L_∞-relations in WZW-like

string field theory

Hiroaki Matsunaga (YITP, Kyoto)

based on upcoming paper

with Keiyu Goto (Univ. Tokyo)

China, May, 12th, 2015.

When you ask questions,

Please, speak *slowly* and use *easy* words.

L_∞-relations in WZW-like

string field theory

Hiroaki Matsunaga (YITP, Kyoto)

based on upcoming paper

with Keiyu Goto (Univ. Tokyo)

China, May, 12th, 2015.

Witten's Cubic Theory

Witten 86'

Interaction term includes local insertion of PCO.

 \rightarrow divergent contact terms, broken gauge inv.

• To remedy these, various approaches are proposed.

In my talk, two successive formulations are picked up.

Introduction.

Witten's Cubic Theory

Witten

The small Hilbert space

Some attempts ...

The large Hilbert space (WZW-like actions) **NS** open **Berkovits 95' INS** closed **Berkovits, Okawa, Zwiebach 04'**

In 2013

Witten's Cubic Theory

Witten

The small Hilbert space $(A_{m}/L_{m}$ -type actions) NS open Erler, Konopka, Sachs 13'

Gauge fixing . . . OK!

The large Hilbert space (WZW-like actions) NS open **Berkovits 95' NS** closed **Berkovits, Okawa, Zwiebach 04'**

In 2014

Witten's Cubic Theory

Witten

The small Hilbert space

(A_{∞}/L_{∞} -type actions)

NS open

NS closed

NS-NS closed

Erler, Konopka, Sachs 14'

Gauge fixing . . . OK!

The large Hilbert space (WZW-like actions) NS open **Berkovits 95' NS** closed **Berkovits, Okawa, Zwiebach 04'**

In 2014

Witten's Cubic Theory

Witten

The small Hilbert space

(A_{∞}/L_{∞} -type actions)

NS open

NS closed

NS-NS closed

Erler, Konopka, Sachs 14'

Gauge fixing . . . OK!

The large Hilbert space (WZW-like actions) NS open **Berkovits 95' NS** closed **Berkovits, Okawa, Zwiebach 04' NS-NS** closed H.M 14'

Today's Topic !!

Witten's Cubic Theory

Witten

Gauge fixing . . . OK

Gauge fixing . . . OK

Gauge fixing . . . OK

O. Introduction

- 1. Two formulations : L, Qg
- 2. Similarity Transformations
- 3. Equivalence of on-shell conditions

1. A short review of Two Formulations

- Resolving singularities -

We start with Witten's cubic superstring field theory.

Picture # anomaly

There exists ghost & picture # anomaly !!

Witten's Action :
$$S = \frac{1}{2} \langle \Psi, Q\Psi \rangle + \frac{1}{3} \langle \Psi, X(i) (\Psi * \Psi) \rangle$$

X(i) : Picture Changing Operator

$$\langle \Psi, X(i) (\Psi * \Psi) \rangle = \bigvee_{\substack{X(i) \\ \Psi}} \Psi$$

Two formulations

- OPE of PCOs X(i) is singular. . .
 - Contact terms become DIVERGENT !!
- Broken gauge invariance...

Two Formulations for Superstring Field Theory

(A) WZW-like Formulation (the large Hilbert space)

(B) A_{∞}/L_{∞} -type Formulation (the small Hilbert space)

(A) WZW-like Formulation

(the large Hilbert space)

Changing the $\#_{\text{ghost}} \& \#_{\text{picture}}$ of string fields.

Large-space string fields

In the "large" Hilbert space... ($\eta \xi \phi$ -system)

	Vertex Op.	String Field	(# _{gh} # _{pic})
Large :	$\mathcal{V}(z) = \xi(z)ce^{-\phi}V_m$	$\rightarrow \Phi$	(0 0)

There exists conformal weight 1 current : $\eta(z)$

 \rightarrow Zero mode $\eta := \eta_0$ also becomes a derivation !!

Note that "# of Q" = (1|0) and "# of η " = (1|-1)

The free Action (NS open)

 \rightarrow Two generators of gauge transf. : Q & η

Interacting terms . . . ??

Note that "# of ϕ " = (O | O) !

 \rightarrow We can make a function of ϕ

without 'picture-changing problems'.

Berkovits' open Superstring Field Theory

Berkovits WZW-"type" Action $S = \frac{1}{2} \langle e^{-\Phi} Q e^{\Phi}, e^{-\Phi} \eta e^{\Phi} \rangle + \frac{1}{2} \int_0^1 dt \langle e^{-t\Phi} \partial_t e^{t\Phi}, \left[\!\left[e^{-t\Phi} Q e^{t\Phi}, e^{-t\Phi} \eta e^{t\Phi}\right]\!\right] \rangle$

EOM:
$$\eta \left(e^{-\Phi} Q e^{\Phi} \right) = 0$$

Gauge transf.: $e^{-\Phi}\delta e^{\Phi} = Q_{\mathcal{G}}\Lambda + \eta\Omega$

$$Q_{\mathcal{G}} := Q + \begin{bmatrix} e^{-\Phi}(Qe^{\Phi}), & \end{bmatrix}$$

$$\uparrow$$
A (formal) pure-gauge g is the key.

WZW-like form

The action takes the WZW-like form

$$S = \int_0^1 dt \langle A_{\partial_t}(t), \, Q_{\mathcal{G}(t)} A_{\eta}(t) \rangle$$

→ The g-shifted BRST operator : $Q_{\mathcal{G}(t)} = Q + [e^{-\phi}(Qe^{\Phi}),]$

Associated fields :
$$\partial_{\tau} A_{\eta}(\tau) = \eta \Phi + [\Phi, A_{\eta}(\tau)]$$

We can similarly construct the action for closed superstrings.

In the Berkovits open NS theory, we can take

$$Z_2\text{-reversing}: (\mathbf{Q}, \eta, \phi) \rightarrow (\eta, \mathbf{Q}, -\phi)$$
$$S = \int_0^1 dt \langle \tilde{A}_{\partial_t}(t), Q \tilde{A}_{\eta}(t) \rangle$$

(B) A_∞/L_∞-type Formulation (the small Hilbert space)

Adding the regulators satisfying A_{∞}/L_{∞} -relations.

Recall the Witten's Cubic Action

$$S = \frac{1}{2} \langle \Psi, Q\Psi \rangle + \frac{1}{3} \langle \Psi, X(i) \big(\Psi * \Psi \big) \rangle$$

X(i) : Picture-Changing Operator (Singular OPE !!)

This Product is Associative !!

But contact terms become DIVERGENT !!

EKS's A_{∞} -type NS open theory

Using line integral $X = \int \frac{dz}{2\pi i} f(z) X(z)$, we can define

a new 2-string product M_2 : $M_2(\Psi_1, \Psi_2) = \frac{1}{3} \Big(X(\Psi_1 * \Psi_2) + (X\Psi_1) * \Psi_2 + \Psi_1 * (X\Psi_2) \Big)$

 M_2 is non-associative !!

 $M_2(M_2(A, B), C) \neq M_2(A, M_2(B, C))$

Higher products satisfying A_{∞} & η -derivation

Add appropriate 'higher products' as 'the regulator'!!

$$S = \frac{1}{2} \langle \Psi, Q\Psi \rangle + \frac{1}{3} \langle \Psi, M_2(\Psi^2) \rangle + \frac{1}{4} \langle \Psi, M_3(\Psi^3) \rangle + \frac{1}{5} \langle \Psi, M_4(\Psi^4) \rangle + \dots$$

 \rightarrow Satisfying A_{∞}/L_{∞} -relations :

$$(Q + M_2 + M_3 + \dots)^2 = 0$$

 \rightarrow Satisfying η -derivation relations :

$$\eta M_n (\phi \dots \phi) = \Sigma M_n (\phi \dots \eta \phi \dots \phi)$$

Constructing these products, one can obtain an action.

How to construct $M = \{M_n\}_{n=1}^{\infty}$?

Let us introduce a generating function of the products.

$$M(\tau) = \Sigma \tau^{n} M_{n+1}$$

• The NS string products are given by the diff. eq.

So . . . There exist Two Formulations !!

based on the large Hilbert space WZW-like actions

based on the small Hilbert space A_{∞}/L_{∞} -type actions

Does they relate to each other...?

(Ex.) NS closed string field theory

Large-space NS string field

$$V:$$
 ghost # = 1, picture # = 0

Small-space NS string field

$$\Phi$$
: ghost # = 2, picture # = -1

For example ... Free actions

Large-space Action (NS closed)
$$S_2 = \frac{1}{2} \langle \eta V, QV \rangle$$

- Q-gauge sym.
- η -gauge sym.

Small-space Action (NS closed)
$$S_2 = rac{1}{2} \langle \xi \Phi, Q \Phi \rangle = rac{1}{2} \langle \Phi, Q \Phi \rangle_{
m small}$$

For example . . . Free actions

Large-space Action (NS closed)
$$S_2 = rac{1}{2} \langle \eta V, QV
angle$$

• Q-gauge sym.

Partial Gauge Fixing $V=\xi\Phi$

Small-space Action (NS closed)
$$S_2 = \frac{1}{2} \langle \xi \Phi, Q \Phi \rangle = \frac{1}{2} \langle \Phi, Q \Phi \rangle_{\rm small}$$

NS closed 3-point Interaction

Large-space Action (NS closed)
$$S = \frac{1}{2} \langle \eta V, QV \rangle + \frac{\kappa}{3!} \langle \eta V, [QV, V] \rangle$$

- Q-gauge sym.
- η -gauge sym.

Small-space Action (NS closed)
$$S = \frac{1}{2} \langle \xi \Phi, Q\Psi \rangle + \frac{\kappa}{3!} \langle \xi \Phi, [X\Phi, \Phi] \rangle$$

NS closed 3-point Interaction

_arge-space Action (NS closed)
$$S = rac{1}{2} \langle \eta V, QV \rangle + rac{\kappa}{3!} \langle \eta V, [QV, V] \rangle$$

Partial Gauge Fixing

 $V = \xi \Phi$

Q-gauge sym.

Small-space Action (NS closed)

$$S = \frac{1}{2} \langle \xi \Phi, Q \Psi \rangle + \frac{\kappa}{3!} \langle \xi \Phi, [X \Phi, \Phi] \rangle$$

NS closed 3-point Interaction

_arge-space Action (NS closed)
$$S = \frac{1}{2} \langle \eta V, QV \rangle + \frac{\kappa}{3!} \langle \eta V, [QV, V] \rangle$$

• Q-gauge sym.

Partial Gauge Fixing (up to $O(\phi^3)$) $V = \xi \Phi + \frac{\kappa}{3!} \xi [\xi \Phi, \Phi] + O(\kappa^2)$

Small-space Action (NS closed)
$$S = \frac{1}{2} \langle \xi \Phi, Q\Psi \rangle + \frac{\kappa}{3!} \langle \xi \Phi, [X\Phi, \Phi] \rangle$$

NS closed 4-point Interaction

Large-space NS Action

$$S = \frac{1}{2} \langle \eta V, QV \rangle + \frac{\kappa}{3!} \langle \eta V, [QV, V] \rangle + \frac{\kappa^2}{4!} \langle \eta V, [QV, QV, V] + [[QV, V], V] \rangle$$

 η -gauge sym.

 $\begin{aligned} \text{Partial Gauge Fixing} \quad (\text{ up to } O(\phi^4)) \\ V &= \xi \Phi + \frac{\kappa}{3!} \xi[\xi \Phi, \Phi] \\ &+ \frac{\kappa^2}{4!} \Big(\xi[\xi \Phi, (Q\xi + X)\Phi, \Phi] + \xi[\xi[\Phi, \Phi], \xi \Phi] \\ &+ \frac{2}{3} \xi[\xi[\xi \Phi, \Phi], \Phi] + \frac{2}{3} \big[\xi[\xi \Phi, \Phi], \xi \Phi] \big) \end{aligned}$

Small-space NS Action $S = \frac{1}{2} \langle \xi \Phi, Q \Phi \rangle + \frac{\kappa}{3!} \langle \xi \Phi, [X \Phi, \Phi] \rangle + \frac{\kappa^2}{4!} \langle \xi \Phi L_3(\Phi, \Phi, \Phi) \rangle \quad \text{Q-gauge sym.}$

Witten's Cubic Theory

Witten

Gauge fixing ... OK

Witten's Cubic Theory

Witten

Gauge fixing . . . OK

How to obtain a closed form expression ?

2. Similarity Transformations

• Path-ordered exponential : G , E_{V}

• L = G Q G[†] & Qg =
$$E_{V}Q E_{V}^{\dagger}$$

Path-ordered exp. $A[\tau]$ of operators $O[\tau]$

• We consider a path-ordered exponential :

$$\begin{aligned} \mathcal{A}[\tau] &= \overrightarrow{\mathcal{P}} \exp\left(\int_{0}^{\tau} d\tau' \mathcal{O}[\tau']\right) \\ &= \mathbb{1} + \left(\int_{0}^{\tau} d\tau_{1} \mathcal{O}_{[\tau_{1}]}\right) + \sum_{n=2}^{\infty} \left(\int_{0}^{\tau} d\tau_{1} \mathcal{O}_{[\tau_{1}]}\right) \left(\int_{0}^{\tau_{1}} d\tau_{2} \mathcal{O}_{[\tau_{2}]}\right) \cdots \left(\int_{0}^{\tau_{n-1}} d\tau_{n} \mathcal{O}_{[\tau_{n}]}\right) \\ \mathbf{A}[\tau] \text{ is the solution of cliff. eq. (A[O] = 1) } \\ &\partial_{\tau} \mathcal{A}[\tau] = \mathcal{O}[\tau] \cdot \mathcal{A}[\tau] \end{aligned}$$

• Reversing the direction & sign, we obtain its inverse :

$$\mathcal{A}^{-1}[\tau] = \stackrel{\leftarrow}{\mathcal{P}} \exp\left(-\int_0^\tau d\tau' \mathcal{O}[\tau']\right)$$
$$= \mathbb{1} - \int_0^\tau d\tau_1 \mathcal{O}^{\dagger}[\tau_1] + \sum_{n=2}^\infty (-)^n \int_0^\tau d\tau_1 \cdots \int_0^{\tau_{n-1}} d\tau_n \mathcal{O}[\tau_n] \cdots \mathcal{O}[\tau_2] \mathcal{O}[\tau_1].$$

Path-ordered exp. gives a solution.

•
$$\mathcal{A}[\tau] = \stackrel{\rightarrow}{\mathcal{P}} \exp\left(\int_{0}^{\tau} d\tau' \mathcal{O}[\tau']\right)$$
 satisfies $\partial_{\tau} \mathcal{A}[\tau] = \mathcal{O}[\tau] \cdot \mathcal{A}[\tau]$ and

$$\mathcal{A}^{-1}[\tau] = \overleftarrow{\mathcal{P}} \exp\left(-\int_0^{\tau} d\tau' \mathcal{O}[\tau']\right) \text{ satisfies } \partial_{\tau} \mathcal{A}^{-1}[\tau] = -\mathcal{A}^{-1}[\tau] \cdot \mathcal{O}[\tau] \text{ .}$$

• Hence, when the operator $L(\tau)$ satisfies

$$\partial_{\tau} L(\tau) = [O(\tau), L(\tau)]$$
 with $L(O) = Q$,

a solution is given by $L(\tau) = A(\tau) Q A^{-1}(\tau) !!$

 \rightarrow Application : NS string products in the small-space.

Recall L_∞-type and WZW-like actions

Let us introduce a generating function of the products.

Small-space L_{∞} -type Action (NS closed)

$$S_{\rm EKS} = \int_0^1 dt \, \langle \boldsymbol{\pi}(\boldsymbol{\xi}_t \, e^{\wedge \Phi(t)}), \boldsymbol{\pi} \big(\mathbf{L}(e^{\wedge \Phi(t)}) \big) \rangle$$

•
$$\mathbf{L}[\tau] = \sum_{n=1} \tau^{n-1} \mathbf{L}_n$$
 : Generating fnc. of the NS products

 ∞

•
$$e^{\wedge \Phi} = \mathrm{Id} + \Phi + \frac{1}{2} \Phi \wedge \Phi + \frac{1}{3!} \Phi \wedge \Phi \wedge \Phi + \dots$$
 : Group-like element

 \rightarrow NS string products are given by the diff. eq.

NS products = Similarity Transformation of Q

Solution of the diff. eq.
$$\partial_{ au} \mathbf{L}[au] = \llbracket \mathbf{L}[au], \mathbf{\Xi}[au]
ight]$$

• Consider path-ordered exp. obtained from Ξ

$$\mathbf{G} = \stackrel{\rightarrow}{\mathcal{P}} \exp\left(-\int_{0}^{1} d\tau \mathbf{\Xi}[\tau]\right) \qquad \mathbf{G}^{\dagger}[\tau] = \stackrel{\leftarrow}{\mathcal{P}} \exp\left(\int_{0}^{\tau} d\tau' \mathbf{\Xi}[\tau']\right)$$
$$\Xi \text{ is BPZ odd and BPZ conjugate reverse } \stackrel{\rightarrow}{\mathcal{P}} \mathbf{to} \stackrel{\leftarrow}{\mathcal{P}}$$

 \rightarrow [G[†]: BPZ conjugate] = [G⁻¹: Inverse] !!

Since L(O) = Q, a solution is given by Similarity Transf.

$$\mathbf{L} = G \, Q \, G^{-1}$$

Large space WZW-like action (NS closed)

Recall the shifted bosonic string products:

$$Q_A B = QB + \sum_{n=1}^{\infty} \frac{\kappa^n}{n!} [\overbrace{A, \dots, A}^n, B]$$
$$B, C]_A = [B, C] + \sum_{n=1}^{\infty} \frac{\kappa^n}{n!} [\overbrace{A, \dots, A}^n, B, C]$$

• (formal) pure-gauge \mathcal{G} is defined by $\partial_{\tau}\mathcal{G}[\tau] = Q_{\mathcal{G}[\tau]}V$

• Ψ_η, Ψ_t are defined by

$$\partial_{\tau} \Psi_{\eta}[\tau] = \eta V + \kappa [V, \Psi_{\eta}[\tau]]_{\mathcal{G}[\tau]}$$
$$\partial_{\tau} \Psi_{\partial_{t}}[\tau] = \partial_{t} V + \kappa [V, \Psi_{\partial_{t}}[\tau]]_{\mathcal{G}[\tau]}$$

$$S = \int_0^1 dt \left\langle \Psi_t, \, Q_{\mathcal{G}} \Psi_\eta \right\rangle$$

The g-shifted BRST op. Qg (NS closed)

Note that

$$\begin{aligned} \frac{\partial}{\partial \tau} Q_{\mathcal{G}[\tau]} A &= [Q_{\mathcal{G}[\tau]} V, A]_{\mathcal{G}[\tau]} \\ &= [V, Q_{\mathcal{G}[\tau]} A]_{\mathcal{G}[\tau]} - Q_{\mathcal{G}[\tau]} [V, A]_{\mathcal{G}[\tau]} \end{aligned}$$

• Using
$$\widehat{\bigvee}(\tau) \coloneqq [\lor,]q_{(\tau)}$$
, Qq satisfies

$$\partial \tau \ Qg_{(\tau)} = - [Qg_{(\tau)}, \widehat{\vee}(\tau)].$$

$$\uparrow$$
Commutator

Shifted BRST = Similarity Transformation of Q

Q_q is also given by Similarity Transformation

$$Q_{\mathcal{G}} = \mathcal{E}_V Q \, \mathcal{E}_V^{-1}$$

Where E_{V} and E_{V}^{-1} are given by path-ordered exponentials

$$\mathcal{E}_V := \overset{\rightarrow}{\mathcal{P}} e^{\int d\kappa \, \hat{v}(\kappa)} \qquad \mathcal{E}_V^{-1} := \overset{\leftarrow}{\mathcal{P}} e^{-\int d\kappa \, \hat{v}(\kappa)}$$

 \rightarrow E_V : Invertible map !!

The following choice gives our WZW-like actions

$$\hat{v}(\kappa) \equiv \begin{bmatrix} V, \end{bmatrix}_{\mathcal{G}}$$

Similarity Transf. F connecting L and Qg

• Since $L = G Q G^{\dagger}$ and $Q_q = E_V Q E_V^{\dagger}$,

 $F = E_{\vee} G^{\dagger}$ satisfies $F L F^{\dagger} = Qg$!

3. Equivalence of on-shell conditions

• Similarity transf. gives L_{∞} -morphism

 We derive the correspondence of fields preserving the on-shell condition.

Similarity Transf. connecting L and Qg

Similarity Transf. is generated by $\ \ \mathsf{F}:=\mathcal{E}_V\,\mathbf{G}^\dagger$

 \rightarrow Invertible map !!

$$\mathbf{F} \mathbf{L} \mathbf{F}^{-1} = (\mathcal{E}_V \mathbf{G}^{\dagger}) \mathbf{G} \mathbf{Q} \mathbf{G}^{\dagger} (\mathbf{G} \mathcal{E}_V^{\dagger})$$
$$= \mathcal{E}_V Q \mathcal{E}_V^{\dagger}$$
$$= Q_{\mathcal{G}}.$$

- L and Q_q are connected by F : F $\mathbf{L} = Q_{\mathcal{G}}$ F

 \rightarrow F is a L_{∞}-morphism

Equivalence of two on-shell conditions

Small-space EOMLarge-space EOM
$$\mathbf{L}(e^{\wedge \Phi}) = 0$$
 $Q_{\mathcal{G}} \Psi_{\eta} = 0$

The correspondence (or Field redefinition)

$$\pi \big(\mathsf{F}(e^{\wedge \Phi}) \big) = \Psi_{\eta}$$

provides the equivalence of two EOMs :

$$\pi \left(\mathsf{F} \, \mathbf{L}(e^{\wedge \Phi}) \right) = \pi \left(Q_{\mathcal{G}} \, \mathsf{F}(e^{\wedge \Phi}) \right)$$
$$= Q_{\mathcal{G}} \, \Psi_{\eta}.$$

The correspondence of fields

$$\Psi_{\mathbb{X}} = \mathcal{E}_{V} \int_{0}^{1} d\tau \, \mathcal{E}_{V}^{\dagger}[\tau] \, (\mathbb{X}V)$$

• Therefore, $\pi(F(e^{\wedge \Phi})) = \Psi_{\eta}$ is equivalent to

$$\pi \left(\mathbf{G}^{\dagger}(e^{\wedge \Phi}) \right) = \int_{0}^{1} d\tau \, \mathcal{E}_{V}^{\dagger}[\tau] \left(\eta V \right)$$
function of ϕ , $\xi \phi$
function of ηV , V

How about Actions ?

$$L_{\infty}\text{-type Action} \quad S_{\text{EKS}} = \frac{1}{2} \langle \xi \Phi, Q \Phi \rangle + \sum_{n=1}^{\infty} \frac{\kappa^n}{(n+2)!} \langle \xi \Phi, L_{n+1}(\Phi, \dots, \Phi) \rangle$$
$$= \int_0^1 dt \, \frac{\partial}{\partial t} \Big(\sum_{n=0}^{\infty} \frac{\kappa^n}{(n+2)!} \langle \xi \Phi(t), L_{n+1}(\Phi(t), \dots, \Phi(t)) \rangle \Big)$$
$$= \int_0^1 dt \, \langle \xi \partial_t \Phi(t), \mathcal{F}_{\Phi(t)} \rangle \qquad \text{E.O.M.}$$
Thus, the action becomes
$$\mathcal{F}_{\Phi(t)} := Q\Phi(t) + \sum_{n=1}^{\infty} \frac{\kappa^n}{(n+1)!} L_{n+1}(\Phi(t), \dots, \Phi(t))$$

$$S_{\text{EKS}} = \int_{0}^{1} dt \, \langle \boldsymbol{\pi}(\boldsymbol{\xi}_{t} \, e^{\wedge \Phi(t)}), \boldsymbol{\pi}(\mathbf{L}(e^{\wedge \Phi(t)})) \rangle$$
$$= \int_{0}^{1} dt \, \langle \boldsymbol{\pi}(\boldsymbol{\xi}_{t} \, e^{\wedge \Phi(t)}), \, \boldsymbol{\pi}(\mathbf{G} \, \mathbf{Q} \, \mathbf{G}^{-1}(e^{\wedge \Phi(t)})) \rangle$$
$$= \int_{0}^{1} dt \, \langle \boldsymbol{\pi}(\mathbf{G}^{-1}(\boldsymbol{\xi}_{t} e^{\wedge \Phi(t)})), \, \boldsymbol{Q} \, \boldsymbol{\pi}(\mathbf{G}^{-1}(e^{\wedge \Phi(t)})) \rangle$$

How about Actions ?

$$\begin{split} \text{WZW-like Action} \quad S_{\text{\tiny WZW}} &= \int_0^1 dt \, \langle \Psi_{\partial_t}(t), \, Q_{\mathcal{G}(t)} \, \Psi_{\eta}(t) \rangle \\ &= \int_0^1 dt \, \langle \Psi_{\partial_t}(t), \, \left(\mathcal{E}_{V(t)} \, Q \, \mathcal{E}_{V(t)}^\dagger \right) \, \Psi_{\eta}(t) \rangle \end{split}$$

1

Since $\Psi_{\mathbb{X}} = \mathcal{E}_V \int_0^1 d\tau \, \mathcal{E}_V^{\dagger}[\tau] \, (\mathbb{X}V)$, the action is given by

To preserve the action, $\phi \& V$ must satisfy . . .

The correspondence (or Field redefinition)

$$\boldsymbol{\pi} \, \boldsymbol{G}^{-1} \big(e^{\wedge \Phi(t)} \big) \equiv \int_0^1 d\tau \, \mathcal{E}_{V(t)}^{\dagger}[\tau] \big(\eta V(t) \big)$$
$$\boldsymbol{\pi} \, \boldsymbol{G}^{-1} \big(\boldsymbol{\xi}_X e^{\wedge \Phi(t)} \big) \equiv \int_0^1 d\tau \, \mathcal{E}_{V(t)}^{\dagger}[\tau] \big(X V(t) \big)$$

provides the equivalence of two Actions :

→ It is nontrivial whether a solution exists. But... (We will discuss later...)

At least, perturbatively, we can seek a solution

We set
$$V = \Sigma_n \kappa^n V^{(n)}$$
 and impose $\xi V = O$.

In the actions, we solve

$$\boldsymbol{\pi} \, \boldsymbol{G}^{-1} \big(e^{\wedge \Phi(t)} \big) \equiv \int_0^1 d\tau \, \mathcal{E}_{V(t)}^{\dagger}[\tau] \big(\eta V(t) \big)$$

Then, we obtain the partial gauge fixing condition

$$V = \xi \Phi + \frac{\kappa}{3!} \xi[\xi \Phi, \Phi] + \frac{\kappa^2}{4!} \left(\xi[\xi \Phi, (Q\xi + X)\Phi, \Phi] + \xi[\xi[\Phi, \Phi], \xi \Phi] + \frac{2}{3} \xi[\xi[\xi \Phi, \Phi], \Phi] + \frac{2}{3} [\xi[\xi \Phi, \Phi], \Phi] + \frac{2}{3} [\xi[\xi \Phi, \Phi], \xi \Phi] \right) + \dots$$

Summary & Discussion NS & NS-NS sector of SFT

String products of two formulations are given by

Similarity Transformations of Q.

$$\rightarrow$$
 FL = Q_g F

- F preserves the space of solutions of E.O.M.
 - \rightarrow This F induces the field redefinition :

$$\boldsymbol{\pi} \big(\mathbf{G}^{\dagger}(e^{\wedge \Phi}) \big) = \int_{0}^{1} d\tau \, \mathcal{E}_{V}^{\dagger}[\tau] \big(\eta V \big)$$

Equivalence of two on-shell conditions

Summary & Discussion NS & NS-NS sector of SFT

Both actions can be represent by free-like forms:

$$S_{\text{EKS}} = \int_{0}^{1} dt \, \langle \boldsymbol{\pi} \big(\mathbf{G}^{-1}(\boldsymbol{\xi}_{t} e^{\wedge \Phi(t)}) \big), \, Q \, \boldsymbol{\pi} \big(\mathbf{G}^{-1}(e^{\wedge \Phi(t)}) \big) \rangle$$
$$S_{\text{WZW}} = \int_{0}^{1} dt \, \langle \int_{0}^{1} d\tau \, \mathcal{E}_{V(t)}^{\dagger}[\tau] \big(\partial_{t} V(t) \big), \, Q \, \int_{0}^{1} d\tau \, \mathcal{E}_{V(t)}^{\dagger}[\tau] \big(\eta V(t) \big) \big\rangle$$

• To obtain the equivalence of two actions, we have to find a solution of $\pi G^{-1}(e^{\wedge \Phi(t)}) \equiv \int_0^1 d\tau \, \mathcal{E}_{V(t)}^{\dagger}[\tau](\eta V(t))$ $\pi G^{-1}(\boldsymbol{\xi}_X e^{\wedge \Phi(t)}) \equiv \int_0^1 d\tau \, \mathcal{E}_{V(t)}^{\dagger}[\tau](XV(t))$

 \rightarrow Then, partial gauge fixing conditions will appear.

Discussion

In Berkovits theory, WZW-like action is given

$$S = \int_{0}^{1} dt \langle A_{\partial_{t}}(t), Q_{\mathcal{G}(t)} A_{\eta}(t) \rangle \qquad Q_{\mathcal{G}(t)} = Q + [e^{-\phi}(Qe^{\Phi}),]$$

By Z₂-reversing : (Q, η, ϕ) \rightarrow ($\eta, Q, -\phi$),
$$S = \int_{0}^{1} dt \langle \tilde{A}_{\partial_{t}}(t), Q \tilde{A}_{\eta}(t) \rangle$$

• Then, we can obtain a direct correspondences of

 $\mathsf{Z}_2\text{-reversed}\ \mathsf{A}_\eta$, A_∂ and redefined fields

$$A_{\eta} = \pi G^{\dagger} [1/(1-\phi)], \quad A_{\partial} = \pi G^{\dagger} \xi_{t} [1/(1-\phi)].$$

Discussion

And we can directly check that

 $A_{\eta} = \pi G^{\dagger} [1/(1-\phi)] \& A_{\partial} = \pi G^{\dagger} \xi_{t} [1/(1-\phi)]$

satisfy the relation : $\eta A_{\partial_t} + \partial_t A_\eta + [A_\eta, A_{\partial_t}] = 0$.

Then, without checking the defining eq. of asso. fields

$$\partial_{\tau} A_{\eta}(\tau) = \eta \Phi + [\Phi, A_{\eta}(\tau)]$$

we obtain the equivalence of actions.

Discussion

When we can't use Z_2 -revesing, to obtain the equivalence,

A) Check $\partial_{\tau}A_{\eta}(\tau) = \eta\Phi + [\Phi, A_{\eta}(\tau)]$ in terms of recletined field.

B) Check I.h.s. & r.h.s. have the same algebraic properties. (It may not be WZW-relations)

$$\boldsymbol{\pi} \, \boldsymbol{G}^{-1} \big(e^{\wedge \Phi(t)} \big) \equiv \int_0^1 d\tau \, \mathcal{E}_{V(t)}^{\dagger}[\tau] \big(\eta V(t) \big)$$
$$\boldsymbol{\pi} \, \boldsymbol{G}^{-1} \big(\boldsymbol{\xi}_X e^{\wedge \Phi(t)} \big) \equiv \int_0^1 d\tau \, \mathcal{E}_{V(t)}^{\dagger}[\tau] \big(X V(t) \big)$$

In the action, it is OK. But, as a state, it is not clear.

Thank you.

Appendix : Mathematics

Construction of a cyclic A_∞/L_∞-morphism

• Let (S(I+), L, ω) and (S(I+)', L', ω ') be cyclic L_{∞}-algebras.

 $\label{eq:L_sigma} L_\infty\text{-morphism}: \ A \ \text{morphism} \ \text{of coalgebra} \ f: S(H) \to S(H)'$ satisfying $\ f \ L = L' \ f \ .$

Cyclic L_{∞} -morphism : L_{∞} -morphism f satisfying

 ω (A,B) = ω ' (f₁ (A), f₁ (B)) and

$$\Sigma \omega' (f_j (A_1, A_j), f_k (B_1, B_k)) = 0.$$

f preserve the Equation of Motion !!

Consider two EOMs

Find a isomorphism satisfying $f L = Q_q f$.