,Ψ

]L
+O(κ3). (9.33)

10 Relations between A∞/L∞- and WZW-type formulations

In this section, we consider the action for NS closed string field theory. Note that identifying

the graded commutator of open strings with the 2-product of closed strings, we can obtain a

similar result in Berkovits’ theory. The free action in WZW-type formulation is given by

S2 =
1

2
⟨ηV,QV ⟩. (10.1)

Let Φ be a Grassmann-even and ghost-and-picture number (2| − 1) state in the small Hilbert

space. Using the partial gauge fixing condition V = ξΦ, this action becomes

S2 =
1

2
⟨ξΦ, QΦ⟩.

Under the identification of the BPZ inner products in the small and large Hilbert spaces

⟨A,B⟩small ≡ ⟨ξA,B⟩large, (10.2)

the free action in WZW-type formulation S2 reduces to that in L∞-formulation SEKS
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10.1 L∞-gauge in NS string field theory

In the rest, finding the partial gauge fixing condition connecting actions in WZW-type and

L∞-type formulations, we see the equivalence of theses two formulations up to κ2 order.

Cubic term

We consider the 3-point interaction term of WZW-like action:

κS3 =
κ

3!
⟨ηV, [QV, V ]⟩. (10.4)

If we impose the linear partial gauge fixing condition V = ξΦ, this κS3 becomes

κS3 =
κ

3!
⟨QξΦ, [Φ, ξΦ]⟩, (10.5)

which differs from that of L∞-formulation κSEKS
3 . Therefore, to match these actions, we impose

the following partial gauge fixing condition

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ2). (10.6)

With this condition, the kinetic term S2 of WZW-type action supplies the desired term as

S2 =
1

2
⟨ξΦ, QΦ⟩+ κ

3!
⟨ξQΦ, [Φ, ξΦ]⟩. (10.7)

Then, we obtain the following relation

S2 + κS3 = SEKS
2 + κSEKS

3 , (10.8)

where the cubic term of L∞-type action is given by

κSEKS
3 :=

κ

3!
⟨ξΦ,

[
XΦ,Φ

]
⟩. (10.9)

Quartic term

At κ2-order, for example, if we impose the partial gauge fixing condition

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +

κ2

4!

(4
3
ξ
[
Φ, ξ[ξΦ,Φ]

]
+

1

3
ξ
[
ξΦ, ξ[Φ,Φ]

]
− 2

3
ξ
[
ξΦ, [ξΦ,Φ]

])

+
κ2

4!

(
ξ[QξΦ, ξΦ,Φ] +

3

2
ξ[XΦ, ξΦ,Φ]− 3

4
[ξXΦ, ξΦ,Φ] +

1

4
ξX[ξΦ,Φ,Φ]

)
, (10.10)

we obtain the following relation

S2 + κS3 + κ2S4 = SEKS
2 + κSEKS

3 + κ2SEKS
4 , (10.11)

where the quartic term of L∞-type action SEKS
4 is given by

κ2SEKS
4 :=

κ2

4!

(1
4
⟨ξΦ,

[
X2Φ,Φ,Φ

]
⟩+ 3

4
⟨ξΦ,

[
XΦ, XΦ,Φ

]
⟩
)
− κ2

4!

(1
3
⟨
[
ξΦ,Φ

]
, ξX

[
Φ,Φ

]
⟩
)

+
κ2

4!

(5
3
⟨ξXΦ,

[
Φ, ξ[Φ,Φ]

]
⟩ − 3

4
⟨ξXΦ,

[
ξΦ, [Φ,Φ]

]
⟩+ 1

6
⟨ξXΦ,

[
Φ, [ξΦ,Φ]

]
⟩
)
.
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L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
κ

3!
ξ̄[ξ̄Φ,Φ]L +O(κ3)

+
κ2

4!

(
ξ̄
[
ξ̄Φ, (Qξ̄ +X)Φ,Φ

]L
+ ξ̄

[
ξ̄[Φ,Φ]L, ξ̄Φ

]L
+

2

3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)
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6 Conclusion

G†(Φ ∧ eτΦ) = EτV †(ηV ) (6.1)

S =

∫ 1

0
dt⟨A∂t(t), QG(t)Aη(t)⟩

QG(t) = Q+ [e−φ(QeΦ), ]

S =

∫ 1

0
dt⟨Ã∂t(t), Q Ãη(t)⟩ (6.2)

∂τAη(τ) = ηΦ+ [Φ, Aη(τ)] (6.3)

ηA∂t + ∂tAη + [Aη, A∂t ] = 0 (6.4)

S =
1

2
⟨ηV,QV ⟩+ κ

3!
⟨ηV, [QV, V ]⟩+ κ2

4!
⟨ηV, [QV,QV, V ] + [[QV, V ], V ]⟩ (6.5)

S =
1

2
⟨ξΦ, QΦ⟩+ κ

3!
⟨ξΦ, [XΦ,Φ]⟩+ κ2

4!
⟨ξΦL3(Φ,Φ,Φ)⟩ (6.6)

A Berkovits’ theory

B Coalgebraic representation in large Hilbert space
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3 Similarity transformations

There are two popular and successful formulations of superstring field theories. In both formu-

lations, nonlinear nilpotent operators play crucial roles, especially for the gauge invariance.

The first one L is the NS superstring products in L∞-type formulation proposed by [EKS],

which is based on the small Hilbert space. The second one QG is the BRST operator shifted by

bosonic pure gauge string field G in WZW-like formulation, which is based on the large Hilbert

space.

We show that those nilpotent operators L and QG can be given by similarity transformations

from BRST operator Q. The similarity transformations which we introduce in this section are

given by the path-ordered exponential which is defined by the iterated integral. We first define

this.

Path-ordered exponential

The similarity transformations which we introduce in this section are given by the path-

ordered exponential defined by the following iterated integral

A[τ ] =
→
P exp

(∫ τ

0
dτ ′O[τ ′]

)

= 1l +

(∫ τ

0
dτ1O[τ1]

)
+
∞∑

n=2

(∫ τ

0
dτ1O[τ1]

)(∫ τ1

0
dτ2O[τ2]

)
· · ·

(∫ τn−1

0
dτnO[τn]

)
. (3.1)

The → over P denote the ordering of integration. This A is the (formal) solution to

∂τA[τ ] = O[τ ] · A[τ ] (3.2)

with initial condition A[0] = 1l. Note that if O is independent on parameter τ , it becomes

an usual exponential. Note also that the character τ represent for the parameter used in the

iterated integral, and that the dependence on τ is denoted by [ ] in order to distinguish it from

the parameter in string field like Φ(t), and the we promise that A = A[1].

† is a combination of the inversion of the ordering of operations and BPZ conjugations of

operations. This †-conjugation of our path-ordered exponential A becomes as follows:

A†
[τ ] =

[
→
P exp

(∫ τ

0
dτ ′O[τ ′]

)]†
=
←
P exp

(∫ τ

0
dτ ′O†

[τ ′]

)
, (3.3)

Its definition can also be given by the iterated integration as follows:

A†
[τ ] = 1l +

(∫ τ

0
dτ1O†

[τ1]

)
+
∞∑

n=2

(∫ τn−1

0
dτnO†

[τn]

)
· · ·

(∫ τ1

0
dτ2O†

[τ2]

)(∫ τ

0
dτ1O†

[τ1]

)
.

(3.4)

Note that the ordering of the integration is reversed. The integration in the equation (??) is

defined to be performed from the right to the left. It can be represented in usual representation,

A†
[τ ] = 1l +

∫ τ

0
dτ1O†

[τ1] +
∞∑

n=2

∫ τ

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτnO†

[τn] · · · O†
[τ2]O†

[τ1]. (3.5)
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an usual exponential. Note also that the character τ represent for the parameter used in the

iterated integral, and that the dependence on τ is denoted by [ ] in order to distinguish it from

the parameter in string field like Φ(t), and the we promise that A = A[1].
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∞∑
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The important property of A† is that it is the (formal) solution to the following equation

∂τA−1[τ ] = −A−1[τ ] · O[τ ] (3.6)

with initial condition A†[0] = 1l.

If O is †-odd: O† = −O, †-conjugation of path-ordered integral gives its inverse
[
→
P exp

(∫ τ

0
dτ ′O[τ ′]

)]†
=

[
→
P exp

(∫ τ

0
dτ ′O[τ ′]

)]−1
. (3.7)

We can show that by showing A[τ ]A†[τ ] = A†[τ ]A[τ ] = 1l. It follows from the initial conditions

A[0] = A†[0] = 1l and the following differential equations,

∂τ
(
A[τ ]A†

[τ ]

)
= O[τ ]A[τ ]A†

[τ ] +A[τ ]A†
[τ ](−O[τ ]) =

[[
O[τ ],A[τ ]A†

[τ ]
]]
, (3.8)

∂τ
(
A†

[τ ]A[τ ]

)
= A†

[τ ](−O[τ ])A[τ ] +A†
[τ ]O[τ ]A[τ ] = 0. (3.9)

Consider the following form of O,

O[τ ] =
∞∑

k=0

κk+1τkOk, (3.10)

where κ is the coupling constant. A few lowest order terms in κ of A are as follows:

A = 1l + κO2 +
κ2

2
(O3 +O2O2) +

κ3

3!
(2O4 + 2O3O2 +O2O3 +O2O2O2) + · · · . (3.11)

3.1 Superstring product in the small Hilbert space

To construct consistent superstring field theory of NS sector in small Hilbert space, the insertion

of picture changing operator X seems to be necessary. In the works [] we have learned how to

construct the NS superstring products L satisfying L∞ relations from bosonic string products

LB and zero-modes X, ξ of the picture changing operator X(z) and fermionized superconformal

ghost ξ(z). The action in given by

S =
∞∑

n=1

κn−1

(n+ 1)!
⟨ξΦ, Ln(

n︷ ︸︸ ︷
Φ,Φ, ...,Φ)⟩

=

∫ 1

0
dt
∞∑

n=1

κn−1

n!
⟨∂tξΦ(t), Ln(

n︷ ︸︸ ︷
Φ(t),Φ(t), ...,Φ(t))⟩

=

∫ 1

0
dt⟨∂tξΦ(t),FΦ(t)⟩

=

∫ 1

0
dt⟨∂tξΦ(t),πLe∧Φ(t)⟩

=

∫ 1

0
dt⟨πξte∧Φ(t),πLe∧Φ(t)⟩. (3.12)

Here Φ is the string field belonging to the small Hilbert space carrying ghost number 2 and

picture number −1. We introduce Φ(t) which satisfies Φ(0) = 1,Φ(1) = Φ. ξt is the one-

coderivation derived from ∂tξ and its explicit action is given by

ξt : 1 → 0

Φ → ∂tξΦ

Φ1 ∧ Φ2 → (∂tξΦ1) ∧ Φ2 + Φ1 ∧ (∂tξΦ2).
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S =
1

2
⟨Φ, QΦ⟩+ κ

3!
⟨Φ, L2(Φ,Φ)⟩+

κ2

4!
⟨Φ, L3(Φ,Φ,Φ)⟩+ . . . (2.42)

(Q+ L2 + L3 + L4 + . . . )2 = 0 (2.43)

L = Q+
∞∑

n=1

κnLn+1 (2.44)

e∧Φ = Id + Φ+
1

2
Φ ∧ Φ+

1

3!
Φ ∧ Φ ∧ Φ+ . . . (2.45)

S =

∫ 1

0
dt

〈
Φ, L(e∧tΦ)

〉
(2.46)

∂

∂κ
L(κ) =

[[
L(κ),Ξ(κ)

]]
(2.47)

Ξ(κ) =
∞∑

n=1

κnΞn+1 (2.48)

(
Ξ(κ)

)†
= −Ξ(κ) (2.49)

L = GQG−1 (2.50)

G :=
→
Pe−

∫
dκΞ(κ) (2.51)

G−1 :=
←
Pe+

∫
dκΞ(κ) (2.52)

G† = G−1 (2.53)

S =

∫ 1

0
dt

〈
Ψt, QGΨη

〉
(2.54)
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Note that ∂t and ξ act on the same slot. The string products L satisfy the following three

properties: 1

[[L,L]] = 0 (L∞ relation), (3.13)

L† = −L (cyclicity), (3.14)

[[L, η]] = 0 (η-derivation). (3.15)

To construct such superstring products L, consider the solution for the L∞ relation 2

[[
L[τ ],L[τ ]

]]
= 0,

L[τ ] =
∞∑

n=1

τn−1Ln. (3.16)

Introducing new object called gauge products 3 Ξ1,Ξ2,Ξ3,Ξ4 · · · , the solution can be obtained

by following recursive relation:

Ln+2 =
1

n+ 1

∞∑

k=0

[[
Ln−k+1,Ξk+2

]]
. (3.17)

In compact form, we denote the gauge products as

Ξ[τ ] =
∞∑

n=2

τn−2Ξn, (3.18)

and the above relation becomes a defining equation for the solution L[τ ] for [[L[τ ],L[τ ]]] = 0:

∂τL[τ ] =
[[
L[τ ],Ξ[τ ]

]]
. (3.19)

To see that, consider the ∂t of [[L[τ ],L[τ ]]]:

∂τ
([[

L[τ ],L[τ ]
]])

=
[[[[

L[τ ],Ξ[τ ]
]]
,L[τ ]

]]
+

[[
L[τ ],

[[
L[τ ],Ξ[τ ]

]]]]
=

[[[[
L[τ ],L[τ ]

]]
,Ξ[τ ]

]]
. (3.20)

This says that if [[L[τ ],L[τ ]]] = 0 holds at τ = 0, it holds at arbitrary τ . In the present case,

[[L[0],L[0]]] = 0 holds since L[0] = Q. Thus, introducing the gauge products Ξ, we can write

down the defining equation for the solution L[τ ] for L∞ relation [[L[τ ],L[τ ]]] = 0.

L∞-products from similarity transformation of Q

In appendix [] of [], the solution for (??) is obtained for the theory with only one- and

two- bosonic string products. Procedure there can be extended to the theories in which original

bosonic products consist of three- and more- string products. The key structure is a path-ordered

exponential defined by iterated integrations. The solution can be represented as follows:

L =GQG†, (3.21)

G =
→
P exp

(
−
∫ 1

0
dτΞ[τ ]

)
. (3.22)

1Here, for technical reason, we represent L∞ relation (??) using graded commutator.
2We omit superscript which denote picture number for notational convenience, i.e. Ln

∣∣∣
here

= L(n−1)
n

∣∣∣
EKS

.

3Ξn

∣∣∣
here

= λ(n−1)
n

∣∣∣
EKS
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5.2 Equivalence of actions

As wee explained in the case of G, provided that the similarity transformation FLF† = QG , we

can discuss the equality of L∞-type and WZW-like actions.

Realization of WZW-like action

Let t be a real parameter t ∈ [0, 1]. We introduce a t-parametrized string field Φ(t) satisfying

Φ(0) = 0 and Φ(1) = Φ, which is a path connecting 0 and the string field Φ in the space of

string fields. Using this Φ(t), we can rewrite the L∞-type action as follows.

SEKS =
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩

=

∫ 1

0
dt

∂

∂t

( ∞∑

n=0

κn

(n+ 2)!
⟨ξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩

)

=

∫ 1

0
dt ⟨ξ∂tΦ(t), FΦ(t)⟩, (5.14)

where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξte
∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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Note that ∂t and ξ act on the same slot. The string products L satisfy the following three

properties: 1

[[L,L]] = 0 (L∞ relation), (3.13)

L† = −L (cyclicity), (3.14)

[[L, η]] = 0 (η-derivation). (3.15)

To construct such superstring products L, consider the solution for the L∞ relation 2

[[
L[τ ],L[τ ]

]]
= 0,

L[τ ] =
∞∑

n=1

τn−1Ln. (3.16)

Introducing new object called gauge products 3 Ξ1,Ξ2,Ξ3,Ξ4 · · · , the solution can be obtained

by following recursive relation:

Ln+2 =
1

n+ 1

∞∑

k=0

[[
Ln−k+1,Ξk+2

]]
. (3.17)

In compact form, we denote the gauge products as

Ξ[τ ] =
∞∑

n=2

τn−2Ξn, (3.18)

and the above relation becomes a defining equation for the solution L[τ ] for [[L[τ ],L[τ ]]] = 0:

∂τL[τ ] =
[[
L[τ ],Ξ[τ ]

]]
. (3.19)

To see that, consider the ∂t of [[L[τ ],L[τ ]]]:

∂τ
([[

L[τ ],L[τ ]
]])

=
[[[[

L[τ ],Ξ[τ ]
]]
,L[τ ]

]]
+

[[
L[τ ],

[[
L[τ ],Ξ[τ ]

]]]]
=

[[[[
L[τ ],L[τ ]

]]
,Ξ[τ ]

]]
. (3.20)

This says that if [[L[τ ],L[τ ]]] = 0 holds at τ = 0, it holds at arbitrary τ . In the present case,

[[L[0],L[0]]] = 0 holds since L[0] = Q. Thus, introducing the gauge products Ξ, we can write

down the defining equation for the solution L[τ ] for L∞ relation [[L[τ ],L[τ ]]] = 0.

L∞-products from similarity transformation of Q

In appendix [] of [], the solution for (??) is obtained for the theory with only one- and

two- bosonic string products. Procedure there can be extended to the theories in which original

bosonic products consist of three- and more- string products. The key structure is a path-ordered

exponential defined by iterated integrations. The solution can be represented as follows:

L =GQG†, (3.21)

G =
→
P exp

(
−
∫ 1

0
dτΞ[τ ]

)
. (3.22)

1Here, for technical reason, we represent L∞ relation (??) using graded commutator.
2We omit superscript which denote picture number for notational convenience, i.e. Ln

∣∣∣
here

= L(n−1)
n

∣∣∣
EKS

.

3Ξn

∣∣∣
here

= λ(n−1)
n

∣∣∣
EKS

11
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[[L[0],L[0]]] = 0 holds since L[0] = Q. Thus, introducing the gauge products Ξ, we can write

down the defining equation for the solution L[τ ] for L∞ relation [[L[τ ],L[τ ]]] = 0.

L∞-products from similarity transformation of Q

In appendix [] of [], the solution for (??) is obtained for the theory with only one- and

two- bosonic string products. Procedure there can be extended to the theories in which original

bosonic products consist of three- and more- string products. The key structure is a path-ordered

exponential defined by iterated integrations. The solution can be represented as follows:
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G =
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This G satisfies following equations

∂τG[τ ] = −Ξ[τ ] ·G[τ ], (3.23)

G[0] = 1l. (3.24)

Since Ξ is BPZ odd, its dagger is given by

G†
[τ ] =

←
P exp

(∫ τ

0
dτ ′Ξ[τ ′]

)
, (3.25)

and it satisfies

∂τG
†
[τ ] = G†

[τ ] ·Ξ[τ ], (3.26)

G†
[0] = 1l. (3.27)

These deferential equations for G and G† lead to the equation (??)

∂τL[τ ] = −Ξ[τ ]G[τ ]QG†
[τ ] +G[τ ]QG†

[τ ]Ξ[τ ] =
[[
L[τ ],Ξ[τ ]

]]
(3.28)

and therefore to the L∞-relation. 4 Note that this L has a cyclicity since

L† = (GQG†)† = −GQG† = −L. (3.29)

Thus, we found the formal solution for L∞-relation [[L,L]] = 0 which also has a cyclicity.

L∞-products in EKS theories

Owing to the anomaly in the superconformal ghost sector, the inner product ⟨A,B⟩ vanishes
unless the sum of the ghost number of A and B equals to 4 and the sum of the picture number

of A and B equals to −1. In the case of EKS theories, where the string field Φ carries ghost

number 2 and picture number −1, the superstring product Ln must carry ghost number −2n+3

and picture number n− 1.

Although we do not show it explicitly, the recursive construction of gauge products Ξ which

lead to L with cyclicity and η-derivation property in addition to L∞ relation is given in []. 5

The explicit forms of Ξ2 and Ξ3 is given by

Ξ2(Φ,Φ) =
1

3

(
ξ[Φ,Φ]− 2[ξΦ,Φ]

)
, (3.30)

Ξ3(Φ,Φ,Φ) =
1

8
ξX[Φ,Φ,Φ] +

3

8
ξ[XΦ,Φ,Φ]− 3

8
[XξΦ,Φ,Φ]− 3

8
X[ξΦ,Φ,Φ]− 3

4
[XΦ, ξΦ,Φ]

+
1

2
ξ[Φ, ξ[Φ,Φ]]− 1

2
[ξΦ, ξ[Φ,Φ]]− [Φ, ξ[ξΦ,Φ]]. (3.31)

4 We may show the nilpotency of L more simply by L2 = GQG†GQG† = GQQG† = 0
5For the detail, see [].
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This says that if [[L[τ ],L[τ ]]] = 0 holds at τ = 0, it holds at arbitrary τ . In the present case,

[[L[0],L[0]]] = 0 holds since L[0] = Q. Thus, introducing the gauge products Ξ, we can write

down the defining equation for the solution L[τ ] for L∞ relation [[L[τ ],L[τ ]]] = 0.

L∞-products from similarity transformation of Q

In appendix [] of [], the solution for (??) is obtained for the theory with only one- and

two- bosonic string products. Procedure there can be extended to the theories in which original

bosonic products consist of three- and more- string products. The key structure is a path-ordered
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S =
1

2
⟨Φ, QΦ⟩+ κ

3!
⟨Φ, L2(Φ,Φ)⟩+

κ2

4!
⟨Φ, L3(Φ,Φ,Φ)⟩+ . . . (2.42)

(Q+ L2 + L3 + L4 + . . . )2 = 0 (2.43)

L = Q+
∞∑

n=1

κnLn+1 (2.44)

e∧Φ = Id + Φ+
1

2
Φ ∧ Φ+

1

3!
Φ ∧ Φ ∧ Φ+ . . . (2.45)

S =

∫ 1

0
dt

〈
Φ, L(e∧tΦ)

〉
(2.46)

∂

∂κ
L(κ) =

[[
L(κ),Ξ(κ)

]]
(2.47)

Ξ(κ) =
∞∑

n=1

κnΞn+1 (2.48)

(
Ξ(κ)

)†
= −Ξ(κ) (2.49)

L = GQG−1 (2.50)

G :=
→
Pe−

∫
dκΞ(κ) (2.51)

G−1 :=
←
Pe+

∫
dκΞ(κ) (2.52)

G† = G−1 (2.53)

S =

∫ 1

0
dt

〈
Ψt, QGΨη

〉
(2.54)
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f
(
e∧Φ

)
= Ψη (2.71)

f
(
ξΦ ∧ e∧tΦ

)
= Ψt (2.72)

S =

∫ 1

0
dt

〈
ξΦ, L

(
e∧tΦ

)〉
(2.73)

S =

∫ 1

0
dt

〈
Ψt, QG Ψη

〉
(2.74)

f−1 f = 1 (2.75)

Ψη,Ψt (2.76)

G (2.77)

f L = QG f (2.78)

ΨX ∼ e−V (XeV ) (2.79)
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and so it satisfies

∂τEV†[τ ] = −EV†[τ ] · V̂ [τ ]. (3.50)

It is invertible and

EV † = EV −1 (3.51)

These differential equations for EV and EV † lead nilpotency of QG .

∂

∂τ
QG[τ ]A = [QG[τ ]V,A]G[τ ]

= [V,QG[τ ]A]G[τ ] −QG[τ ][V,A]G[τ ] (3.52)

QAB = QB +
∞∑

n=1

κn

n!
[

n︷ ︸︸ ︷
A, . . . , A,B] (3.53)

[B,C]A = [B,C] +
∞∑

n=1

κn

n!
[

n︷ ︸︸ ︷
A, . . . , A,B,C] (3.54)

∂τG[τ ] = QG[τ ]V (3.55)

∂τΨη[τ ] = ηV + κ[V,Ψη[τ ]]G[τ ] (3.56)

∂τΨ∂t [τ ] = ∂tV + κ[V,Ψ∂t [τ ]]G[τ ] (3.57)
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[·, ·, ..., ·]G is shifted product which is defined by

[B1, B2, ..., Bm]G =
∞∑

n=0

κn

n!
[Gn, B1, B2, ..., Bm] (3.40)

Shift by pure gauge preserves L∞ relation.

∂τQG[τ ] = [QG[τ ]V, ]G[τ ] (3.41)

QGA =QA+ κ[QV,A] +
κ2

2

(
[[V,QV ], A] + [QV,QV,A]

)

+
κ3

6

(
[[V,QV,QV ], A] + [[V, [V,QV ]], A] + 3[QV, [V,QV ], A] + [QV,QV,QV,A]

)
+ · · ·

(3.42)

Qg as iterated integral

The nilpotency of QG follows from that of Q. It can be seen by showing that QG can be

given by the similarity transformation from Q:

QG = EV QEV †. (3.43)

Here EV is defined by path ordered integration as follows

EV [τ ] =
→
P exp

(∫ τ

0
dτ ′V̂ [τ ′]

)
, (3.44)

where V̂ [τ ] : H → H is a linear map defined by

V̂ [τ ] := κ[V, ]G[τ ]. (3.45)

∂τEV [τ ] = V̂ [τ ] · EV [τ ] (3.46)

EV [0] = EV†[0] = 1l (3.47)

EV (A) = A+ κ[V,A] +
κ2

2

(
[V,QV,A] + [V, [V,A]]

)

+
κ3

6

(
[V,QV,QV,A] + [V, [V,QV ], A] + 2[V,QV, [V,A]] + [V, [V,QV,A]] + [V, [V, [V,A]]]

)

+ ... (3.48)

For EV † , since V̂ [τ ] is BPZ odd, we have

EV † =

[
→
P exp

(∫ 1

0
dτ V̂ [τ ]

)]†
=
←
P exp

(
−
∫ 1

0
dτ V̂ [τ ]

)
. (3.49)
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QGV = QV +
∞∑

n=1

κn

n!

[
Gn, V

]
(2.55)

QG = EV Q EV −1 (2.56)

EV :=
→
Pe

∫
dκ v̂(κ) (2.57)

EV −1 :=
←
Pe−

∫
dκ v̂(κ) (2.58)

v̂(κ) ≡
[
V,

]
G (2.59)

f L f−1 = EV G−1
[
GQG−1

]
G EV −1 (2.60)

= EV Q EV −1 (2.61)

= QG (2.62)

f = EV G−1 (2.63)

f(e∧Φ) = Ψη (2.64)

L(e∧Φ) = 0 (2.65)

QG Ψη = 0 (2.66)

f
(
L(e∧Φ)

)
= QG f(e

∧Φ) (2.67)

= QG Ψη (2.68)

G−1(e∧Φ) = EV −1Ψη (2.69)

EV −1Ψη =

∫ κ

0
dκ′EV −1(ηV ) (2.70)
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and the G-shifted BRST operator QG

QG = EV Q EV†, (4.13)

which are similarity transformations of the BRST operator Q respectively. Hence, composing

G† = {G†
n}∞n=1 and EV , we construct the invertible map F = {Fn}∞n=1

F := EV G† (4.14)

This F is the key ingredient in deriving our main result. We can quickly find that F generates

the similarity transformation connecting L and QG :

FLF−1 = (EV G†)GQG† (G EV †)

= EV Q EV†

= QG . (4.15)

As well as G, this F becomes the L∞-isomorphism FL = QG F. Thus, we can consider the field

redefinition induced by F

Φ′ := π F(e∧Φ) =
∞∑

n=1

Fn(

n︷ ︸︸ ︷
Φ, . . . ,Φ) (4.16)

which provides the equivalence of Maurer-Cartan equations πL(e∧Φ) = 0 and QGΦ′ = 0.

Equivalence of on-shell conditions

While the equation of motion in L∞-type formulation is given by

FΦ ≡ π
(
L(e∧Φ)

)
= 0 (4.17) EKS eom

using group-like element e∧Φ, the equation of motion in WZW-type formulation is given by

FV ≡ QGΨη = 0. (4.18) WZW eom

The field Ψη is the associated field defined in (
associated fieldassociated field
??), which is a function of large-space NS string

fields V and satisfies QGΨη = −η G. Therefore, the state FV belongs the small Hilbert space.

We write H′ for the state space in which Ψη lives.

Therefore, provided that an L∞-morphism F : (Hsmall,L) → (H′, QG) satisfying FL = QG F,

we quickly find that when we identify two string fields Φ and V by the condition

π
(
F(e∧Φ)

)
= Ψη, (4.19) pre condition

the L∞-morphism F preserves the on-shell conditions:

π
(
FL(e∧Φ)

)
= π

(
QG F(e

∧Φ)
)

= QG Ψη. (4.20)

Note that QG is a linear map and commutes with the projector π. Hence, solving the nonlin-

ear correspondence of two string fields (
pre conditionpre condition
4.19), one can derive the equivalence of two on-shell

conditions (
EKS eomEKS eom
4.17) and (

WZW eomWZW eom
4.18).
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5 Equivalence of actions

In the previous section, we found that the similarity transformation

FL = QG F (5.1)

induces the field redefinition πF(FΦ) = FV connecting two equations of motion. Such F can

be naturally extend to a cyclic L∞-morphism and gives the condition providing the equivalence

of L∞-type and WZW-like actions for NS string field theory, which we explain in this section.

Solving the condition, one can obtain a partial-gauge-fixing condition giving L∞-relations in

WZW-like string field theory and vice versa.

5.1 Cyclic L∞-morphism

Let (H,L,ω) and (H′,L′,ω′) be cyclic L∞-algebras, and f : (H,L) → (H′,L′) be an L∞-

morphism of L∞-algebras. An L∞-morphism f = {fn}∞n=1 satisfying

⟨ω′| f1(Φ1)⊗ f1(Φ2) = ⟨ω|Φ1 ⊗ Φ2, (5.2)

and for fixed n ≥ 3,

∑

k+l=n
k,l≥1

∑

σ

′
(−)|σ|⟨ω′| fk(Φσ(1), . . . ,Φσ(k))⊗ fl(Φσ(k+1), . . . ,Φσ(n)) = 0 (5.3)

is called a cyclic L∞-morphism, where ∀Φ1, . . . ,Φn ∈ H and fk : H∧k → H′.

In closed (super-) string field theory, a cyclic L∞-morphism6 preserves the value of the

action. The equality follows from the fact that the symplectic structures on both sides are

nondegenerate.

Similarity transformation generated by G

Note that the L∞-morphism G = {Gn}∞n=1 is invertible GG† = 1 . Acting GG† = 1 on
∑

nΦ1 ∧ · · · ∧ Φn ∈ S(H) =
⊕

nH∧n, we obtain

∑

n=k+l

∑

σ

′
Gk+1

(
Φσ(1), . . . ,Φσ(k),G

†
l(Φσ(k+1), . . . ,Φσ(n))

)
= Φ1 (5.4)

in H′∧1. Let ⟨Φ0,Φ1⟩ be the BPZ inner product in the large Hilbert space H. The above relation

implies

⟨Φ0,Φ1⟩ =
∑

n=k+l

∑

σ

′
(−)|σ|⟨G†

k+1(Φσ(0), . . . ,Φσ(k)),G
†
n−k(Φσ(k+1), . . . ,Φσ(n))⟩. (5.5)

Since G1 = G1
† = 1 and the BPZ inner product ⟨Φ0,Φ1⟩ is nondegenerate, we obtain

⟨G1(Φ0),G1(Φ1)⟩ = ⟨Φ0,Φ1⟩, (5.6)

6Note that f1 : H → H′ may not be an isomorphism.
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(
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∧Φ)
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4.19), one can derive the equivalence of two on-shell

conditions (
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Correspondence of fields

As we will see, the correspondence of fields f(e∧Φ) = Ψη, which provides the equivalence of

two equation of motions L(e∧Φ) = 0 and QGΨη = 0, can be rewritten as

π
(
G†(e∧Φ)

)
=

∫ 1

0
dτ EV†[τ ]

(
ηV

)
. (4.21) condition

While the left hand side is a function of string fields Φ and ξΦ, the right hand side is a function

of string fields V and ηV . Each side of (
conditioncondition
4.21) can be constructed by invertible transformations

of small-space states e∧Φ or ηV . For this purpose, we find that the following relation holds

EV†ΨX =

∫ 1

0
dτ EV†[τ ]

(
XV

)
. (4.22)

Recall that for any A ∈ H, the defining equation of the map EV† is given by

∂

∂τ
EV†[τ ]

(
A
)
= −EV†[τ ]

(
[V,A]G[τ ]

)
(4.23)

with the initial condition EV†[τ=0] = I. Thus, we find that

∂

∂τ

(
EV†[τ ]ΨX[τ ]

)
=

( ∂

∂τ
EV†[τ ]

)
ΨX[τ ] + EV†[τ ]

( ∂

∂τ
ΨX[τ ]

)

= −EV†[τ ]
([

V,ΨX[τ ]
]
G[τ ]

)
+ EV†[τ ]

(
XV + κ

[
V,ΨX[τ ]

]
G[τ ]

)

= EV†[τ ]
(
XV

)
. (4.24)

Utilizing the invertible map EV and the state XV , one can construct the associated field ΨX as

ΨX = EV
∫ 1

0
dτ EV†[τ ] (XV ). (4.25) another rep
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5.2 Equivalence of actions

As wee explained in the case of G, provided that the similarity transformation FLF† = QG , we

can discuss the equality of L∞-type and WZW-like actions.

Realization of WZW-like action

Let t be a real parameter t ∈ [0, 1]. We introduce a t-parametrized string field Φ(t) satisfying

Φ(0) = 0 and Φ(1) = Φ, which is a path connecting 0 and the string field Φ in the space of

string fields. Using this Φ(t), we can rewrite the L∞-type action as follows.

SEKS =
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩

=

∫ 1

0
dt

∂

∂t

( ∞∑

n=0

κn

(n+ 2)!
⟨ξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩

)

=

∫ 1

0
dt ⟨ξ∂tΦ(t), FΦ(t)⟩, (5.14)

where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξte
∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξte
∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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5.3 Partial gauge fixing conditions

Realization of L∞-type action

Utilizing the exponential map EV generating the similarity transformation of the BRST

operator QG = EV QEV† with replacing V by V (t) satisfying V (0) = 0 and V (1) = 1, one can

represent WZW-like action for superstring field theory as

SWZW =

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩

=

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.22)

Solving the correspondence of two string fields V and Φ
∫ 1

0
dτ EV (t)

†
[τ ]
(
XV (t)

)
≡ π

(
G−1(ξX e∧Φ(t))

)
, (5.23)

we obtain an L∞-type action in WZW-like formulation

SWZW =

∫ 1

0
dt ⟨πG−1

(
ξte
∧Φ(t)

)
, QπG−1

(
e∧Φ(t)

)
⟩

=

∫ 1

0
dt ⟨π

(
ξte
∧Φ(t)

)
, π

(
L(e∧Φ(t))

)
⟩

=
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩. (5.24)

Partial gauge fixing condition

Solving the following correspondence for V
∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
≡ πG−1

(
e∧Φ(t)

)
,

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
≡ π

(
G−1(ξt e

∧Φ(t))
)
, (5.25)

a partial gauge fixing condition reducing WZW-like action to L∞-type action appear, which we

explain in the rest. We start with expanding the WZW-like action in powers of κ:

SWZW = S2 + κS3 + κ2S4 + . . .

=
1

2
⟨ηV,QV ⟩+ κ

3!
⟨ηV, [QV, V ]⟩+ κ2

4!
⟨ηV,

[
QV,QV, V

]
+

[
[QV, V ], V

]
⟩+ . . . . (5.26)

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +

κ2

4!

(3
2
ξ[ξΦ, ξQΦ,Φ] +

5

2
ξ[ξΦ, QξΦ,Φ]− 3

4
ξ[ξQξΦ,Φ,Φ]

+
1

4
ξQξQ[ξΦ,Φ,Φ] +

4

3
ξ[ξ[ξΦ,Φ],Φ]− 2

3
ξ[[ξΦ,Φ], ξΦ] +

1

3
ξ[ξ[Φ,Φ], ξΦ]

)
+ . . . (5.27)

SWZW =
1

2
⟨ξΦ, QΦ⟩+ κ

3!
⟨ξΦ, [XΦ,Φ]⟩+ κ2

4!
⟨ξΦ,

(1
4
[X2Φ,Φ,Φ] +

3

4
[XΦ, XΦ,Φ]

)
⟩

+
κ2

4!
⟨ξΦ,

(1
3
[Φ, ξX[Φ,Φ]] +

5

3
X[Φ, ξ[Φ,Φ]]− 3

4
X[ξΦ, [Φ,Φ]] +

1

6
X[Φ, [ξΦ,Φ]]

)
⟩+ . . .

(5.28)

23

5.2 Equivalence of actions

As wee explained in the case of G, provided that the similarity transformation FLF† = QG , we

can discuss the equality of L∞-type and WZW-like actions.

Realization of WZW-like action

Let t be a real parameter t ∈ [0, 1]. We introduce a t-parametrized string field Φ(t) satisfying

Φ(0) = 0 and Φ(1) = Φ, which is a path connecting 0 and the string field Φ in the space of

string fields. Using this Φ(t), we can rewrite the L∞-type action as follows.

SEKS =
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2
⟨ξΦ, QΦ⟩+
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κn
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Φ, . . . ,Φ)⟩
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∫ 1

0
dt

∂

∂t

( ∞∑

n=0

κn

(n+ 2)!
⟨ξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩

)

=

∫ 1

0
dt ⟨ξ∂tΦ(t), FΦ(t)⟩, (5.14)

where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξte
∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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5.3 Partial gauge fixing conditions

Realization of L∞-type action

Utilizing the exponential map EV generating the similarity transformation of the BRST

operator QG = EV QEV† with replacing V by V (t) satisfying V (0) = 0 and V (1) = 1, one can

represent WZW-like action for superstring field theory as

SWZW =

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩

=

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.22)

Solving the correspondence of two string fields V and Φ
∫ 1

0
dτ EV (t)

†
[τ ]
(
XV (t)

)
≡ π

(
G−1(ξX e∧Φ(t))

)
, (5.23)

we obtain an L∞-type action in WZW-like formulation

SWZW =

∫ 1

0
dt ⟨πG−1

(
ξte
∧Φ(t)

)
, QπG−1

(
e∧Φ(t)

)
⟩

=

∫ 1

0
dt ⟨π

(
ξte
∧Φ(t)

)
, π

(
L(e∧Φ(t))

)
⟩

=
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩. (5.24)

Partial gauge fixing condition

Solving the following correspondence for V
∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
≡ πG−1

(
e∧Φ(t)

)
,

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
≡ π

(
G−1(ξt e

∧Φ(t))
)
, (5.25)

a partial gauge fixing condition reducing WZW-like action to L∞-type action appear, which we

explain in the rest. We start with expanding the WZW-like action in powers of κ:

SWZW = S2 + κS3 + κ2S4 + . . .

=
1

2
⟨ηV,QV ⟩+ κ

3!
⟨ηV, [QV, V ]⟩+ κ2

4!
⟨ηV,

[
QV,QV, V

]
+

[
[QV, V ], V

]
⟩+ . . . . (5.26)

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +

κ2

4!

(3
2
ξ[ξΦ, ξQΦ,Φ] +

5

2
ξ[ξΦ, QξΦ,Φ]− 3

4
ξ[ξQξΦ,Φ,Φ]

+
1

4
ξQξQ[ξΦ,Φ,Φ] +

4

3
ξ[ξ[ξΦ,Φ],Φ]− 2

3
ξ[[ξΦ,Φ], ξΦ] +

1

3
ξ[ξ[Φ,Φ], ξΦ]

)
+ . . . (5.27)

SWZW =
1

2
⟨ξΦ, QΦ⟩+ κ

3!
⟨ξΦ, [XΦ,Φ]⟩+ κ2

4!
⟨ξΦ,

(1
4
[X2Φ,Φ,Φ] +

3

4
[XΦ, XΦ,Φ]

)
⟩

+
κ2

4!
⟨ξΦ,

(1
3
[Φ, ξX[Φ,Φ]] +

5

3
X[Φ, ξ[Φ,Φ]]− 3

4
X[ξΦ, [Φ,Φ]] +

1

6
X[Φ, [ξΦ,Φ]]

)
⟩+ . . .

(5.28)
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5.3 Partial gauge fixing conditions

Realization of L∞-type action

Utilizing the exponential map EV generating the similarity transformation of the BRST

operator QG = EV QEV† with replacing V by V (t) satisfying V (0) = 0 and V (1) = 1, one can

represent WZW-like action for superstring field theory as
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)
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0
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ξte
∧Φ(t)

)
, π

(
L(e∧Φ(t))

)
⟩

=
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩. (5.24)

Partial gauge fixing condition

Solving the following correspondence for V
∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
≡ πG−1

(
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)
,

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
≡ π

(
G−1(ξt e

∧Φ(t))
)
, (5.25)

a partial gauge fixing condition reducing WZW-like action to L∞-type action appear, which we

explain in the rest. We start with expanding the WZW-like action in powers of κ:

SWZW = S2 + κS3 + κ2S4 + . . .

=
1

2
⟨ηV,QV ⟩+ κ

3!
⟨ηV, [QV, V ]⟩+ κ2

4!
⟨ηV,

[
QV,QV, V

]
+

[
[QV, V ], V

]
⟩+ . . . . (5.26)

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +

κ2

4!

(3
2
ξ[ξΦ, ξQΦ,Φ] +

5

2
ξ[ξΦ, QξΦ,Φ]− 3

4
ξ[ξQξΦ,Φ,Φ]

+
1

4
ξQξQ[ξΦ,Φ,Φ] +

4

3
ξ[ξ[ξΦ,Φ],Φ]− 2

3
ξ[[ξΦ,Φ], ξΦ] +

1

3
ξ[ξ[Φ,Φ], ξΦ]

)
+ . . . (5.27)

SWZW =
1

2
⟨ξΦ, QΦ⟩+ κ

3!
⟨ξΦ, [XΦ,Φ]⟩+ κ2

4!
⟨ξΦ,

(1
4
[X2Φ,Φ,Φ] +

3

4
[XΦ, XΦ,Φ]

)
⟩

+
κ2

4!
⟨ξΦ,

(1
3
[Φ, ξX[Φ,Φ]] +

5

3
X[Φ, ξ[Φ,Φ]]− 3

4
X[ξΦ, [Φ,Φ]] +

1

6
X[Φ, [ξΦ,Φ]]

)
⟩+ . . .

(5.28)
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Correspondence of fields

As we will see, the correspondence of fields f(e∧Φ) = Ψη, which provides the equivalence of

two equation of motions L(e∧Φ) = 0 and QGΨη = 0, can be rewritten as

π
(
G†(e∧Φ)

)
=

∫ 1

0
dτ EV†[τ ]

(
ηV

)
. (4.21) condition

While the left hand side is a function of string fields Φ and ξΦ, the right hand side is a function

of string fields V and ηV . Each side of (
conditioncondition
4.21) can be constructed by invertible transformations

of small-space states e∧Φ or ηV . For this purpose, we find that the following relation holds

EV†ΨX =

∫ 1

0
dτ EV†[τ ]

(
XV

)
. (4.22)

Recall that for any A ∈ H, the defining equation of the map EV† is given by

∂

∂τ
EV†[τ ]

(
A
)
= −EV†[τ ]

(
[V,A]G[τ ]

)
(4.23)

with the initial condition EV†[τ=0] = I. Thus, we find that

∂

∂τ

(
EV†[τ ]ΨX[τ ]

)
=

( ∂

∂τ
EV†[τ ]

)
ΨX[τ ] + EV†[τ ]

( ∂

∂τ
ΨX[τ ]

)

= −EV†[τ ]
([

V,ΨX[τ ]
]
G[τ ]

)
+ EV†[τ ]

(
XV + κ

[
V,ΨX[τ ]

]
G[τ ]

)

= EV†[τ ]
(
XV

)
. (4.24)

Utilizing the invertible map EV and the state XV , one can construct the associated field ΨX as

ΨX = EV
∫ 1

0
dτ EV†[τ ] (XV ). (4.25) another rep
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5.2 Equivalence of actions

As wee explained in the case of G, provided that the similarity transformation FLF† = QG , we

can discuss the equality of L∞-type and WZW-like actions.

Realization of WZW-like action

Let t be a real parameter t ∈ [0, 1]. We introduce a t-parametrized string field Φ(t) satisfying

Φ(0) = 0 and Φ(1) = Φ, which is a path connecting 0 and the string field Φ in the space of

string fields. Using this Φ(t), we can rewrite the L∞-type action as follows.

SEKS =
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩

=

∫ 1

0
dt

∂

∂t

( ∞∑

n=0

κn

(n+ 2)!
⟨ξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩

)

=

∫ 1

0
dt ⟨ξ∂tΦ(t), FΦ(t)⟩, (5.14)

where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξte
∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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As wee explained in the case of G, provided that the similarity transformation FLF† = QG , we
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where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξte
∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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5.3 Partial gauge fixing conditions

Realization of L∞-type action

Utilizing the exponential map EV generating the similarity transformation of the BRST

operator QG = EV QEV† with replacing V by V (t) satisfying V (0) = 0 and V (1) = 1, one can

represent WZW-like action for superstring field theory as

SWZW =

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩

=

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.22)

Solving the correspondence of two string fields V and Φ
∫ 1

0
dτ EV (t)

†
[τ ]
(
XV (t)

)
≡ π

(
G−1(ξX e∧Φ(t))

)
, (5.23)

we obtain an L∞-type action in WZW-like formulation

SWZW =

∫ 1

0
dt ⟨πG−1

(
ξte
∧Φ(t)

)
, QπG−1

(
e∧Φ(t)

)
⟩

=

∫ 1

0
dt ⟨π

(
ξte
∧Φ(t)

)
, π

(
L(e∧Φ(t))

)
⟩

=
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩. (5.24)

Partial gauge fixing condition

Solving the following correspondence for V
∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
≡ πG−1

(
e∧Φ(t)

)
,

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
≡ π

(
G−1(ξt e

∧Φ(t))
)
, (5.25)

a partial gauge fixing condition reducing WZW-like action to L∞-type action appear, which we

explain in the rest. We start with expanding the WZW-like action in powers of κ:

SWZW = S2 + κS3 + κ2S4 + . . .

=
1

2
⟨ηV,QV ⟩+ κ

3!
⟨ηV, [QV, V ]⟩+ κ2

4!
⟨ηV,

[
QV,QV, V

]
+

[
[QV, V ], V

]
⟩+ . . . . (5.26)

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +

κ2

4!

(3
2
ξ[ξΦ, ξQΦ,Φ] +

5

2
ξ[ξΦ, QξΦ,Φ]− 3

4
ξ[ξQξΦ,Φ,Φ]

+
1

4
ξQξQ[ξΦ,Φ,Φ] +

4

3
ξ[ξ[ξΦ,Φ],Φ]− 2

3
ξ[[ξΦ,Φ], ξΦ] +

1

3
ξ[ξ[Φ,Φ], ξΦ]

)
+ . . . (5.27)

SWZW =
1

2
⟨ξΦ, QΦ⟩+ κ

3!
⟨ξΦ, [XΦ,Φ]⟩+ κ2

4!
⟨ξΦ,

(1
4
[X2Φ,Φ,Φ] +

3

4
[XΦ, XΦ,Φ]

)
⟩

+
κ2

4!
⟨ξΦ,

(1
3
[Φ, ξX[Φ,Φ]] +

5

3
X[Φ, ξ[Φ,Φ]]− 3

4
X[ξΦ, [Φ,Φ]] +

1

6
X[Φ, [ξΦ,Φ]]

)
⟩+ . . .

(5.28)
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f
(
e∧Φ

)
= Ψη (2.71)

f
(
ξΦ ∧ e∧tΦ

)
= Ψt (2.72)

S =

∫ 1

0
dt

〈
ξΦ, L

(
e∧tΦ

)〉
(2.73)

S =

∫ 1

0
dt

〈
Ψt, QG Ψη

〉
(2.74)

f−1 f = 1 (2.75)
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5.2 Equivalence of actions

As wee explained in the case of G, provided that the similarity transformation FLF† = QG , we

can discuss the equality of L∞-type and WZW-like actions.

Realization of WZW-like action

Let t be a real parameter t ∈ [0, 1]. We introduce a t-parametrized string field Φ(t) satisfying

Φ(0) = 0 and Φ(1) = Φ, which is a path connecting 0 and the string field Φ in the space of

string fields. Using this Φ(t), we can rewrite the L∞-type action as follows.

SEKS =
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩

=

∫ 1

0
dt

∂

∂t

( ∞∑

n=0

κn

(n+ 2)!
⟨ξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩

)

=

∫ 1

0
dt ⟨ξ∂tΦ(t), FΦ(t)⟩, (5.14)

where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξXe∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
XV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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L∞-gauge in the NS sector.

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ3)

+
κ2

4!

(
ξ
[
ξΦ, (Qξ +X)Φ,Φ

]
+ ξ

[
ξ[Φ,Φ], ξΦ

]
+

2

3
ξ
[
ξ[ξΦ,Φ],Φ

]
+

2

3

[
ξ[ξΦ,Φ], ξΦ

])

(A.132)

L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
κ

3!
ξ̄[ξ̄Φ,Φ]L +O(κ3)

+
κ2

4!

(
ξ̄
[
ξ̄Φ, (Qξ̄ +X)Φ,Φ

]L
+ ξ̄

[
ξ̄[Φ,Φ]L, ξ̄Φ

]L
+

2

3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)
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5.2 Equivalence of actions

As wee explained in the case of G, provided that the similarity transformation FLF† = QG , we

can discuss the equality of L∞-type and WZW-like actions.

Realization of WZW-like action

Let t be a real parameter t ∈ [0, 1]. We introduce a t-parametrized string field Φ(t) satisfying

Φ(0) = 0 and Φ(1) = Φ, which is a path connecting 0 and the string field Φ in the space of

string fields. Using this Φ(t), we can rewrite the L∞-type action as follows.

SEKS =
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩

=

∫ 1

0
dt

∂

∂t

( ∞∑

n=0

κn

(n+ 2)!
⟨ξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩

)

=

∫ 1

0
dt ⟨ξ∂tΦ(t), FΦ(t)⟩, (5.14)

where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξXe∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
XV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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Correspondence of fields

As we will see, the correspondence of fields f(e∧Φ) = Ψη, which provides the equivalence of

two equation of motions L(e∧Φ) = 0 and QGΨη = 0, can be rewritten as

π
(
G†(e∧Φ)

)
=

∫ 1

0
dτ EV†[τ ]

(
ηV

)
. (4.21) condition

While the left hand side is a function of string fields Φ and ξΦ, the right hand side is a function

of string fields V and ηV . Each side of (
conditioncondition
4.21) can be constructed by invertible transformations

of small-space states e∧Φ or ηV . For this purpose, we find that the following relation holds

EV†ΨX =

∫ 1

0
dτ EV†[τ ]

(
XV

)
. (4.22)

Recall that for any A ∈ H, the defining equation of the map EV† is given by

∂

∂τ
EV†[τ ]

(
A
)
= −EV†[τ ]

(
[V,A]G[τ ]

)
(4.23)

with the initial condition EV†[τ=0] = I. Thus, we find that

∂

∂τ

(
EV†[τ ]ΨX[τ ]

)
=

( ∂

∂τ
EV†[τ ]

)
ΨX[τ ] + EV†[τ ]

( ∂

∂τ
ΨX[τ ]

)

= −EV†[τ ]
([

V,ΨX[τ ]
]
G[τ ]

)
+ EV†[τ ]

(
XV + κ

[
V,ΨX[τ ]

]
G[τ ]

)

= EV†[τ ]
(
XV

)
. (4.24)

Utilizing the invertible map EV and the state XV , one can construct the associated field ΨX as

ΨX = EV
∫ 1

0
dτ EV†[τ ] (XV ). (4.25) another rep
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5.3 Partial gauge fixing conditions

Realization of L∞-type action

Utilizing the exponential map EV generating the similarity transformation of the BRST

operator QG = EV QEV† with replacing V by V (t) satisfying V (0) = 0 and V (1) = 1, one can

represent WZW-like action for superstring field theory as

SWZW =

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩

=

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.22)

Solving the correspondence of two string fields V and Φ
∫ 1

0
dτ EV (t)

†
[τ ]
(
XV (t)

)
≡ π

(
G−1(ξX e∧Φ(t))

)
, (5.23)

we obtain an L∞-type action in WZW-like formulation

SWZW =

∫ 1

0
dt ⟨πG−1

(
ξte
∧Φ(t)

)
, QπG−1

(
e∧Φ(t)

)
⟩

=

∫ 1

0
dt ⟨π

(
ξte
∧Φ(t)

)
, π

(
L(e∧Φ(t))

)
⟩

=
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩. (5.24)

Partial gauge fixing condition

Solving the following correspondence for V
∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
≡ πG−1

(
e∧Φ(t)

)
,

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
≡ π

(
G−1(ξt e

∧Φ(t))
)
, (5.25)

a partial gauge fixing condition reducing WZW-like action to L∞-type action appear, which we

explain in the rest. We start with expanding the WZW-like action in powers of κ:

SWZW = S2 + κS3 + κ2S4 + . . .

=
1

2
⟨ηV,QV ⟩+ κ

3!
⟨ηV, [QV, V ]⟩+ κ2

4!
⟨ηV,

[
QV,QV, V

]
+

[
[QV, V ], V

]
⟩+ . . . . (5.26)

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +

κ2

4!

(3
2
ξ[ξΦ, ξQΦ,Φ] +

5

2
ξ[ξΦ, QξΦ,Φ]− 3

4
ξ[ξQξΦ,Φ,Φ]

+
1

4
ξQξQ[ξΦ,Φ,Φ] +

4

3
ξ[ξ[ξΦ,Φ],Φ]− 2

3
ξ[[ξΦ,Φ], ξΦ] +

1

3
ξ[ξ[Φ,Φ], ξΦ]

)
+ . . . (5.27)

SWZW =
1

2
⟨ξΦ, QΦ⟩+ κ

3!
⟨ξΦ, [XΦ,Φ]⟩+ κ2

4!
⟨ξΦ,

(1
4
[X2Φ,Φ,Φ] +

3

4
[XΦ, XΦ,Φ]

)
⟩

+
κ2

4!
⟨ξΦ,

(1
3
[Φ, ξX[Φ,Φ]] +

5

3
X[Φ, ξ[Φ,Φ]]− 3

4
X[ξΦ, [Φ,Φ]] +

1

6
X[Φ, [ξΦ,Φ]]

)
⟩+ . . .

(5.28)
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5.2 Equivalence of actions

As wee explained in the case of G, provided that the similarity transformation FLF† = QG , we

can discuss the equality of L∞-type and WZW-like actions.

Realization of WZW-like action

Let t be a real parameter t ∈ [0, 1]. We introduce a t-parametrized string field Φ(t) satisfying

Φ(0) = 0 and Φ(1) = Φ, which is a path connecting 0 and the string field Φ in the space of

string fields. Using this Φ(t), we can rewrite the L∞-type action as follows.

SEKS =
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩

=

∫ 1

0
dt

∂

∂t

( ∞∑

n=0

κn

(n+ 2)!
⟨ξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩

)

=

∫ 1

0
dt ⟨ξ∂tΦ(t), FΦ(t)⟩, (5.14)

where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξte
∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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6 Conclusion

G†(Φ ∧ eτΦ) = EτV †(ηV ) (6.1)

S =

∫ 1

0
dt⟨A∂t(t), QG(t)Aη(t)⟩

QG(t) = Q+ [e−φ(QeΦ), ]

S =

∫ 1

0
dt⟨Ã∂t(t), Q Ãη(t)⟩ (6.2)

∂τAη(τ) = ηΦ+ [Φ, Aη(τ)] (6.3)

ηA∂t + ∂tAη + [Aη, A∂t ] = 0 (6.4)

A Berkovits’ theory

B Coalgebraic representation in large Hilbert space

24

6 Conclusion

G†(Φ ∧ eτΦ) = EτV †(ηV ) (6.1)

S =

∫ 1

0
dt⟨A∂t(t), QG(t)Aη(t)⟩

QG(t) = Q+ [e−φ(QeΦ), ]

S =

∫ 1

0
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Let t be a real parameter t ∈ [0, 1]. We introduce a t-parametrized string field Φ(t) satisfying

Φ(0) = 0 and Φ(1) = Φ, which is a path connecting 0 and the string field Φ in the space of

string fields. Using this Φ(t), we can rewrite the L∞-type action as follows.

SEKS =
1

2
⟨ξΦ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨ξΦ, Ln+1(

n+1︷ ︸︸ ︷
Φ, . . . ,Φ)⟩

=

∫ 1

0
dt

∂

∂t

( ∞∑

n=0

κn

(n+ 2)!
⟨ξΦ(t), Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t))⟩

)

=

∫ 1

0
dt ⟨ξ∂tΦ(t), FΦ(t)⟩, (5.14)

where FΦ(t) is the Maurer-Cartan element of the L∞-algebra

FΦ(t) := QΦ(t) +
∞∑

n=1

κn

(n+ 1)!
Ln+1(

n+1︷ ︸︸ ︷
Φ(t), . . . ,Φ(t)), (5.15)

which gives the on-shell condition of L∞-type superstring field theory FΦ = 0. Note that since

the variation of the action becomes δSEKS = ⟨ξδΦ,FΦ⟩, the t-dependence is topological.

In the coalgenbraic representation, the action becomes

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)),π

(
L(e∧Φ(t))

)
⟩. (5.16)

Since G is the cyclic L∞-morphism satisfying L = GQG†, we obtain

SEKS =

∫ 1

0
dt ⟨π(ξt e∧Φ(t)), π

(
GQG−1(e∧Φ(t))

)
⟩

=

∫ 1

0
dt ⟨π

(
G−1(ξte

∧Φ(t))
)
, Qπ

(
G−1(e∧Φ(t))

)
⟩. (5.17)

Then, under the following correspondence of fields

πG−1
(
e∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)
(5.18)

πG−1
(
ξXe∧Φ(t)

)
≡

∫ 1

0
dτ EV (t)

†
[τ ]
(
XV (t)

)
, (5.19)

the L∞-type action becomes

SEKS =

∫ 1

0
dt

〈 ∫ 1

0
dτ EV (t)

†
[τ ]
(
∂tV (t)

)
, Q

∫ 1

0
dτ EV (t)

†
[τ ]
(
ηV (t)

)〉
. (5.20)

Recall that as well as L, the shifted BRST operator QG can be constructed by the similarity

transformation: QG = EV Q EV †. Therefore, using (
another repanother rep
4.25), the L∞-type action can be rewrite as

SEKS =

∫ 1

0
dt ⟨Ψ∂t(t),

(
EV (t)Q EV (t)

†)Ψη(t)⟩

=

∫ 1

0
dt ⟨Ψ∂t(t), QG(t)Ψη(t)⟩. (5.21)
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