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HS Theory and String Theory

HS gauge theory: infinite towers of massless HS fields in AdS

String theory: infinite towers of massive HS fields:

spontaneously broken HS gauge theory?

String Theory � HS theory

Known HS theories: first Regge trajectory of String Theory s = 0,1/2,1 . . .

Full String-like HS theory is still unknown.

Interesting conjectures 2012, Gaberdiel and Gopakumar 2013
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Both theories have interesting holographic duals:

String theory: N4 4d SYM

HS theory: 3d vectorial sigma model

Though HS theory contains gravity, it is analogous to open string: HS

fields are valued in some associative algebra: A∞ structure

The main theme of this talk is how to construct invariants in HS theory?

New method: invariants as central elements of the A∞ structure:

Interesting to compare with SFT

Application to AdS4/CFT3 HS holography and BH physics

4



Unfolded equations

Covariant first-order differential equations

dWΩ(x) = GΩ(W (x)), d = dxn∂n , GΩ(W ) =
∞∑
n=1

fΩ
Φ1...ΦnW

Φ1∧. . .∧WΦn

GΩ(W ) : function of “supercoordinates” WΩ

d > 1: Nontrivial compatibility conditions

GΦ(W ) ∧
∂GΩ(W )

∂WΦ
= 0 , L∞

Any solution to generalized Jacobi identities: FDA Sullivan (1968)

Gauge transformation

δWΩ = dεΩ + εΦ∂G
Ω(W )

∂WΦ
,

where the gauge parameter εΩ(x) is a (pΩ − 1)-form

(No gauge parameters for zero-forms WΩ)
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Properties

• General applicability

• Manifest (HS) gauge invariance

• Invariance under diffeomorphisms: exterior algebra formalism

• Lie algebra cohomology interpretation

• Independence of ambient space-time: Geometry is encoded by GΩ(W ):

unfolded equations make sense in any space-time

dWΩ(x) = GΩ(W (x)) , x→ X = (x, z) , dx → dX = dx + dz , dz = dzu
∂

∂zu

X-dependence is reconstructed in terms of W (X0) = W (x0, z0) at any X0

Classes of holographically dual models: different G 2012

6



Cartan formulation of gravity

Diffeomorphisms without distinguished metric tensor: exterior algebra

Vierbein one-form eαα̇ = dxneαα̇n α, β = 1,2, α̇, β̇ = 1,2

Lorentz connection ωαβ = dxnω
αβ
n , ω̄α̇β̇ = dxnω̄

α̇β̇
n

o(3,2) ∼ sp(4) connections wAB = wBA, A,B = 1, . . .4 and curvatures

RAB = dwAB + wACwDBCCD , CAB = −CBA , A = (α, α̇)

Torsion

Rαβ̇ = deαβ̇ + ωα
γeγβ̇ + ω̄β̇

δ̇eαδ̇

Lorentz curvature

Rαβ = dωαβ + ωα
γωβγ + λ2 eα

δ̇eβδ̇ , Rαβ = dωαβ + ωα
γωβγ

AdS4: Rαβ = 0 , Rα̇β̇ = 0 , Rαα̇ = 0

For nontrivial geometry some of components of the curvatures are

nonzero being represented by new zero-form fields: Weyl tensor
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Vacuum Geometry

h: a Lie algebra. ω = ωαTα: a one-form valued in h

G(ω) = −ω ω ≡ −
1

2
ωαωβ[Tα, Tβ]

Unfolded equation with W = ω is the flatness condition

dω + ω ω = 0

Compatibility condition: Jacobi identity for h.

FDA gauge transformation: usual gauge transformation of ω.

The zero-curvature equation describes background geometry in a

coordinate independent way.

If h is Poincare or anti-de Sitter algebra it describes Minkowski or AdSd

space-time
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Free fields unfolded

Let Wα contain p-forms Ci (e.g. 0-forms) and Gi be linear in ω and C

Gi = −ωα(Tα)ijCj .

The compatibility condition implies that (Tα)ij form some representation

T of h V of Ci. The unfolded equation is

DωC = 0

Dω ≡ d + ω: covariant derivative in the h-module V of Ci

Linear equations in a chosen background: covariant constancy equation

h: global symmetry
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Lagrangians via contractible systems

Contractible system

dw = L , dL = 0

is dynamically empty: gauge transformations

δw(x) = ε(x) , δL(x) = dε(x)

Gauge fixing w = 0 =⇒ L = 0

For the system

dw + L(W ) = L , dL = 0

where L(W ) is some closed function of other fields W .

In the canonical gauge w = 0

L = L(W ) , dL(W ) = 0 .

The singlet (invariant) field L becomes a Lagrangian giving rise to an

invariant action
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HS AdS/CFT correspondence

General idea of HS duality Sundborg (2001), Witten (2001)

AdS4 HS theory is dual to 3d vectorial conformal models

Klebanov, Polyakov (2002), Petkou, Leigh (2005), Sezgin, Sundell (2005); Giombi and Yin (2009);

Maldacena, Zhiboedov (2011,2012); MV (2012); Koch, Jevicki, Jin, Rodrigues (2011-2014);

Giombi, Klebanov; Tseytlin (2013,2014) ...

AdS3/CFT2 correspondence Gaberdiel and Gopakumar (2010)

Analysis of HS holography helps to uncover the origin of AdS/CFT ?!

Despite significant progress in the construction of actions during last

thirty years: A.Bengtsson, I.Bengtsson, Brink (1983); Berends, Burgers, van Dam (1984);

Fradkin, MV (1987), ... Boulanger, Sundell (2012) ...

construction of the generating functional for correlators and entropies

was lacking
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3d conformal equations

Rank-one conformal massless equations Shaynkman, MV (2001)

(
∂

∂xαβ
± i

∂2

∂yα∂yβ
)C±j (y|x) = 0 , α, β = 1,2 , j = 1, . . .N

Bosons (fermions) are even (odd) functions of yα: Ci(−y|x) = (−1)piCi(y|x)

Primaries are usual scalar and spinor

C(x) = C(0|x) , Cα(x) =
∂

∂yα
C(y|x)

∣∣∣∣
y=0

Higher components in

C(y | x) = i
∞∑
n=0

1

n!
yα1 . . . yαnCα1...αn(x)

are descendants expressed via x derivatives of the primaries
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Conserved currents

Rank-two equations{
∂

∂xαβ
−

∂2

∂y(α∂uβ)

}
J(u, y|x) = 0 Gelfond, MV (2003)

J(u, y|x): generalized stress tensor. Rank-two equation is obeyed by

J(u, y |x) =
N∑
i=1

C−i (u+ y|x)C+
i (y − u|x)

Primaries: 3d currents of all integer and half-integer spins

J(u,0|x) =
∞∑

2s=0

uα1 . . . uα2sJα1...α2s(x) , J̃(0, y|x) =
∞∑

2s=0

yα1 . . . yα2sJ̃α1...α2s(x)

Jasym(u, y|x) = uαy
αJasym(x)

∆Jα1...α2s(x) = ∆J̃α1...α2s(x) = s+ 1 ∆Jasym(x) = 2

Conservation equation:

∂

∂xαβ
∂2

∂uα∂uβ
J(u,0|x) = 0
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Free massless fields in AdS4

Infinite set of spins s = 0,1/2,1,3/2,2 . . .

Fermions require field doubling: ωii(y, ȳ | x) , Ci1−i(y, ȳ | x) , i = 0,1

ω̄ii(y, ȳ | x) = ωii(ȳ, y | x) , C̄i1−i(y, ȳ | x) = C1−i i(ȳ, y | x)

A(y, ȳ | x) = i
∞∑

n,m=0

1

n!m!
yα1 . . . yαnȳβ̇1

. . . ȳβ̇mA
α1...αn,

β̇1...β̇m(x)

The unfolded system for free massless fields is (1989)

? Rii1(y, y | x) = η H
α̇β̇ ∂2

∂yα̇∂yβ̇
C1−i i(0, y | x) + η̄ Hαβ ∂2

∂yα∂yβ
Ci1−i(y,0 | x)

? D̃0C
i1−i(y, y | x) = 0

R1(y, ȳ | x) := Dad
0 ω(y, ȳ | x) Hαβ := eαα̇e

βα̇ , H
α̇β̇ := eα

α̇eαβ̇

Dad
0 ω := DL − λeαβ̇

(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)
, D̃0 := DL + λeαβ̇

(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)

DL := dx −
(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)
Zero-forms C(Y |x) form a Weyl module ∼ boundary current module
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Holography at complex infinity

For manifest conformal invariance introduce

y+
α =

1

2
(yα − iȳα) , y−α =

1

2
(ȳα − iyα) , [y−α , y

+β]? = δβα

AdS4 foliation: xn = (xa, z) : xa are coordinates of leaves (a = 0,1,2,)

Poincaré coordinate z is a foliation parameter. AdS infinity is at z = 0

W =
i

z
dxαβy−α y

−
β −

dz

2z
y−α y

+α

eαα̇ =
1

2z
dxαα̇ , ωαβ = −

i

4z
dxαβ , ω̄α̇β̇ =

i

4z
dxα̇β̇

Vacuum connection can be extended to the complex plane of z with all

components containing dz̄ being zero.

Generating functional for the boundary correlators

S =
1

2πi

∮
z=0
L(φ)

An on-shell closed (d+ 1)-form L(φ) for a d-dimensional boundary

dL(φ) = 0 , L 6= dM
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Field equations at the boundary

Rescaling

Ci1−i(y, ȳ|x, z) = z exp(yαȳ
α)T i1−i(w, w̄|x, z) wα = z1/2yα w̄α = z1/2ȳα

W jj(y±|x, z) = Ωjj(v−, w+|x, z) v± = z−1/2y± w± = z1/2y±

In the limit z→ 0 free HS equations take the form of current conservation

equations [
dx − idxαβ

∂2

∂w+α∂w−β

]
T j 1−j
± (w+, w−|x,0) = 0

T jj
± (w+,w−|x, 0) = ηTj 1−j(w+,w− | x, 0)± η̄T1−j j(−iw−, iw+ | x, 0)

and(
dx + 2idxαβv−α

∂

∂w+β

)
Ωjj(v−, w+|x,0) = dxαγdxβγ

∂2

∂w+α∂w+β
T jj− (w+,0 | x,0)

DxΩjj
z (v−, w+|x,0)+DzΩjj

x (v−, w+|x,0) = −
i

2
dxαβdz

∂2

∂w+α∂w+β
T jj+ (w+,0 | x,0)
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Structure of the functional

The residue at z = 0 gives the boundary functional of the following

structure analogous to φn1...nsJ
n1...ns

SM3(ω) =
∫
M3
L , L =

1

2
ω
α1...α2(s−1)
x e

α2s−1
x βe

α2s
x

β(aCα1...α2s(ω)+āCα̇1...α̇2s
(ω))

Cα1...α2s(ω) has conformal properties of currents. Using that

aCα1...α2s(ω) + āCα̇1...α̇2s
(ω) = a−T−α1...α2s(ω) + a+T+α̇1...α̇2s

(ω)

T− describes local boundary terms

T+ describes nontrivial correlators via the variation of SM3
over the HS

gauge fields ω
α1...α2(s−1)
x

〈J(x1)J(x2) . . .〉 =
δn exp [−SM3(ω,C(ω))]

δω(x1)δω(x2) . . .

∣∣∣∣
ω=0

Computation of a+: work in progress
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Nonlinear HS equations

W(Z;Y ; k, k̄|x) = (d +W ) + S , W = dxnWn , S = dzαSα + dz̄α̇S̄α̇

W ?W = i(dZAdZA + ηdzαdzαB ? k ? κ+ η̄dz̄α̇dz̄α̇B ? k̄ ? κ̄)

W ? B = B ?W , B = B(Z;Y ; k, k̄|x)

HS star-product

(f ? g)(Z;Y ) =
1

(2π)4

∫
d4U d4V exp [iUAV

A] f(Z + U ;Y + U)g(Z − V ;Y + V )

Manifest gauge invariance

δW = [ε,W]? , δB = ε ? B −B ? ε , ε = ε(Z;Y ;K|x)

Vacuum solution with B = 0

W0 =W1,0
0 +W0,1

0 , W1,0
0 = dZAZA , W0,1

0 = W0(Y |x) : AdS4

Resolution for Z reconstructs A∞ structure of the HS nonlinear system
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Klein operators and Supertrace

Klein operator

κ = exp izαy
α , κ ? κ = 1

κ ? f(z, y) = f(−z,−y) ? κ

Supertrace

str(f(z, y)) =
1

(2π)2

∫
d2u d2v exp [−iuαvβ] f(u, v)

str(f ? g) = str(g ? f)

Klein operators are well-defined with respect to the star product but

have divergent supertrace

str(κ) ∼ δ4(0)

In our construction invariant functionals have divergent supertrace.

HS equations have a form of de Rham cohomology in the twistor space

arXiv:1502.02271
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Extended system

HS equations leave no room for an invariant action as a space-time p-

form built from W and B since str(W ? f(B) ?W ? g(B)) = 0.

Zero-forms str(f(B)) suffer from divergencies of the supertrace

(suggested to be regularized by Colombo, Iazeolla, Sezgin and Sundell).

−×− = +

The new proposal is to consider Lagrangians that are not of the form

str(L) via the following extension of the HS unfolded equations

W ?W = F (c,B) + Li ci , W ? B = B ?W , dL = 0

W = d +W and B are differential forms of odd and even degrees, respec-

tively (both in dx and dZ).

c are x- and dx-independent central elements like dZAdZ
A, δ2(dz)k ? κ . . .

Lagrangians L are x-dependent space-time differential forms of even

degrees valued in the center of the algebra. In this talk: ci = I i = 1

Li ci = L I
20



Symmetries

The system is consistent because B commutes with itself and with all

c and L. The gauge transformations are

δW = [W , ε]? , δB = [B , ε]? , ε = ε(dx, x, dZ, . . .)

δB = {W , ξ} , δW = ξA
∂F (c,B)

∂BA
, ξ = ξ(dx, x, dZ, . . .)

δL(dx, x) = dχ(dx, x) , δW = χI , χ(dx, x)

χ- transformation implies equivalence of L up to exact forms

allowing to choose canonical gauge WI := πW = 0

π is the projection to I

π(f(Y, Z|x))) = f(0,0|x) , π(f ? g) 6= π(g ? f)

Gauge transformation preserving canonical gauge

δL = dχ , χ = −π
(

[W , ε]? + ξA
∂F (c,B)

∂BA

)

L is on-shell closed and gauge invariant modulo exact forms
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Actions versus supertrace

Gauge invariant action

S =
∫

Σ
L

Since L is closed, it should be integrated over non-contractible cycles

For AdS/CFT the singularity is at infinity

BH invariants (entropies) are associated with (d− 2)-forms

If the HS algebra possesses a supertrace

L = str(dW +W ?W)
∣∣∣∣
dZ=0

This suggests that the second term vanishes and hence L is exact.

Not applicable if str(W ?W) is ill-defined:

L with well-defined str(W ?W) are exact.

L with ill-defined str(W ?W) have a chance to be nontrivial.
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Invariants of the AdS4 HS theory

W(dZ, dx;Z;Y ;K|x) contains all one- and three-forms in dZ and dx

B(dZ, dx;Z;Y ;K|x) contains all zero- and two-forms in dZ and dx

Lagrangians L(dx|x) depend on space-time coordinates and differentials.

Lagrangian relevant to the generating functional of correlators in

AdS4/CFT3 HS holography is a four-form L4

Lagrangian relevant to BH entropy is a two-form L2 ?!

Extended HS system is

iW ?W = dZAdZ
A+ηδ2(dz)B?k?κ+ η̄δ2(dz̄)B? k̄ ? κ̄+G(B)δ4(dZ)k? k̄ ?κ?κ̄+LI

L = L2 + L4 , G = g +O(B)

The g-dependent term represents de Rham cohomology in the Z-space.

Klein operators give rise to divergent traces and, hence, to nontrivial L
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Boundary functionals, parity, and
conformal HS theory

Parity transformation z→ −z, x→ x

θα, zα, yα, k
P⇐⇒ θ̄α̇, z̄α̇, ȳα̇, k̄ .

For general η HS equations are not P -invariant.

The A-model (η = 1) and B-model (η = i) are P -invariant

Since z−1dz is P - even for A and B models S = Sloc only contains boundary

derivatives giving some gauge invariant boundary functional.

Original bulk Lagrangian is invariant under reflection of all coordinates.

Since z integration takes away one power of z the boundary Lagrangian

is odd hence being of Chern-Simons type.

Actions SA,B of 3d conformal HS theory differ by the parity properties of

the scalar field.
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Nonlocal boundary functional

Naively, Snloc = 0 in A and B-models.

For general η it is not difficult to see that

L ∼ ω(cos(2ϕ)Rxx − sin(2ϕ)Rzx) , η = exp iϕ

Rxx ∼ ηexexC + η̄exexC̄ , Rxz ∼ iηezexC − iη̄ezexC̄

Sloc ∼ cos(2ϕ), Snloc ∼ sin(2ϕ). Snloc = 0 for A, B models.

Proper definition: factors in front of cos(2ϕ) and sin(2ϕ)

SlocA,B = S(ϕ)
∣∣∣∣
ϕ=0,π2

, SnlocA,B =
1

2

∂S(ϕ)

∂ϕ

∣∣∣∣
ϕ=0,π2

For general η it is impossible to separate Sloc and Snloc

Sloc+Snloc is gauge invariant: δSnloc can contain local terms compensating

δSnloc.

Only P -invariant A and B models allow gauge invariant local boundary

functionals SlocA,B = actions of the boundary conformal HS theory.

SnlocA,B are gauge invariant up to local terms.
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Black holes

4d GR BH is characterized by a spin-one Papapetrou field 1966.

Papapetrou two-form F obeys the sourceless Maxwell equations

dxF = 0 , dxF̃ = 0 , x 6= 0 .

For Schwarzschild BH

F =
4

r2
dtdr , F̃ = dΩ

t and r are the time and radial coordinates. dΩ is the angular two-form.

MF̃ supports the BH charge. At the horizon

F̃ = (2M)−2VH ,

where VH is the horizon volume form.
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BH charge

The spin-one sector of linearized HS equations

dω(x) =
(
ηH

α̇β̇ ∂2

∂ȳα̇∂ȳβ̇
C0(Y |x) + η̄Hαβ ∂2

∂yα∂yβ
C0(Y |x)

)∣∣∣∣
Y=0

+ L2

Relation to Papapetrou field

H
α̇β̇
C̄α̇β̇ +HαβCαβ = MF , Hαβ := eαα̇e

βα̇ , H
α̇β̇ := eα

α̇eαβ̇

M is the BH mass, zero-forms Cαβ and C̄α̇β̇ are (anti)self-dual components

of the spin-one field strength. The Hodge dual two-form is

i

(
HαβCαβ −H

α̇β̇
C̄α̇β̇

)
= M F̃ .

C(Y |x) extends the spin-two BH solution to HS fields

For η = exp [iϕ] this gives in the canonical gauge ω(x) = 0

−L2 =
sin(ϕ)

4M
VH +M cos(ϕ)F .

The second term does not contribute since F is the electric field of a

point charge: ω(x) is the Coulomb field regular at infinity: its contribu-

tion to L2 is exact.
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ω(x) for F̃ describes a monopole solution singular at infinity due to the

Dirac string: L2 in the canonical gauge ω(x) = 0, is closed but not exact.

For the A-model with ϕ = 0 the proper definition is

Q(0) = −
∂L2(ϕ)

∂ϕ

∣∣∣∣
ϕ=0

.

L2 supports BH charges.

L2 is closed on-shell with no Killing symmetry of a particular solution?!

No on-shell closed local L2 is expected in a nonlinear 4d field theory.

L2 in HS theory are in a certain sense nonlocal involving infinitely many

derivatives of fields with inverse powers of Λ (flat limit is obscure).

Being independent of local variations of Σ2, Q =
∫
Σ2 L2(φ) effectively //

depends on fields away from Σ2

For asymptotically free theory at infinity L2 is asymptotically local, re-

producing usual asymptotic charges.

28



Conclusions

Invariant functionals are associated with central elements of the field

algebra

Proposed formulation is coordinate-independent and applicable to any

boundaries and bulk solutions

Manifest holographic duality at the level of the generating functional

from the unfolded formulation of HS equations

Invariant functionals for singular solutions

BH entropy follow from the same construction via the L2-form

AdS3/CFT2: Invariant functional is a two-form: boundary functional is an

integral of a one-form: holomorphicity of CFT2
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