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AdS3/CFT2 correspondence

3D AdS3 Einstein gravity is special: No dynamical d.o.f

In 1986, Brown and Heanneaux: there exists boundary d.o.f.

More precisely they found that under appropriate boundary
conditions the asymptotic symmetry group (ASG) of AdS3 Einstein
gravity is a 2D CFT with central charge

cL = cR =
3l

2G

In modern understanding: quantum gravity in AdS3 is dual to a 2D
CFT at AdS boundary

A new window to study AdS/CFT without resorting to string theory
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AdS3/CFT2: a perfect platform

AdS3 gravity is solvable: all classical solutions are quotients of AdS3

such that a path-integral is possible in principleE. Witten (1988) ...

2D conformal symmetry is infinitely dimensional so that 2D CFT has
been very well studiedBelavin et.al. (1984) ..., even though the explicit
construction of dual 2D CFT is unknown

However, it is not clear
1 how to define the quantum AdS3 gravity?
2 what is the dual CFT?

Let us consider the semiclassical gravity, which correspond to the
large central charge limit

c =
3l

2G
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HS/CFT correspondence

The higher spin theory in AdS3 is relatively easy

It could be defined in terms of Chern-Simons theory with gauge
group SL(n,R), describing the interacting fields with spin from 2 to n

With generalized Brown-Henneaux b.c., spin n gravity in AdS3 has
Wn asym. symmetry algebra, with the same central charge
cL = cR = 3l/2GM. Henneaux and S.J. Rey 1008.4579, A. Campoleoni et.al. 1008.4744

Dictionary
1 massless graviton ↔ stress tensor
2 massless spin 3 field ↔ W3 field with conformal weight (3, 0)

(holomorphic sector)
3 massless spin 4 field ↔ W4 field with conformal weight (4, 0)

(holomorphic sector)
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In this talk, I will introduce the recent developments of AdS3/CFT2 in
the light of entanglement entropy

Based on the following works

with J.-j. Zhang, “On short interval expansion of Rényi entropy,”
arXiv:1309.5453 [hep-th].

With J. Long and J.-j. Zhang, “ Holographic Rényi entropy for CFT
with W symmetry0, arXiv: 1312.5510 [hep-th].

with J.-q. Wu, “Single Interval Rényi Entropy At Low
Temperature,” arXiv:1405.6254 [hep-th].

with J.-q. Wu, “Universal relation between thermal entropy and
entanglement entropy in CFT,” arXiv:1412.0761 [hep-th].

with J.-q. Wu, “Large Interval Limit of Rényi Entropy At High
Temperature,” arXiv:1412.0763 [hep-th].

with J.-q. Wu, “Holographic Calculation for Large Interval Rényi
Entropy at High Temperature”, to appear

Related works by many others...
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Entanglement entropy

Entanglement entropy is an important notion in quantum world.

A

B

For A and its complement B

Htot = HA ⊗HB and
ρtot = |Ψ〉〈Ψ|
Reduced density matrix:
ρA = trBρtot

Entanglement entropy
SA = −trAρA ln ρA

Rényi entropy S
(n)
A = − ln trAρ

n
A

n−1

SA = limn→1 S
(n)
A
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Rényi mutual information

A B

Choose two subsystems A and B which are not necessarily each
other’s complement

Define the Rényi mutual information of A and B

I
(n)
A,B = S

(n)
A + S

(n)
B − S

(n)
A+B .

For n = 1, it is called mutual information, which measures the
entanglement between A and B

From subadditivity, we know I (A,B) ≥ 0
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EE in QFT

Consider a QFT on a (d + 1)-dim. manifold R ×M, where R is time
direction

Subsystem: a d-dim. submanifold A ∈ M at a fixed time

In this case, the EE SA is called the geometric entropy as it depends
on the geometry of AL.Bombelli et.al. 1986, M. Srednicki 9304048

SA = γ
Area(∂A)

εd−1
+ subleading terms

where ∂A is the boundary of A, ε is the UV cutoff and γ is a
constant depending on the system

For 2D QFT, logarithmic law rather than area law

It is notoriously difficult to compute, even for free field theory
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Replica trick

The standard way is to use the replica trickJ. Callan et.al. 9401072

Here, we only focus on the 2D CFT, which provides more analytic
results Figures from T. Takayanagi’s lecture
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Replica trick II

Picture 1: partition function on a n-sheeted Riemann surface
Picture 2: multi-point function in a product orbifold (CFT)n/Zn

Branch points: twist operators with dimension

h = h̄ =
c

24

(
n − 1

n

)
.

One interval case

TrρnA = 〈σ(`, `)σ̃(0, 0)〉C = cn`
− c

6 (n− 1
n ),

from which the Rényi entropy for one interval could be readP. Calabrese and

J.L. Cardy 0405152

Sn =
c

6

(
1 +

1

n

)
log

`

ε
,
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Multi-intervals

In the case of N intervals, there are more branch cuts so that the
Riemann surface is of genus (n − 1)(N − 1), where n is the number
of replica

It is very difficult to compute (partition function on higher genus RS)

If we have multiple intervals A = [z1, z2] ∪ · · · ∪ [z2N−1, z2N ],

TrρnA = 〈σ(z2N , z̄2N)σ̃(z2N−1, z̄2N−1) · · ·σ(z2, z̄2)σ̃(z1, z̄1)〉C .

Very few exact results: free boson on a torus, free boson in
two-interval case, Ising model, ...

In higher dim., very limited knowledge
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Holographic entanglement entropyRyu and Takayanagi 2006

AdS/CFT: A field theory could be holographically described by a
higher-dim. gravity

Ryu and Takayanagi(2006)µFind a codimension two minimal
surface ΣA in the bulk that is homogeneous to A

The holographic entanglement
entropy (for Einstein gravity)

SA =
Area(ΣA)

4GN

It is called the RT formula

The area law is reminiscent of
black hole entropy

For 2D CFT, the HEE is just
the length of the bulk geodesic
ending at the branch points
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Remarks on HEE

The RT formula has passed some nontrivial tests: area law, one
interval EE in 2D CFT, SSA, anomaly ......

It has been intensely studied since its proposal
1 Covariant RT for dynamical spacetime Hubeny et.al. 2007

2 Higher curvature case Huang et.al. 2011, de Boer et.al. 2011

3 High spin gravity de Boer et.al. 2013, Ammon et.al. 2013

It could be understood as a kind generalized gravitational entropy A.

Lewkowycz and J. Maldacena (1304.4926)

In higher dimensions (≥ 4D gravity), it is not clear if HEE = EE at
strong coupling

In 2 + 1 dimension, the RT formula has been proven to give the EE
in CFT (for multi-intervals) by T. Hartman (1303.6955) and T.
Faulkner (1303.7221) independently
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HRE in AdS3: A sketchT. Faulkner 1303.7221

Find the bulk gravity solutions Bγ such that ∂Bγ = Σn

Key point: all solutions of AdS3 gravity could be obtained by
Bγ = H3/Γγ , where Γγ is the subgroup of isometry SL(2,C)

For the handlebody solution, Γγ is the Schottky group

Γγ acts on C such that C/Γγ = Σn

For a fixed Riemann surface, find its Schottky uniformization

Extend the uniformization to the bulk to find the gravitational solution

The classical regulated bulk action reproduces RT formula

For the same Σn, there could be more than one Bγ

In the classical gravity limit, keep only the solution of least action

Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)
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Schottky uniformization

Figure: c.f. Faulkner
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Schottky uniformization

Every compact Riemann surface could be obtained by the Schottky
uniformization”Retrosection theorem” by Koebe (1914)

The Schottky uniformization is determined by a differential equation

ψ′′(z) +
1

2
Tzzψ(z) = 0 (2.1)

Two independent solutions: ψ1 and ψ2

Their ratio w = ψ1

ψ2
gives the quotient map

More importantly, Tzz is the stress tensor of Liouville CFT. Its
explicit form depends on (3g − 3) complex accessory parameters
with respect to the holomorphic quadratic differentials on the
Riemann surface.

Imposing the monodromy conditions on the cycles allows us to solve
this ode

Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)
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Bulk action

The essential point is that the on-shell regulated bulk action of
gravitational configurations in pure AdS3 gravity is a Liouville type
action on the boundaryK. Krasnov (2000)

More importantly, the dependence of this so-called
Zograf-Takhtadzhyan action on the accessory parameters is
determined by the differential equationZograf and Takhtadzhyan (1988)

∂Sn
∂zi

= − cn

6(n − 1)
γi . (2.2)

γi are accessory parameters, being fixed by the monodromy problem
of an ordinary differential equation

For a general Riemann surface of high genus, it is a difficult problem
to determine this regulated action, even perturbatively

Nevertheless, for the Riemann surface in computing the Rényi
entropy, the problem is simplified due to the replica symmetry

1 Two-interval case: one cross ratio
2 Single interval in a torus (finite temperature, finite size)
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Two-interval case

In this case

Tzz =
∑
i

∆

(z − zi )2
+

γi
z − zi

, (2.3)

where

∆ =
1

2
(1− 1

n2
), (2.4)

There is only one accessory parameter

The accessory parameters are determined by requiring trivial
monodromy at infinity and on either the A-cycle or B-cycle
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Single interval on a torus

Tzz =
∑
i

(∆℘(z − zi ) + γiζ(z − zi )) + δ, (2.5)

where ℘ is the doubly periodic Weierstrass function, and

ζ(z) =
∑
m

πT coth[πT (z + mL)] +
∑
m 6=0

π2T 2z

sinh2 πmTL
− π2T 2z

3
. (2.6)

Torus: z ∼ z + mL + inβ ⇒ thermal circle and spatial circle

We can set trivial monodromy along one circle and the cycle
enclosing two branch points, so that the identification of the other
circle gives the generator of Schottky group

At high temperature above the Hawking-Page transition, the bulk
spacetime is actually a black hole, so the time direction is of trivial
monodromy.

At low temperature, the dual bulk is the thermal AdS spacetime, so
the spatial direction is of trivial monodromy.

Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)



EE HEE CFT Torus Conclusion Extras Classical 1-loop

Single interval on a torus

Tzz =
∑
i

(∆℘(z − zi ) + γiζ(z − zi )) + δ, (2.5)

where ℘ is the doubly periodic Weierstrass function, and

ζ(z) =
∑
m

πT coth[πT (z + mL)] +
∑
m 6=0

π2T 2z

sinh2 πmTL
− π2T 2z

3
. (2.6)

Torus: z ∼ z + mL + inβ ⇒ thermal circle and spatial circle

We can set trivial monodromy along one circle and the cycle
enclosing two branch points, so that the identification of the other
circle gives the generator of Schottky group

At high temperature above the Hawking-Page transition, the bulk
spacetime is actually a black hole, so the time direction is of trivial
monodromy.

At low temperature, the dual bulk is the thermal AdS spacetime, so
the spatial direction is of trivial monodromy.
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Finite size effectwith J.q. Wu 1405.6254

For the torus at high temperature, we have to consider the effect of
its finite size

The regulated action depends not only on the accessory parameter,
but also on the size of the torus

∂Sn
∂L

=
c

12π

n

n − 1
β(δ̃ − δ̃n=1). (2.7)

where δ̃ includes all the constant contribution in T (z).

This could be derived from the variation of the Liouville action

Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)
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Remarks

The above treatment is universal, even for other 3D gravity theory
with a AdS3 vacuumCB et.al. 1401.0261

Simply speaking, the holographic Renyi entropy(HRE) is given by
the classical action of the corresponding gravitational configurations

Caution: this picture is only true in the large central charge limit
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Large central charge limit

In the AdS3/CFT2 correspondence for pure gravityJ. Brown and M. Henneaux (1986)

c =
3l

2G

The large c limit corresponds to the weakly coupled gravity

The leading order contributions in 2D CFT is proportional to c , and
thus corresponds to the classical gravity action of gravitational
configuration

The subleading corrections in 2D CFT being independent of c should
correspond to the 1-loop partition function around the configurations

There are good reasons to consider the quantum correction: mutual
information, thermal correction, ...

Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)
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1-loop correction to HRE

The gravitational configurations for HRE are generated by the
Schottky group

Consider the fluctuations around the configuration and compute
their functional determinants

1-loop partition functionGiombi et.al. 0804.1773, Yin 0710.2129

Z 1−loop =
∏
γ∈P

∏
s

∞∏
m=s

1

|1− qmγ |
. (2.8)

Here the product over s is with respect to the spins of massless
fields and P is a set of representatives of primitive conjugacy classes
of the Schottky group Γ. qγ is defined by writing the two

eigenvalues of γ ∈ Γ as q
±1/2
γ with |qγ | < 1.

The contributions of the fields with different spins could be separated

Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)
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Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)



EE HEE CFT Torus Conclusion Extras Classical 1-loop

Strategy

Find the Schottky group Γ corresponding to Mn

Generate P = {non-repeated words up to conjugation}, e.g.

P = {L1, L2, L
−1
1 , L−1

2 , L1L2 ∼ L2L1, ...}

Compute eigenvalues of these words and sum over their contributions

For two intervals with small cross ratio x , only finitely many words
contribute to each order in x

1 Metric fluctuations, up to x8
Barrella et.al. 1306.4682

2 Spin 3 and/or 4 fluctuations, up to x8
BC et.al. 1312.5510

For single interval on a circle at finite temperature, similar strategy
works in the low temperature and high temperature limitsBarrella et.al.

1306.4682, BC et.al. 1405.6254

Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)
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CFT computation
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General prescriptionM. Headrick 1006.0047, P. Calabrese et.al. 1011.5482, BC and J-j Zhang 1309.5453

The replica trick requires us to study a orbifold CFT: (CFT)n/Zn. When
the intervals are short, we have the OPE of the twist operators

σ(z , z̄)σ̃(0, 0) = cn
∑
K

dK
∑

m,r≥0

amK
m!

ārK
r !

1

z2h−hK−mz̄2h̄−h̄K−r
∂m∂̄rΦK (0, 0),

with the summation K being over all the independent quasiprimary
operators of CFTn.

Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)
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Short interval expansion

We are interested in the two-interval case, then

TrρnA = 〈σ(1 + y , 1 + y)σ̃(1, 1)σ(y , y)σ̃(0, 0)〉C

= c2
nx
− c

6 (n− 1
n )

(∑
K

αKd
2
Kx

hKF (hK , hK ; 2hK ; x)

)2

where x is the cross ratio and F (hK , hK ; 2hK ; x) is the hypergeometric
function. αK is the normalization factor of ΦK , and dK is the OPE
coefficients.
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Remarks

For a concrete CFT model, the summation should be over all the
conformal blocks

For pure AdS3 gravity, it is enough to consider the vacuum Verma
moduleT. Hartman 1303.6955

For HS AdS3 gravity, it is necessary to include the quasi-primary
operators from W fields

Step 1: find the quasi-primary operators (in holomorphic sector)
level by level

Step 2: work out their coefficients in OPE

In the small x limit, to each order only finite number of the
quasi-primary operators contribute

The holo. and anti-holo. sectors are decoupled but share the similar
structure, so we can focus on the holo. one

The key ingredients in the OPE of twist operators is the coefficients
αK and dK .
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Rényi mutual information

We are interested in the mutual Renyi entropy

I
(n)
A1,A2

= S
(n)
A1

+ S
(n)
A2
− S

(n)
A1+A2

In the following, we write In for I
(n)
A1,A2

.

The Rényi mutual information is

In =
c

3
(1 +

1

n
) log

y

ε
+

1

n − 1
logTrρnA,

= I treen + I 1−loop
n + I 2−loop

n + · · · .

Here we have classified the contributions according to the order of
the inverse of central charge 1

c , which in the large c limit corresponds
to tree, 1-loop, and 2-loop contributions in the gravity side

1 I treen ∼ O(c) terms
2 I 1−loop

n ∼ O(c0) terms
3 I 2−loop

n ∼ O(1/c) terms

After some highly nontrivial summations...
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Useful formulae I

Define

fm(n) ≡
n−1∑
j=1

1(
sin πj

n

)2m ,

we need

f1(n) = n2−1
3 , f2(n) =

(n2−1)(n2+11)
45 ,

f3(n) =
(n2−1)(2n4+23n2+191)

945 ,

f4(n) =
(n2−1)(n2+11)(3n4+10n2+227)

14175 ,

f5(n) =
(n2−1)(2n8+35n6+321n4+2125n2+14797)

93555 ,

f6 =
(n2−1)(1382n10+28682n8+307961n6+2295661n4+13803157n2+92427157)

638512875 .

...
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Useful formulae II

hj1j2j3mpq = 1
s2m
j1 j2

s2p
j2 j3

s2q
j3 j1

+ possible cyc.

with sj1j2 ≡ sin π(j1−j2)
n and cj1j2 ≡ cos π(j1−j2)

n .∑
0≤j1<j2<j3≤n−1

hj1j2j3111 =
n(n2−1)(n2−4)(n2+47)

2835 ,

∑
0≤j1<j2<j3≤n−1

hj1j2j3211 =
n(n2−1)(n2−4)(n4+40n2+679)

14175 ,

∑
0≤j1<j2<j3≤n−1

hj1j2j3220 =
2n(n2−1)(n2−4)(n2+11)(n2+19)

14175 ,

∑
0≤j1<j2<j3≤n−1

hj1j2j3320 =
2n(n2−1)(n2−4)(6n6+173n4+2084n2+12137)

467775 ,

∑
0≤j1<j2<j3≤n−1

hj1j2j3330 =
n(n2−1)(n2−4)(739n8+20075n6+355677n4+2953625n2+14813884)

638512875 ,

...
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Mutual information: classical part

The tree-level part, or the classical part, being proportional to the central
charge c , originates only from the vacuum module

I treen = c(n−1)(n+1)2x2

144n3 + c(n−1)(n+1)2x3

144n3

+
c(n−1)(n+1)2(1309n4−2n2−11)x4

207360n7

+
c(n−1)(n+1)2(589n4−2n2−11)x5

103680n7

+ c(n−1)(n+1)2(805139n8−4244n6−23397n4−86n2+188)x6

156764160n11

+ (the terms proportional to x7 and x8) +O
(
x9
)

It matches exactly the result in M. Headrick 1006.0047, T. Hartman
1303.6955, T. Faulkner 1303.7221 up to order x8.
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Mutual information: 1-loop correction from graviton

The quantum 1-1oop part from the stress tensor, being proportional to
c0, is

I
(2)1−loop
n =

(n+1)(n2+11)(3n4+10n2+227)x4

3628800n7

+
(n+1)(109n8+1495n6+11307n4+81905n2−8416)x5

59875200n9

+
(n+1)(1444050n10+19112974n8+140565305n6+1000527837n4−167731255n2−14142911)x6

523069747200n11

+ (the terms proportional to x7 and x8) +O
(
x9
)
.

It matches exactly the result in M. Headrick 1006.0047, T. Barrella
1306.4682 up to order x8.

The classical mutual information (n = 1) is vanishing

Its quantum correction is nonvanishing
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Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)



EE HEE CFT Torus Conclusion Extras Prescription RMI

Mutual information: 1-loop correction in W3

The quantum 1-1oop part in CFT with W3 symmetry, being proportional
to c0, is

I
(2,3)1−loop
n = · · ·

+ (n+1)x6(3610816n10+47796776n8+351567243n6+2502467423n4−412426559n2+10856301)
1307674368000n11

+(the terms proportional to x7 and x8) +O(x9),

the “· · · ” being the x4, x5 parts of I
(2)1−loop
n

The extra contributions start to appear from order x6, as the
conformal weight of W3 field is three

It exactly matches the 1-loop correction to HRE to order x8
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Mutual information: 2-loop correction

Remarkably there is also the quantum 2-loop contribution, being
proportional to 1/c ,

I 2−loop
n =

(n+1)(n2−4)(19n8+875n6+22317n4+505625n2+5691964)x6

70053984000n11c

(n+1)(n2−4)(276n10+12571n8+317643n6+7151253n4+79361381n2−9428724)x7

326918592000n13c

+(the terms proportional to x8) +O
(
x9
)
,

This is novel, expected to be confirmed by 2-loop computation in gravity

When n = 2, the two-loop correction is vanishing, as S (2) being
genus 1 partition function is 1-loop exactA. Maloney and E. Witten 0712.0155

When n > 2, there are nonvanishing 2-loop correctionsXi Yin, 0710.2129

Actually there is nonvanishing quantum 3-loop contribution, being
proportional to 1/c2, for S (n), n > 3.
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Short summary: two-interval case

Q1: Is the holographic computation of quantum correction of Renyi
entropy correct?

We considered the two disjoint intervals with small cross ratio x ,
which allows us to use well-established CFT techniqueswith J.J. Zhang 1309.5453

We showed that for two disjoint intervals with small cross ratio x ,
the CFT result matches exactly with 1-loop HRE to order x8.

Q2: How about the situation with matter coupling?

We discussed the case with higher spin fields, the results are
remarkably good ...with J. Long and J.J. Zhang 1312.5510

Q3: How about other 3D gravity theories, CTMG or CNMG?

They may dual to logarithmic CFT, which requires some cares

Quite interesting, all in good agreementwith F.y. Song and J.J. Zhang 1401.0261
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Single interval on a torus

When the interval is not very large, HRE could be computed
perturbatively for both high and low temperatures

We studied the Rényi entropy of single interval on a circle in a 2D
CFT at a low temperature, whose thermal density matrix could be
expanded level by level

ρ =
e−βH

Tre−βH
=

1

Tre−βH

∑
| φ〉〈φ | e−βEφ

We find exact agreement between CFT and bulk results at low
temperaturewith J.q. Wu 1405.6254

1 Classical contribution up to order e−
8πβ
L

2 Quantum correction up to order e−
6πβ
L

Similar agreement at high temperature if the interval is not very
large
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Large interval: holographic result

The entanglement entropy of single interval at high temperature is

SEE =
c

3
log sinh(πTl) (4.1)

From holographic point of view, it is given by the geodesic in the
BTZ background ending on the interval

However, it is only true when the interval is not very large

When the interval is very large, the disconnected curve gives smaller
lengthT. Azeyanagi et.al. 0710.2956
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Entanglement and thermal entropy

Moreover, it suggests the relation

SEE (1− ε) = SBH + SEE (ε)

Or change it into a field theory relation between thermal entropy
and entanglement entropy

Sthermal = SEE (1− ε)− SEE (ε)

Conjecture: this should be true for any CFT, not only for the CFT
with a holographic dual

We have proved this universal relation for any CFT with discrete
spectrum with J-q Wu, 1412.0761
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HRE: large interval limit

The study of HEE suggests that in the large interval limit, the
gravitational configuration for the Rényi entropy should be different

This means we should impose a different set of monodromy
conditions on the cycles

On the CFT side, we proposed a novel expansion based on the twist
sector of symmetric orbifoldwith J-q Wu, 1412.0763

We tested our proposal in the case of free boson, after correcting
some errors in the literaturewith J-q Wu, 1412.0763,1501.00373

We find quite good agreement between bulk and CFT, both on
classical and 1-loop quantum levelswith J-q Wu, to appear
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Bin Chen, PKU Rényi Entropy in AdS3/CFT2 (with W symmetry)



EE HEE CFT Torus Conclusion Extras

Discussion

Rényi entropy opens a new window to study the AdS3/CFT2

correspondence

Compelling evidence that the holographic computation of Rényi
entropy is correct, beyond the RT formula

How to prove the HRE beyond classical level?

For pure AdS3 quantum gravity, it is the vacuum conformal module
in the dual CFT which dominate the contribution

How about the other modules in the dual CFT? light spectrum,
heavy spectrum ....

What’s the CFT dual of quantum AdS3 gravity?E. Witten 1988, S. Carlip 050302, A.

Maloney and E. Witten 0712.0155,H. Verlinde et.al. 1412.5205,...
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Rényi entropy in HS gravity

We have been working on the CFT vacuum or CFT at high
temperature

The high spin field has been taken as the fluctuation, giving the
quantum correction to RE

A more interesting question: EE in the case that the high spin fields
presents as hair, say high spin black hole

In this case, a prescription based on WL has been proposed to
compute HS EE holographicallyde Boer et.al. 2013,2015, Ammon et.al. 2013

On the field side, one has to consider the deformation of W-field to
the lagrangian

J. Long did a quite remarkable job to compute the HS RE in CFT
under the large central charge limit J. Long, 1408.1298

1 Reproduce the holographic HSEE
2 1-loop quantum correction

How to compute HSRE and its quantum correction in HS gravity?
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Other questions

Our treatment is by brutal force, more efficient way?

CFT computation shows that 1/c correction is absent for the
genus-1 RS, but is present when the RS is of higher genus

Higher loop corrections around the gravitational configurations
whose boundary is of genus greater than one?

Rényi entropy in excited states Work in progress

From entanglement to gravity?
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Thanks for your attention!
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Quasiprimary fields in 2D CFT

In a 2D CFT, the field φ(z) is called quasi-primary if

[Lm, φn] = ((h − 1)m − n)φm+n, for m = ±1, 0 (6.1)

We write the quasiprimary operators as φi with conformal weights hi
and h̄i

The correlation functions of two and three quasiprimary operators on
complex plane C are determined by the global SL(2,C )/Z2

conformal symmetry

〈φi (zi , z̄i )φj(zj , z̄j)〉C =
αiδij

z
2hi
ij z̄

2h̄i
ij

,

〈φi (zi , z̄i )φj(zj , z̄j)φk(zk , z̄k〉C
=

Cijk

z
hi +hj−hk
ij z

hj +hk−hi
jk z

hi +hk−hj
ik z̄

h̄i +h̄j−h̄k
ij z̄

h̄j +h̄k−h̄i
jk z̄

h̄i +h̄k−h̄j
ik

,

with zij ≡ zi − zj and z̄ij ≡ z̄i − z̄j .
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OPE in 2D CFT

The OPE of two quasiprimary operators could be generally written as

φi (z , z̄)φj(0, 0) =
∑
k

C k
ij

∑
m,r≥0

amijk
m!

ārijk
r !

1

zhi+hj−hk−mz̄ h̄i+h̄j−h̄k−r
∂m∂̄rφk(0, 0),

where the summation k is over all quasiprimary operators and

amijk ≡
Cm
hk+hi−hj +m−1

Cm
2hk+m−1

, ārijk ≡
C r
h̄k+h̄i−h̄j +r−1

C r
2h̄k+r−1

, C k
ij ≡

Cijk

αk

with the binomial coefficient being C y
x = Γ(x+1)

Γ(y+1)Γ(x−y+1) .
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Holomorphic quasiprimary operators in CFT1

Explicitly the holomorphic quasiprimary operators of first few levels from
vacuum module are listed as follows.

At level 0, it is the identity operator 1

At level 2, there is one quasiprimary operator the stress tensor T .

At level 4, it is A = (TT )− 3
10∂

2T .

At level 6, they are B = (∂T∂T )− 4
5 (T∂2T ) + 23

210∂
4T and

D = C + 93
70c+29B, with C = (T (TT ))− 9

10 (T∂2T ) + 4
35∂

4T .

At level 8, more complicated construction
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Quasiprimaries from vacuum module in CFTn

The quasiprimary operators from vacuum module are listed as below

L0 quasiprimary operators degeneracies #
0 1 1 1
2 T (zj) n n

4 T (zj1 )T (zj2 ) with j1 < j2
n(n−1)

2
n(n+1)

2
A(zj) n

5 Jj1j2 (z) with j1 < j2
n(n−1)

2
n(n−1)

2

T (zj1 )T (zj2 )T (zj3 ) with j1 < j2 < j3
n(n−1)(n−2)

6
T (zj1 )A(zj2 ) with j1 6= j2 n(n − 1)

6 Kj1j2 (z) with j1 < j2
n(n−1)

2
n(n+1)(n+5)

6
B(zj) n
D(zj) n

· · · · · · · · · · · ·
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Note that the j ’s listed above vary as 0 ≤ j ≤ n − 1, and also the
operators

Jj1j2 (z) = T (zj1 )i∂T (zj2 )− i∂T (zj1 )T (zj2 ),

Kj1j2 = ∂Tj1∂Tj2 −
2

5

(
Tj1∂

2Tj2 + ∂2Tj1Tj2

)
can not be factorized into the operators at different copies.
The coefficients αK for these operators could be calculated easily

αTT =
c2

4
, αJ = 2c2, αTTT =

c3

8
,

αTA =
c2(5c + 22)

20
, αK =

36c2

5
.
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The coefficient dK

To compute dK we consider the multivalued transformation

z → f (z) =

(
z − `

z

)1/n

,

which maps the Riemann surface Rn,1 to the complex plane C . With some
efforts, we find dK ’s for various operators listed above,

d1 = 1, dT =
n2 − 1

12n2
, dB = −

(n2 − 1)2
(
2(35c + 61)n2 − 93

)
10368n6(70c + 29)

,

dA =
(n2 − 1)2

288n4
, dD =

(n2 − 1)3

10368n6
, d j1j2

J =
1

16n5c

cj1j2
s5
j1j2

,

d j1j2j3
TTT = − 1

8n6c2

1

s2
j1j2

s2
j2j3

s2
j1j3

+
n2 − 1

96n6c

(
1

s4
j1j2

+
1

s4
j2j3

+
1

s4
j1j3

)
+

(n2 − 1)3

1728n6
,

d j1j2
TA =

n2 − 1

96n6c

1

s4
j1j2

+
(n2 − 1)3

3456n6
, d j1j2

TT =
1

8n4c

1

s4
j1j2

+
(n2 − 1)2

144n4
,

Here sj1j2 ≡ sin π(j1−j2)
n

and cj1j2 ≡ cos π(j1−j2)
n

.
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Quasiprimaries from W3 field in CFTn

The quasiprimary operators from W3 field with nonvanishing coefficients
are listed as below

L0 quasiprimary operators degeneracies

6 Wj1Wj2 with j1 < j2
n(n−1)

2

7 Uj1j2 with j1 < j2
n(n−1)

2

Wj1Sj2 with j1 6= j2 n(n − 1)

8 Vj1j2 with j1 < j2
n(n−1)

2

Tj1Wj2Wj3 with j1 6= j2, j1 6= j3 and j2 < j3
n(n−1)(n−2)

2

· · · · · · · · ·

Here we have

S = (TW )− 3

14
∂2W ,

Uj1j2 = Wj1 i∂Wj2 − i∂Wj1Wj2 ,

Vj1j2 = ∂Wj1∂Wj2 −
2

7

(
Wj1∂

2Wj2 + ∂2Wj1Wj2

)
.
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Normalizations and coefficients

αS = c(7c+114)
42 , αWW = c2

9 , αU = 4c2

3 ,

αWS = c2(7c+114)
126 , αV = 52c2

7 , αTWW = c3

18 .

d j1j2
WW = − 3

(2n)6c
1

s6
j1 j2

, d j1j2
U = − 3

(2n)7c

cj1 j2
s7
j1 j2

, d j1j2
WS = − n2−1

(2n)8c
1

s6
j1 j2

,

d j1j2
V = 1

26(2n)8c

(
6(n2+13)

s6
j1 j2

− 91
s8
j1 j2

)
, d j1j2j3

TWW = 18
(2n)8c2

1
s2
j1 j2

s4
j2 j3

s2
j3 j1

− n2−1
(2n)8c

1
s6
j2 j3

.
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