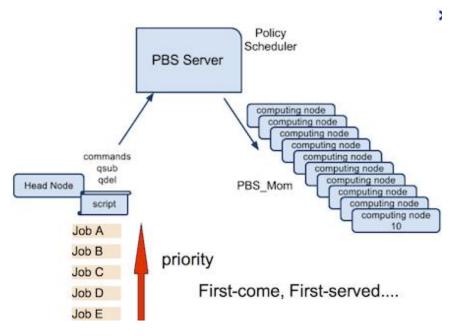
BESIII distributed computing and VMDIRAC

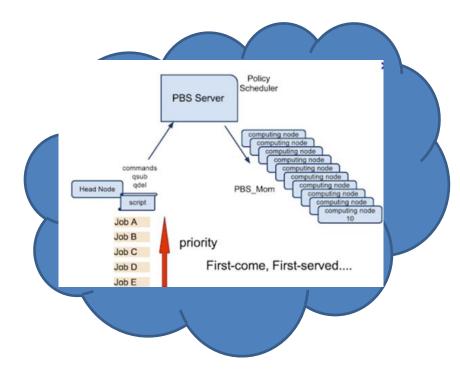
Xiaomei Zhang

Institute of High Energy Physics BESIII CGEM Cloud computing Summer School Sep 7~ Sep 11, 2015

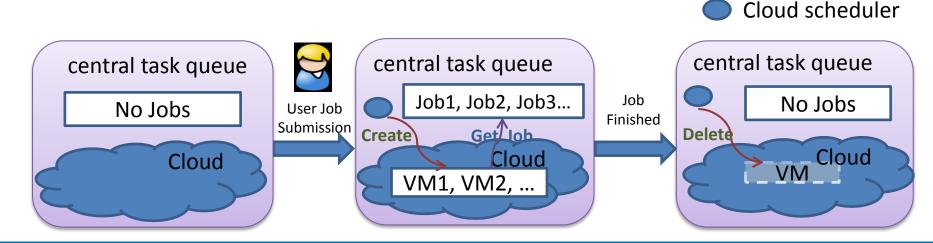

Content

- Two ways of scientific applications using cloud resources
 - VMDIRAC is an elastic way for the BESIII application to use cloud
- A real case : BESIII distributed computing
 - built up on DIRAC, VMDIRAC is a cloud extension
 - BESIII users use cloud through this platform
 - Demo : How to submit a job to Cluster and Grid, Cloud
- How VMDIRAC integrate cloud?
 - DIRAC workload management
 - VMDIRAC architecture and implementation

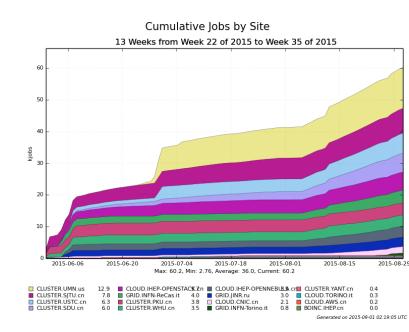
Run scientific applications on clusters


- The feature of Scientific applications
 - Enormous data processing with thousands of jobs to submit and run
- The most common way is to use resource manager to schedule these jobs to proper work nodes

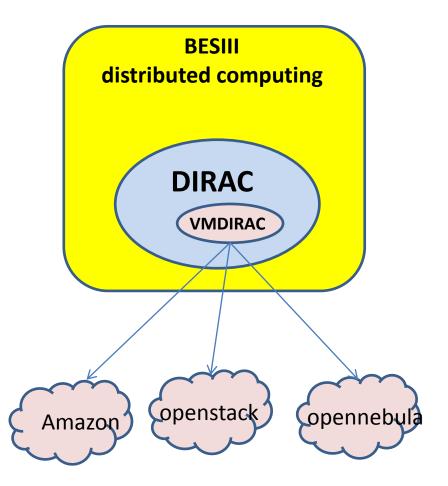
– PBS, HTCondor, LSF.....


Run scientific applications on clouds

- Build standalone virtual cluster over cloud
 - Everything built over VMs instead of physical machines
 - Transparent to end users
 - Easier, not so flexible
- Based on contextualization technique, we can automatically set up a virtual cluster with "one button"
 - "cernvm-online" in yesterday stefano's talk and demo


Run scientific applications on clouds

- On-demand usage
 - Elastic way to use cloud
 - Don't occupy resources before jobs are coming
 - Save money when you use commercial cloud
 - VMDIRAC is one of the way allowing to use clouds elastically
 - HTCondor + Cloud scheduler, elastiq
 - Need central task queue and cloud scheduler


BESIII distributed computing

- BESIII distributed computing system provides a way for BESIII physics users to use various distributed computing resource
 - Grid, Cluster, Cloud and Volunteer computing
 - more than 14 sites are joined
 - About 2000 cores CPU resources, 400 TB storage have been integrated
- 60K jobs have been submitted and run over distributed computing resources in recent three months

BESIII distributed computing

- Use CVMFS to deploy BESIII experiment software to remote sites
- The system is built up based on DIRAC
- VMDIRAC is a cloud extension of DIRAC
 - Able to integrate both private cloud and commercial cloud, eg. openstack, cloudstack, opennebula, etc

Authentication on BESIII distributed computing

- As a BESIII user, you are allowed to submit jobs to resources
- DIRAC use grid certificate to check if you belong to BESIII
 - First you need to get certificate from one of grid CA (Certification Authority)
 - IHEP CA is the only one in China (https://cagrid.ihep.ac.cn)
 - Second you have to register your certificate in BESIII VO(Virtual Organization)
 - https://voms.ihep.ac.cn

```
-bash-4.1$ voms-proxy-info -all
. . . . . .
=== VO bes extension information ===
VO
       : bes
subject :
/C=CN/O=HEP/OU=CC/O=IHEP/CN=Xiao
mei Zhang
issuer :
/C=CN/O=HEP/OU=CC/O=IHEP/CN=vom
s.ihep.ac.cn
attribute :
/bes/Role=NULL/Capability=NULL
timeleft : 11:59:46
      : voms.ihep.ac.cn:15001
uri
```

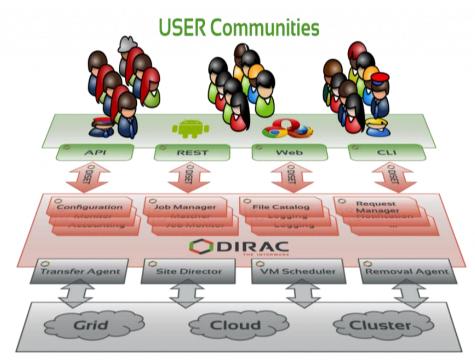
Demo: How to submit jobs through DIRAC web portal

- Check the permission to use the resources

 https://dirac.ihep.ac.cn
- Check the available resources
 - <u>https://dirac.ihep.ac.cn:8444/DIRAC/CAS_Product</u> ion/user/jobs/SiteSummary/display
- Submit a job to resources including cloud
- Monitor job running status
- Get the results from jobs

How to submit jobs to cloud through DIRAC client

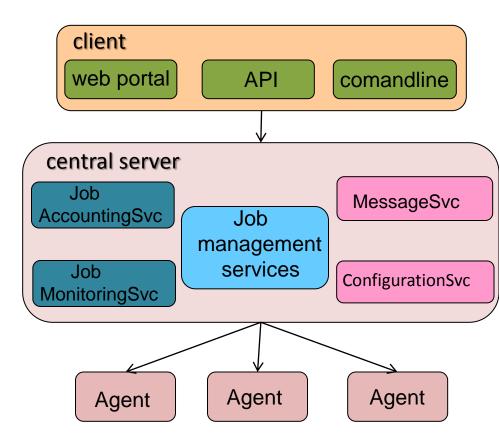
- More complicated applications can use command line to submit jobs
 - Source DIRAC environment
 - Initialize your grid certificate to get permission
 - Prepare JDL files
 - dirac-wms-job-submit *.jdl
 - dirac-wms-job-get-output
 <jobID>


```
Executable = "/bin/ls";
JobRequirements =
 CPUTime = 86400;
 Sites = "CLOUD.CNIC.cn";
];
StdOutput = "std.out";
StdError = "std.err";
OutputSandbox =
 "std.err",
 "std.out"
};
```

DIRAC

- Distributed Infrastructure with Remote Agent Control
- History
 - DIRAC project was born as the LHCb distributed computing project
 - Since 2010 DIRAC became an independent project
- DIRAC has all the necessary components to build ad-hoc infrastructures for distributed computing as a *framework*
 - Configuration, agents, services, user interface, databases
 - Allow to customize experiment-specific systems

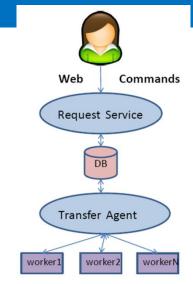
DIRAC


- DIRAC allows to interconnect computing resources of different types as a *interware*
 - Grid
 - Standalone Cluster
 - Desktop grid
 - Cloud

Resources

DIRAC systems

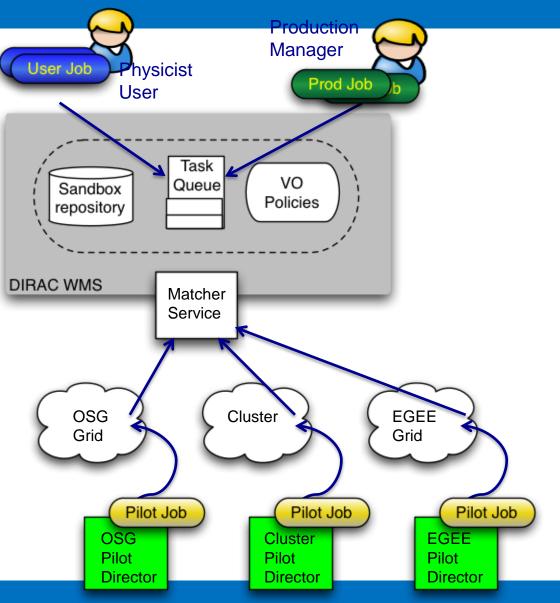
- VMDIRAC is one of DIRAC systems
 - Workload
 management, Data
 management....
- Each system consist of similar components
 - services, agents, clients, databases



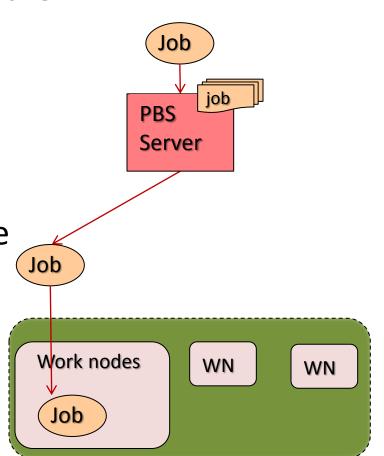
DIRAC systems

- Services
 - Passive components, permanently running, waiting for queries or requests
- Agents
 - light and active components which run as independent processes to fulfill one or several system functions

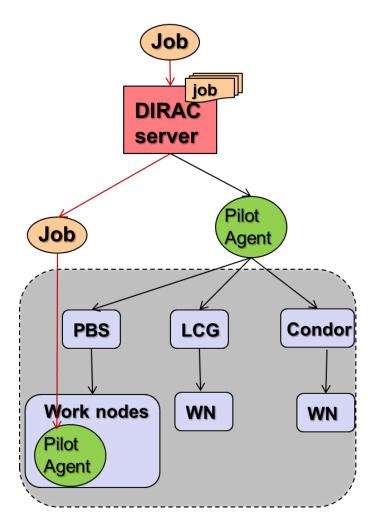
A case --- BESIII Transfer system


- Do mass transfers between remote sites
- The Components include:
 - Web interface
 - Request transfers
 - Monitor transfer status
 - Transfer agent
 - Get transfer tasks from DB
 - Start transfers
 - Request service
 - Get requests from users
 - DB
 - Record transfer requests and status
- VMDIRAC is another system in DIRAC, just more complicated

ReqID	User Name	Dataset	src SE	0	Protocol	submit time	status	
20	lintao	jpsi-664-inclusiv	IHEPD-USER	. USER	DIRACDMS	2013-09-14 08:1	. finish	
19	lintao	jpsi-all-ok	IHEPD-USER	J USER	DIRACDMS	2013-09-14 05:	finish	
18	lintao	jpsi-all-ok	IHEP-USER	ZER	DIRACDMS	2013-09-14 03:	finish	
17	lintao	jpsi-all-ok		U UOED	DIDAOETO	2013-09-03 11:3	. finish	
16	lintao	jpsi-all-ok	Create New Tran	IHEPD. USER	DIRACETS	2013-09-03 09:	finish	
15	lintao	jpsi-all-ok	- Create Transfe	Create Transfer Request			finish	
14	lintao	jpsi-all-ok	Dataset:			2013-09-02 23:	finish	
13	lintao	jpsi-all-ok	SRC SE:			2013-08-31 08:	finish	
12	lintao	jpsi-test-10	DST SE:			2013-08-31 02:	finish	
11	lintao	jpsi-test	DST SE:			2013-08-31 02:	finish	
10	lintao	jpsi-test	Protocol: 2013-08-31 02:	~		finish		
9	lintao	jpsi-test				2013-08-31 01:	finish	
8	lintao	my-dataset				2013-08-23 05:	finish	
7	lintao	my-dataset		create	create		finish	
6	lintao	my-dataset				2013-08-23 03:	finish	
5	lintao	my-dataset	IHEP-USER	IHEPD-USER	DIRACFTS	2013-08-23 03:	finish	
4	lintao	my-dataset	IHEP-USER	IHEPD-USER	FTS	2013-08-23 03:	finish	
3	lintao	my-dataset	IHEP-USER	IHEPD-USER	DIRACDMS	2013-08-23 03:	finish	
2	lintao	my-dataset	IHEP-USER	IHEPD-USER	DIRACDMS	2013-08-23 03:	finish	
1	lintao	mv-dataset	IHEP-USER	IHEPD-USER	DIRACDMS	2013-08-23 03:	finish	


DIRAC workload management

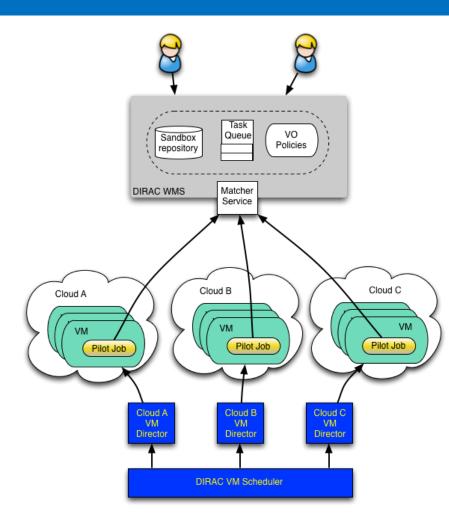
- DIRAC is like a big cluster system over WAN
- Central task queue
 - User jobs are put into the task Queue
 - Job priorities are controlled with VO policies
- Pilot director
 - Connect with resource broker and submit proper pilots
 - Deal with heterogeneous resources
 - Every resource type need a pilot director
- Match service
 - Cooperate with pilot, Match proper user jobs to resources


Push scheduling

- Two common ways to schedule jobs to resources
 - Push scheduling
 - Pull scheduling
- Push scheduling on clusters
 - User jobs is submitted to the local scheduler
 - Jobs are put into queues
 - Be arranged to WNs directly

Pull scheduling

- Pull scheduling with pilot paradigm on DIRAC
 - Instead of send use jobs to resources directly
 - Pilot jobs are sent to resource brokers (CE, PBS...) as normal jobs
 - Pilot jobs start job agents
 - Job agents do
 - occupy a resource
 - set up environment
 - pull jobs from central queue
- Advantages
 - Avoid failure of user jobs because of hardware problem
 - Easy to fit in different resource environment



Cloud differences

- Cloud is integrated into DIRAC in similar way, but with some differences
- Local job scheduler and resource manager
 - Cluster: pbs, condor
 - Grid: arcCE, creamCE
 - Cloud: no, only cloud manager to control VMs
- Static and dynamic resources
 - Static WNs in Cluster and Grid
 - No WNs before jobs are coming

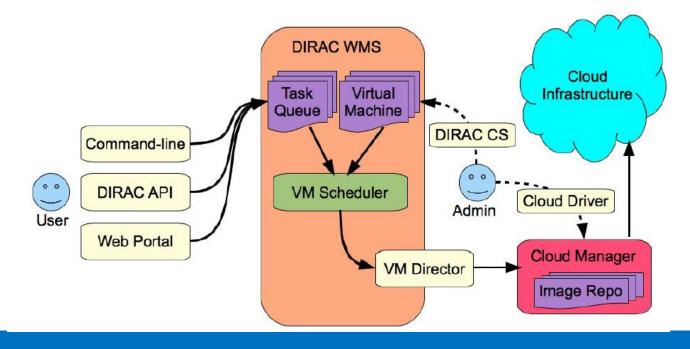
Cloud integration

- "VM director" instead of "Pilot director"
 - start VMs, instead of submitting pilot jobs
- VMs at boot time start "pilot job"
 - This makes the instantiated
 VMs behave just as other WNs with respect to the DIRAC
 WMS
- VM scheduler need to manage dynamic virtual machines according to job situation

VMDIRAC

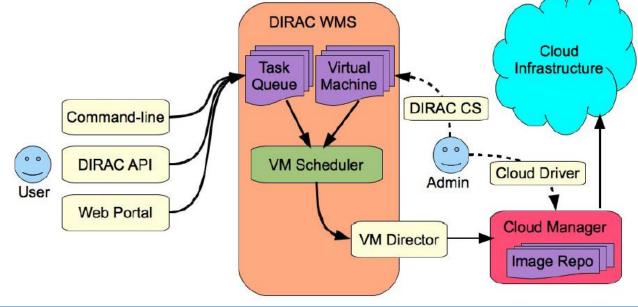
- Integrate Federated cloud into DIRAC
 - OCCI compliant clouds:
 - OpenStack, OpenNebula
 - CloudStack
 - Amazon EC2
- Main functions
 - Check Task queue and start VMs
 - Contextualize VMs to be WNs to the DIRAC WMS
 - Pull jobs from central task queue
 - Centrally monitor VM status
 - Automatically shutdown VMs when no jobs need

Architecture and components

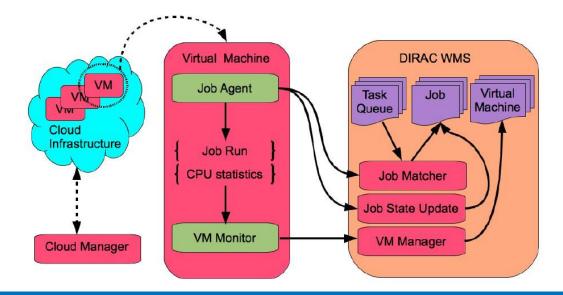

- Dirac server side
 - VM Scheduler get job status from TQ and match it with the proper cloud site, submit requests of VMs to Director
 - VM Manager take statistics of VM status and decide if need new VMs
 - VM Director connect with cloud manager to start VMs
 - Image context manager contextualize VMs to be WNs

Architecture and components

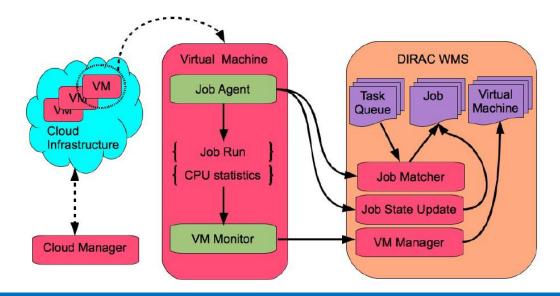
- VM side
 - VM monitor Agent– periodically monitor the status of the VM and shutdown VMs when no need
 - Job Agent just like "pilot jobs", pulling jobs from task queue
- Configuration
 - Use to configure the cloud joined and the image
- Work together
 - Start VMs
 - Run jobs on VMs


How to start VMs

- Users submit jobs through DIRAC interface
- Jobs recorded in task queue
- Cloud and VMs status recorded in the database
 - Cloud and images info get from DIRAC CS
 - DIRAC admin has uploaded the proper images in advance by cloud driver
 - VMs status is collected by VM managers


How to start VMs

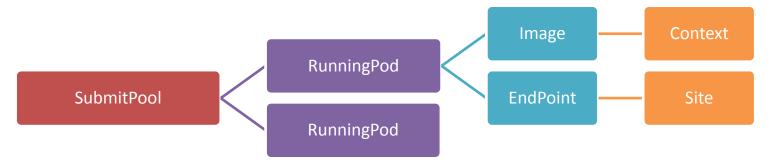
- VM scheduler gets the list of jobs from the central Task Queues to run by matching the pending tasks with the available cloud
- VM scheduler also check if the existing VMs is enough with job info. If not enough and the maximum VMs threshold is not reached, then it submit a request of new VMs
- The proper VM director connect with Cloud Manager through Cloud API such rocci, libcloud, EC2.....
- Cloud manager get the right image and image contextualization to start VMs


How VMs run jobs

- The VM started is a "full" VM
 - At boot time, it is contextualized and starts DIRAC job Agent and VM Monitor Agent
- Job Agent
 - Cooperate with Job Matcher, and get proper jobs from task queue
 - Start the jobs and supervise their correct execution on the Virtual Machine resource
 - Report periodically to Job state update agent to update job status in DB

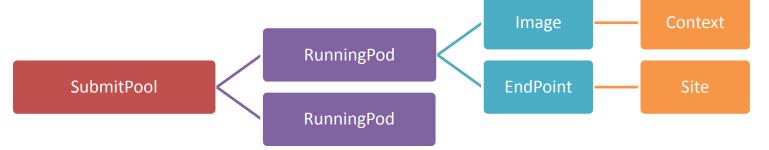
How VMs run jobs

- VM monitor agent
 - Report VM running state to VM manager
 - Monitor the CPU load of VM, and when the load is dropped a certain threshold, the VM manager will halt VMs
 - The VM monitor also will help asynchronously uploads the output data when the VM takes new execution



The contextualization mechanism

- The contextualization mechanism allows to configure the VM to start the pilot script at boot time
 - Avoid building and registering enormous number of images
- Ad-hoc image (no contextualization)
 - Install VMDIRAC staffs and security certificate in the images
 - Upload images to every cloud
- Contextualization supported for different cloud manager
 - Generic SSH
 - HEPIX OpenNebula
 - Cloudinit


VMDIRAC configuration

- Collect info of the available clouds and images
- "Endpoint" is used to define the cloud endpoint
- "Image" is to tell you the running env the VM is going to provide
 - Here "image" includes the selection of contextualization methods

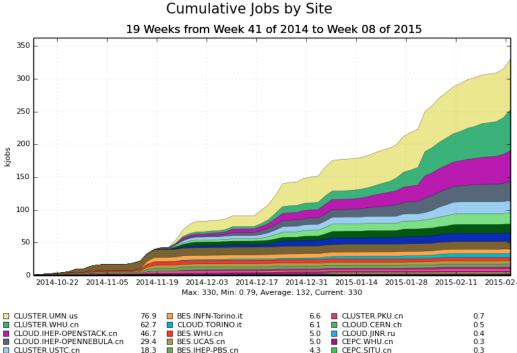
VMDIRAC configuration

- "Running Pods" match "Endpoint" and "Image" to define various running conditions
 - Every cloud properly need the special image and contextualization methods
 - Security reason, special format, etc
- "Submit pools" is to collect the info of "Running Pods" for VM Scheduler to choose

VM monitor

- Central monitor
 - Collect info from VM monitor
 - Record in VM DB
- Local monitor
 - Go through web port of the clouds

Image	RunningPod	EndPoint	Status	Endpoint VM ID	IP	Load	Uptime	Jobs	Last Update (UTC) 👻 🛛 Err
SL65-cvmfs-cloudinit	IHEP-OpenStack	nova-1.1-ihep-o	Running	c9afdcc8-58d6-4109-bc5f-e08f3bb65ce5	::ffff:192.168.61.	1.09	12:30:40	1	2015-08-28 06:53:52
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.56.	1.04	76:00:30	5	2015-08-28 06:53:51
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.61.	1.00	74:55:11	6	2015-08-28 06:53:51
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.61.	1.00	75:35:19	5	2015-08-28 06:53:50
SL65-cvmfs-cloudinit	IHEP-OpenStack	nova-1.1-ihep-o	Running	455bcfa8-d755-4a6f-b701-e78d51149605	::ffff:192.168.61.	1.05	166:45:33	11	2015-08-28 06:53:49
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.56.	1.00	76:25:27	5	2015-08-28 06:53:47
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.56.	1.02	76:40:28	5	2015-08-28 06:53:44
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.61.	1.00	76:05:12	5	2015-08-28 06:53:41
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.60.	1.00	75:25:24	8	2015-08-28 06:53:40
SL65-cvmfs-cloudinit	IHEP-OpenStack	nova-1.1-ihep-o	Running	af482b54-3288-4734-86c6-43afb4ee37b5	::ffff:192.168.61.	1.17	12:15:51	1	2015-08-28 06:53:39
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.61.	1.00	77:05:09	5	2015-08-28 06:53:38
SL65-cvmfs-cloudinit	IHEP-OpenStack	nova-1.1-ihep-o	Running	55890b37-1f4f-4df0-b324-0b2303b02548	::ffff:192.168.61.	1.00	76:55:31	6	2015-08-28 06:53:38
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.61.	1.00	76:45:07	6	2015-08-28 06:53:36
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.61.	1.00	74:15:54	6	2015-08-28 06:53:35
SL65-small-rocci-test1	IHEP-OpenNebula	rocci-1.1-ihep-o	Running	https://vmdirac03.ihep.ac.cn:11443/comp	. ::ffff:192.168.56.	1.13	73:50:57	4	2015-08-28 06:53:34
SL65-cvmfs-cloudinit	IHEP-OpenStack	nova-1.1-ihep-o	Running	dc07ff1b-6b23-43c1-b326-62eb50600ec5	::ffff:192.168.61.	1.00	12:05:11	1	2015-08-28 06:53:34


VM monitor

- The total number of VMs by RunningPod
- The total jobs run in the Clouds

Accounting

A history view of cloud as other resources

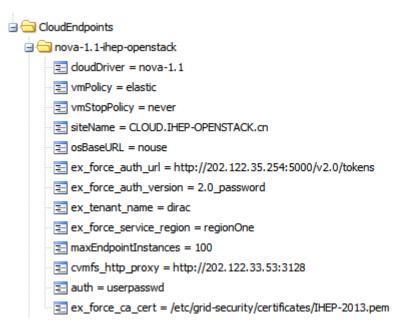
CLOUD.IHEP-OPENNEBULA.CO	29.4	BES.UCAS.Ch
CLUSTER.USTC.cn	18.3	BES.IHEP-PBS.cn
CLUSTER.UCAS.cn	17.2	CLUSTER.SJTU.cn
GRID.INFN-Torino.it	13.6	BES.USTC.cn
GRID.JINR.ru		BES.JINR.ru
BES.UMN.us	11.8	CLOUD.INFN-PADOVANA.it

6.6	CLUSTER.PKU.cn	0.7
6.1	CLOUD.CERN.ch	0.5
5.0	CLOUD.JINR.ru	0.4
5.0	CEPC.WHU.cn	0.3
4.3	CEPC.SJTU.cn	0.3
3.5	CEPC.IHEP-OPENSTACK.cn	0.3
2.6	CLUSTER.GXU.cn	0.2
2.2	CEPC.IHEP-PBS.cn	0.2
1.7	plus 7 more	

Generated on 2015-08-28 07:20:47 UTC

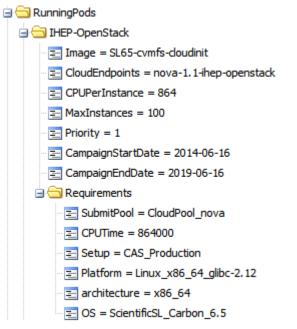
• Thank you!

"Image" section


- bootImageName
- FlavorName
- image name containing
 - OS, software.....

🖃 🔄 Images

- 😑 🚞 SL65-cvmfs-cloudinit
 - \Xi bootImageName = sl65-full-gridfs
 - \Xi flavorName = m1.micro
 - contextMethod = cloudinit
 - 😑 😑 cloudinit
 - wmCertPath = /opt/dirac/VMcertkey/servercert.pem
 - vmRunJobAgentURL = https://github.com/vmendez/VMDIRAC/raw/master/WorkloadManagementSystem/private/bootstrap/run.job-agent
 - E vmRunVmMonitorAgentURL = https://github.com/vmendez/VMDIRAC/raw/master/WorkloadManagementSystem/private/bootstrap/run.vm-monitor-agent
 - vmRunVmUpdaterAgentURL = nouse
 - vmRunLogAgentURL = https://github.com/vmendez/VMDIRAC/raw/master/WorkloadManagementSystem/private/bootstrap/run.log
 - mDiracContextURL = https://github.com/xianghuzhao/VMDIRAC/raw/bes-script/WorkloadManagementSystem/private/bootstrap/general-DIRAC-context-proxy.sh
 - 🔁 vmCvmfsContextURL = https://github.com/xianghuzhao/VMDIRAC/raw/bes-script/WorkloadManagementSystem/private/bootstrap/cvmfs-ihep-context.sh
 - \Xi vmContextualizeScriptPath = /opt/dirac/pro/VMDIRAC/WorkloadManagementSystem/private/bootstrap/cloudinit-static-template.bash
 - vmKeyPath = /opt/dirac/VMcertkey/serverkey.pem
 - \Xi ex_keyname = nouse
 - ex_pubkey_path = nouse


"Endpoint" Section

- Necessary info to connect with Cloud
- cloudDriver is the interface to connect cloud
- It is related directly with cloud name known by users

"Running Pod" section

- Requirements define the running env this RunningPods can provide
- Separate image and requirements? If image doesn't match the requirements?

"SubmitPools"

- Define available resources to VM scheduler
- Different RunningPods are put into SubmitPools for VM scheduler

VirtualMachineScheduler PollingTime = 60 SubmitPools = CloudPool_nova, CloudPool_rocci, Cloud DefaultSubmitPools = CloudPool_nova, CloudPool_rocci 😑 📥 CloudPool_nova RunningPods = IHEP-OpenStack