$\mathrm{Br}(\mathrm{H} \rightarrow \gamma \gamma)$ measurement

WANG Feng ${ }^{1}$ RUAN Manqi ${ }^{2}$ LI Gang ${ }^{2}$ ZHANG Zhenyu ${ }^{1}$ ZHOU Xiang ${ }^{1}$ 1 Wuhan University
2 Institute of High Energy Physics Chinese Academy of Science

16/06/2015

Optimization ilc17_slc6_arbor25May15.sh

- 1 energy deposit

$$
\begin{aligned}
& E_{\text {meas }}^{\text {en }}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
& \chi^{2}=\sum_{\text {everus }}\left(\left(E_{\text {meas }}^{\text {en }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \quad \chi^{2} \text {-minimized }
\end{aligned}
$$

- 2 number of hit

$$
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right)+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
$$

- 3 combining the two measurements

$$
\begin{aligned}
& E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }} \\
& \chi^{2}=\sum_{\text {evenss }}\left(\left\{\lambda\left(E_{\text {mean }}^{e \text { en }}-E_{\text {meass }}^{e n}\right)+(1-\lambda)\left(E_{\text {mean }}^{\text {hit }}-E_{\text {meas }}^{\text {hit }}\right)\right\} / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \quad \chi^{2} \text {-minimized }
\end{aligned}
$$

/generator/generator particleGun /gun/position 0 0 a
/gun/directior 0.0 1.00 .035
/gun/energy 10 GeV
/gun/momentumSmearing 0.0 GeV
/gun/phiSmearing 1 deg
/gun/thetaSmearing 1 deg
/gun/directionSmearingMode uniform
/gun/particle gamma
/run/beamOn 10000
/generator/generator particleGun /gun/position 0 of ाiाII
/gun/direction $0.01 .0 \quad 0.0$
/gun/energy 10 Gev
/gun/momentumSmearing 0.0 GeV
/gun/phiSmearing 1 deg
/gun/thetaSmearing 1 deg
/gun/directionSmearingMode uniform /gun/particle gamma
/run/beamOn 10000

E_{γ} deposite in Ecal (AAborposocoloestion)

Reconstruction energy (deposit E)
$E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even20 }}\right)$
$+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)$
χ^{2}-minimized
$\chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}$
$\frac{\sigma}{E_{\text {meas }}^{e n}}=0.0578 \approx \frac{18.28 \%}{\sqrt{E}}$
pre:

$$
\frac{\sigma}{E_{\text {meas }}^{e n}}=0.0611 \approx \frac{19.31 \%}{\sqrt{E}}
$$

No. of hit in Ecal (ArborPFOsCollection)

$$
\begin{array}{ll}
\\
\begin{array}{l}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right)
\end{array} & \text { Reconstruction energy (No. of hit) } \\
\chi^{2} \text {-minimized } \\
\chi^{2}=\sum_{\text {evens }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2}
\end{array}
$$

Combining result in Ecal (ArborPFOsCollection)
 Reconstruction energy (combining E\& hits)

$$
E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }}
$$

χ^{2}-minimized
$\chi^{2}=\sum_{\text {everis }}\left(\left\{\lambda\left(E_{\text {nean }}^{n}-E_{\text {nexs }}^{n i}\right)+(1-\lambda)\left(E_{\text {nean }}^{\text {iit }}-E_{\text {next }}^{\text {iit }}\right)\right\}, \frac{16 \%}{\left.\sqrt{E_{M C}}\right)^{2}}\right.$

$$
\frac{\sigma}{E}=0.05349 \approx \frac{16.91 \%}{\sqrt{E}}
$$

pre:

$$
\frac{\sigma}{E}=0.05625 \approx \frac{17.79 \%}{\sqrt{E}}
$$

E_{γ} deposite in Ecal (ArborPFOsCollection)

Reconstruction energy (deposit E)

$$
\begin{aligned}
& E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right) \\
& +b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
\end{aligned}
$$

χ^{2}-minimized

$$
\begin{gathered}
\chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{e n}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \\
\frac{\sigma}{E_{\text {meas }}^{e n}}=0.03182 \approx \frac{20.12 \%}{\sqrt{E}}
\end{gathered}
$$

pre:

$$
\frac{\sigma}{E_{\text {meas }}^{e n}}=0.03291 \approx \frac{20.82 \%}{\sqrt{E}}
$$

No. of hit in Ecal (ArborPFOsCollection)

Reconstruction energy (No. of hit)

$$
\begin{gathered}
E_{\text {meas }}^{\text {hit }}=\gamma\left(N_{\text {odd } 20}+N_{\text {even } 20}\right) \\
+\delta\left(N_{\text {odd } 10}+N_{\text {even } 10}\right) \\
\chi^{2} \text {-minimized } \\
\chi^{2}=\sum_{\text {events }}\left(\left(E_{\text {meas }}^{\text {hit }}-E_{M C}\right) / \frac{16 \%}{\sqrt{E_{M C}}}\right)^{2} \\
\\
\frac{\sigma}{E_{\text {meas }}^{\text {en }}}=0.0509 \approx \frac{32.19 \%}{\sqrt{E}} \\
\text { pre: } \\
\frac{\sigma}{E_{\text {meas }}^{\text {en }}}=0.05317 \approx \frac{33.63 \%}{\sqrt{E}}
\end{gathered}
$$

Combining result in Ecal (ArborPFOsCollection)
 Reconstruction energy (combining E \& hits)

$$
E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }}
$$

χ^{2}-minimized

$$
\begin{aligned}
& \frac{\sigma}{E}=0.03042 \approx \frac{19.24 \%}{\sqrt{E}} \\
& \text { pre: } \\
& \frac{\sigma}{E}=0.03343 \approx \frac{21.14 \%}{\sqrt{E}}
\end{aligned}
$$

Eq resolution with calibration (ArborPFOsCollection)

E_{γ} resolution with calibration (perect dusten)

E_{γ} vs No. of hit (ArborPFOs)

back up

Parameter vs $\mathrm{E}_{\text {(ArborPFoscollection) }}$

Parameter VS E (ArborPFOsCollection)

Parameter VS E (ArborPFOsCollection)

Parameter VS E (ArborPFOsCollection)

Combining result in Ecal (ArborPFOsCollection) $E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }}$

Reconstruction energy (combining E \& hits)

Combining result in Ecal (ArborPFOsCollection) $E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }}$

Reconstruction energy (combining E \& hits)

Combining result in Ecal (ArborPFOsCollection) $E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }}$

Reconstruction energy (combining E \& hits)

Combining result in Ecal (ArborPFOsCollection) $E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }}$

Reconstruction energy (combining E \& hits)

Combining result in Ecal (ArborPFOsCollection) $E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{h i t}$

Reconstruction energy (combining E \& hits)

Combining result in Ecal (ArborPFOsCollection) $E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }}$

Reconstruction energy (combining E \& hits)

Combining result in Ecal

 (ArborPFOsCollection) $E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }}$Reconstruction energy (combining E \& hits)

Combining result in Ecal (ArborPFOsCollection) $E=\lambda E_{\text {meas }}^{e n}+(1-\lambda) E_{\text {meas }}^{\text {hit }}$

Reconstruction energy (combining E \& hits)

E_{γ} deposited (perfect cluster)

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

Reconstruction energy (deposit E)

E_{γ} deposited (perfect cluster)

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

Reconstruction energy (deposit E)

E_{γ} deposited (perfect cluster)

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

Reconstruction energy (deposit E)

E_{γ} deposited (perfect cluster)

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

Reconstruction energy (deposit E)

E_{γ} deposited (perfect cluster)

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

Reconstruction energy (deposit E)

E_{γ} deposited (perfect cluster)

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

Reconstruction energy (deposit E)

E_{γ} deposited (perfect cluster)

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

Reconstruction energy (deposit E)

E_{γ} deposited (perfect cluster)

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

Reconstruction energy (deposit E)

E_{γ} deposited (perfect cluster)

$$
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right)
$$

Reconstruction energy (deposit E)

E_{γ} deposited (perfect cluster)

$$
\begin{gathered}
E_{\text {meas }}^{e n}=a\left(f_{1} E_{\text {odd } 20}+\left(1-f_{1}\right) E_{\text {even } 20}\right)+b\left(f_{2} E_{\text {odd } 10}+\left(1-f_{2}\right) E_{\text {even } 10}\right) \\
\text { Reconstruction energy (deposit E) }
\end{gathered}
$$

