$\mathrm{Br}(\mathrm{H} \rightarrow \gamma \gamma)$ measurement

WANG Feng ${ }^{1}$ RUAN Manqi ${ }^{2}$ LI Gang ${ }^{2}$ ZHANG Zhenyu ${ }^{1}$ ZHOU Xiang ${ }^{1}$ 1 Wuhan University
2 Institute of High Energy Physics Chinese Academy of Science

25/05/2015

E_{γ} deposite in Ecal (AAborpFoscollecion)

Reconstruction energy (deposit E)
ilc17_slc6_arbor25May15.sh

CalibrECAL:

48.19
98.38

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20},\right.
$$

$$
+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

χ^{2}-minimized
$\chi^{2}=\sum_{\text {evenss }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}$

$$
\frac{\sigma}{E_{\text {meas }}^{e n}}=0.1784 \approx \frac{17.84 \%}{\sqrt{E}}
$$

E_{γ} deposite in Ecal (ArborPFOsCollection)

Reconstruction energy (deposit E)

$$
\begin{array}{ll}
E_{\text {meas }}^{\text {en }}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 22}\right. \\
+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
\end{array}
$$

E_{γ} deposite in Ecal (ArborPFOsCollection)

Reconstruction energy (deposit E)

E_{γ} deposite in Ecal (AAborposocoloestion)

Reconstruction energy (deposit E)

$$
\begin{array}{ll}
E_{\text {meas }}^{\text {en }}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) & \\
\chi^{2} \text {-minimized } \\
\chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{\text {en }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} &
\end{array}
$$

E deposite in Ecal (ArborPFOsCollection) Reconstruction energy (deposit E)

E_{γ} deposite in Ecal (ArborPFOsCollection)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \\
& \frac{\sigma}{E_{\text {meas }}^{e n}}=0.03957 \approx \frac{39.57 \%}{\sqrt{E}}
\end{aligned}
$$

E_{γ} deposite in Ecal (AAborposocoloestion)

Reconstruction energy (deposit E)

E_{γ} deposite in Ecal (EcalSiliconCollection)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
\end{aligned}
$$

$$
\chi^{2} \text {-minimized }
$$

$$
\chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
$$

No. of hit

E_{ν} deposite in Ecal (Atbopfoscoliefion)

back up

init_ilcsoft_ArborDHCAL_6_ILD.sh

Optimization

- 1 energy deposit

$$
\begin{aligned}
& E_{\text {meas }}^{\text {en }}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2}=\sum_{\text {everus }}\left(\left(E_{\text {meas }}^{\text {en }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \quad \chi^{2} \text {-minimized }
\end{aligned}
$$

- 2 number of hit

$$
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right)+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
$$

- 3 combining the two measurements

$$
\begin{aligned}
& E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }} \\
& \chi^{2}=\sum_{\text {evenss }}\left(\left\{\lambda\left(E_{\text {mean }}^{\text {en }}-E_{\text {meas }}^{e n}\right)+(1-\lambda)\left(E_{\text {mean }}^{\text {hit }}-E_{\text {meas }}^{\text {hit }}\right)\right\} / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \quad x^{2} \text {-minimized }
\end{aligned}
$$

Todal enegy

Total energy of hits

Sum of clusterized hits energy in EcalBushes

Sum of clusterized hits energy in EcalBushes

E_{γ} deposite in Ecal (EcalSiliconCollection)

E_{γ} deposite in Ecal EEasalicioncolilection)

Reconstruction energy

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \\
& a=88.0481 \\
& f_{1}=0.5434 \\
& b=198.438 \\
& f_{2}=0.5192 \\
& \frac{\sigma}{E_{\text {meas }}^{e n}}=0.0309 \approx \frac{19.54 \%}{\sqrt{E}}
\end{aligned}
$$

E_{γ} deposite in Ecal (Ecalcolection)

Reconstruction energy

No. of hit in Ecal

No. of hit in the first 20 odd layers

No. of hit in the last 10 odd layers

No. of hit in the first $\mathbf{2 0}$ even layers

No. of hit in the last 10 even layers

No. of hit in Ecal (EcalsiliconCollection)

Reconstruction energy

$$
\begin{aligned}
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
&+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \\
& \gamma=0.0423 \\
& \delta=0.1166 \\
& \frac{\sigma}{E_{\text {reco }}}=0.03998 \approx \frac{31.61 \%}{\sqrt{E}}
\end{aligned}
$$

No. of hit in Ecal (Ecalcollection)

Reconstruction energy

$$
\begin{aligned}
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even20 }}\right) \\
& +\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {evens }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \\
& \gamma=0.0466 \\
& \delta=0.1285 \\
& \frac{\sigma}{E_{\text {meas }}^{\text {hit }}}=0.05038 \approx \frac{31.86 \%}{\sqrt{E}}
\end{aligned}
$$

ilc17_slc6_arbor25May15.sh

E_{γ} deposite in Ecal (ArborPFOsCollection)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

E_{γ} deposite in Ecal (ArborPFoscollection)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 2}\right. \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)
\end{aligned}
$$

E_{γ} deposite in Ecal (AAborpFoscolietion)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

E_{γ} deposite in Ecal (AbborfFosocolection)

Reconstruction energy (deposit E)

E_{γ} deposite in Ecal (AAborposocoloestion)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

E_{γ} deposite in Ecal (AAborposocoloestion)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd10 }}+\left(1-f_{2}\right) E_{\text {evenl0 }}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

E_{γ} deposite in Ecal (ArborPFOsCollection)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{\text {en }}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {evern20 }}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {evern10 }}\right) \\
& \quad \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {evens }}\left(\left(E_{\text {meas }}^{\text {en }}-E_{\text {MC }}\right) / \frac{16 \%}{\sqrt{E_{\text {MC }}}}\right)^{2}
\end{aligned}
$$

E_{γ} deposite in Ecal (AAborposocoloestion)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

E_{γ} deposite in Ecal (ArborPFOsCollection)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

E_{γ} deposite in Ecal (ArborPFOsCollection)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \quad \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

E_{γ} deposite in Ecal (AAborposocoloestion)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

E_{γ} deposite in Ecal (ArborPFOsCollection)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
\end{aligned}
$$

χ^{2}-minimized
$\chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}$

E_{γ} deposite in Ecal (AAborposocoloestion)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
\end{aligned}
$$

χ^{2}-minimized

$$
\chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
$$

E_{γ} deposite in Ecal (AAborposocoloestion)

Reconstruction energy (deposit E)

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{aligned}
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even20 }}\right) \\
& +\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{aligned}
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even20 }}\right) \\
& +\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {evens }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{aligned}
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd 20 }}+N_{\text {even20 }}\right) \\
& +\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {evens }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{array}{ll}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) & \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{array}{ll}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{array}{ll}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) & \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) & \\
\chi^{2} \text {-minimized }
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{array}{ll}
\begin{array}{l}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array} & \chi^{2}=\sum_{\text {evens }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{\text {MC }}\right) / \frac{1600}{\sqrt{E_{M C}}}\right) \\
\chi^{2} \text {-minimized }
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{array}{ll}
\begin{array}{l}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array} & \chi^{2}=\sum_{\text {evens }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{8000}
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

$$
\begin{aligned}
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
& +\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {evens }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{array}{ll}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{aligned}
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
& +\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{aligned}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{array}{ll}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{aligned}
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
& +\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{aligned}
$$

No. of hit in Ecal (ArborPFOsCollection)

$$
\begin{aligned}
& \text { Reconstruction energy (No. of hit) } \\
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
& +\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) \\
& \chi^{2} \text {-minimized } \\
& \chi^{2}=\sum_{\text {evens }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{aligned}
$$

No. of hit in Ecal (ArborPFOsCollection)

$$
\begin{array}{lll}
& & \text { Reconstruction energy (No. of hit) } \\
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) & \\
\chi^{2} \text {-minimized }
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{array}{lll}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy ($N o$. of hit)

$$
\begin{array}{lll}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) & \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{array}{lll}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) & \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array}
$$

No. of hit in Ecal (ArborPFOsCollection)

$$
\begin{aligned}
& E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
& +\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{aligned}
$$

$$
\chi^{2} \text {-minimized }
$$

$$
\chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
$$

$$
\frac{\sigma}{E_{\text {meas }}^{e n}}=0.08167 \approx \frac{81.67 \%}{\sqrt{E}}
$$

