

SuperNova Early Warning System (SNEWS)

Zhe Wang
Tsinghua University
July 10, 2015

SNEWS

SNEWS - SuperNova Early Warning System http://snews.bnl.gov/

Purpose of SNEWS:

- 1. Neutrinos emerge earlier than electromagnetic signal. Neutrinos take the majority of the energy loss (IIa) Provide astronomical community a prompt alert Early stage light curve
- 2. Optimize global sensitivity
 Lower each experiment's threshold
 Downtime coordination

New J. Phys. 6 114

Member experiments

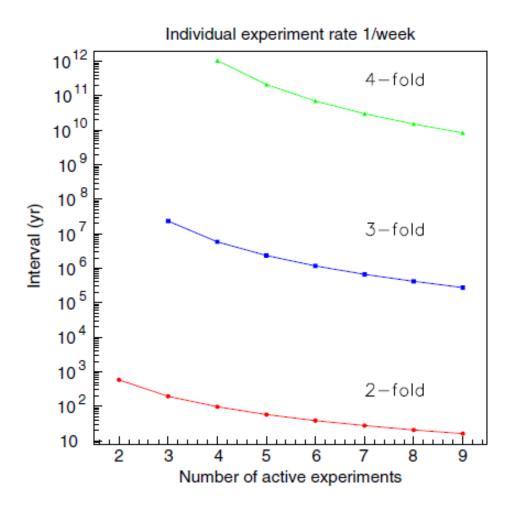
 Current experiments: Super-K, LVD, IceCube, Borexino, KamLAND, and Daya Bay

November 2014: Daya Bay joins SNEWS after Daya Bay internal and Daya Bay-SNEWS tests. arXiv:1505.02501

▶ LIGO experiment to join

Basic principle

 For individual experiments a SN gives a burst of neutrinos


Individual Exp. alarm rate 1/week

▶ 2- or 3-fold coincident rate within 10 s is less than 1/century

▶ 1/century is consistent with our theoretical expectation of SN rate

New J. Phys. 6 114

A little more detail

► Individual experiment send: GOOD, POSSIBLE, RETRACTED, OVERRIDE, or TEST <u>alarm</u> to SNEWS

SNEWS makes coincidence test and issue GOLD or SILVER <u>alert</u>

Background:

- 1. Accidental coincidence
- 2. Non-astrophysical correlated bursts electrical noise, ambient pressure, seismic, solar activity, solar flares
- 3. Malicious actions

With 8 AD at Daya Bay, we observed many coincidence with power fluctuations, thunder storms ...

SNEWS coincidence definition

▶ GOLD alert

- 1. Two- or more-fold alarm coincidence within 10 s
- 2. Two experiments are at physically separated laboratory
- 3. Two or more individual input trigger are GOOD
- 4. The individual rate in the past month of the individual trigger is less than 1/week

SILVER alert

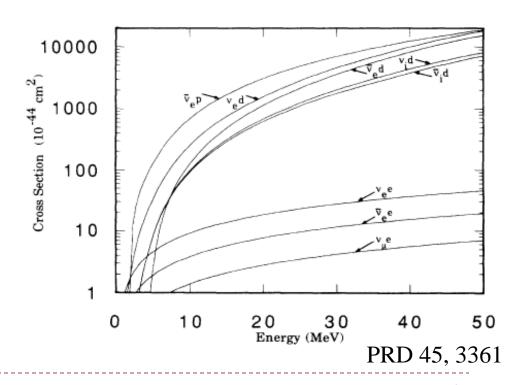
1. No 1 is satisfied but one of 2, 3, and 4 is not satisfied.

Neutrino signals and detectors

- Scintillator
- Water
- Heavy water
- Long string PMTs
- Liquid argon
- Heavy metal
- Radio-chemical

Every detection has its own feature.

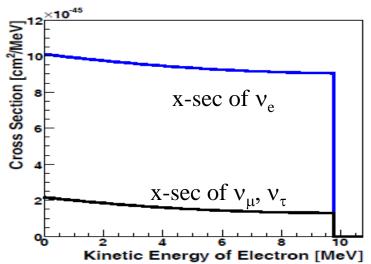
Scintillator

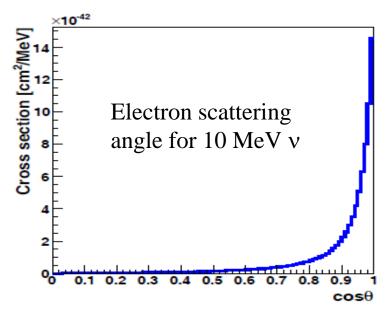

- Material: C and H
- **Dominant process: Inverse Beta Decay, anti-** ν_e **only**

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

• Minor process: ν–e scattering, ν-p scattering

IBD


- 1. Cross-section: high
- 2. Neutron tagging
- 3. CC process
- 4. Threshold: 1.8 MeV
- 5. $E_{anti-ve} = E_{e+vis} + 0.8 MeV$
- 6. Detector thres.: 200 keV
- 7. High energy resolution
- 8. No directionality



Water

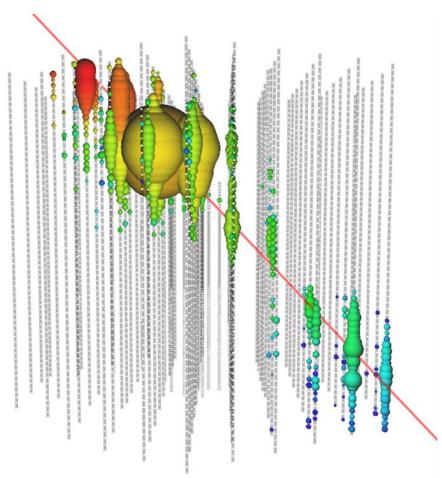
- Material: O and H
- Dominant process: IBD
- Minor process: ν–e scattering
- IBD
 - 1. Weak neutron tagging
 - 2. Detected as single signals
 - -- Forced neutron trigger (THU)
 - -- Gd-water may come online
- ν–e scattering
 - 1. NC and CC process
 - 2. v_{μ} , v_{τ} x-section is ~1/5 of v_{e}
 - 3. Involve all flavors
 - 4. Directionality
 - 5. ~5 MeV threshold at SK and SNO

Heavy water

- Material: D and H
- Detection process:

NC:
$$\nu_i + d \rightarrow n + p + \nu_i$$
 ($\epsilon_{\rm th} = 2.22 \, {\rm MeV}$), $\overline{\nu}_i + d \rightarrow n + p + \overline{\nu}_i$ ($\epsilon_{\rm th} = 2.22 \, {\rm MeV}$).

CC:
$$\nu_e + d \rightarrow p + p + e^ (\epsilon_{\rm th} = 1.44 \, {\rm MeV})$$

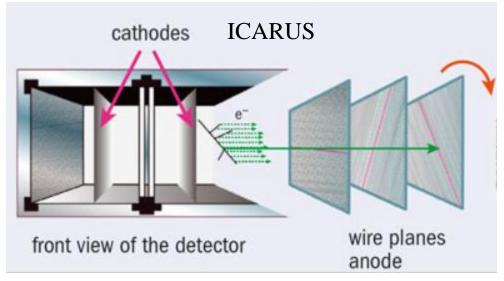

$$\overline{\nu}_e + d \rightarrow n + n + e^+$$
 $(\epsilon_{\rm th} = 4.03 \, {\rm MeV})$

- Different combination of CC and NC process to resolve degeneracy
- Last CC process has directionality
- ~5 MeV threshold at SNO
- \triangleright SNO (D₂O) has finished.
- ▶ SNO+: liquid scintillator now

Long string PMTs

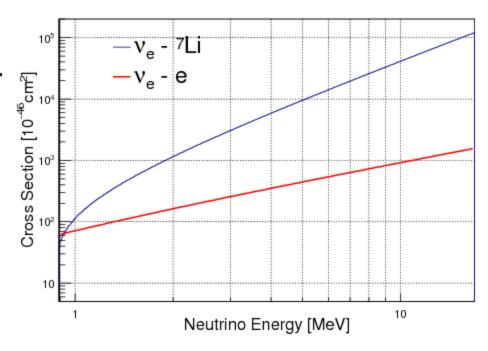
- IceCube
- >5000 PMTs in ice
- ▶ IBD and v—e scattering
- Designed for TeV neutrinos
- Supernova burst neutrinos show itself as a global PMT noise increase

Very good to check the neutrino luminosity curve

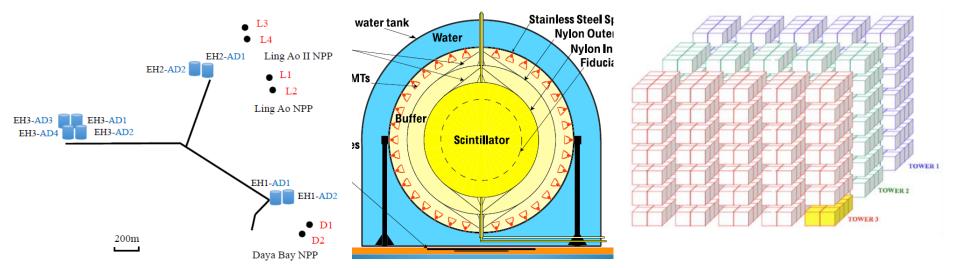

Liquid argon

Process:

ν-e scattering
$$\nu_e + {}^{40} \text{Ar} \rightarrow {}^{40} \text{K}^* + e^-, {}^{40} \text{K}^* \rightarrow {}^{40} \text{K} + \gamma \quad (5 \text{ MeV})$$


- Neither is dominant
 v-Ar cross section is high, but number of e is high.
- LAr as a scintillator detector
- ▶ LAr TPC (DUNE)
 - 1. Threshold > 10 MeV

Heavy metal



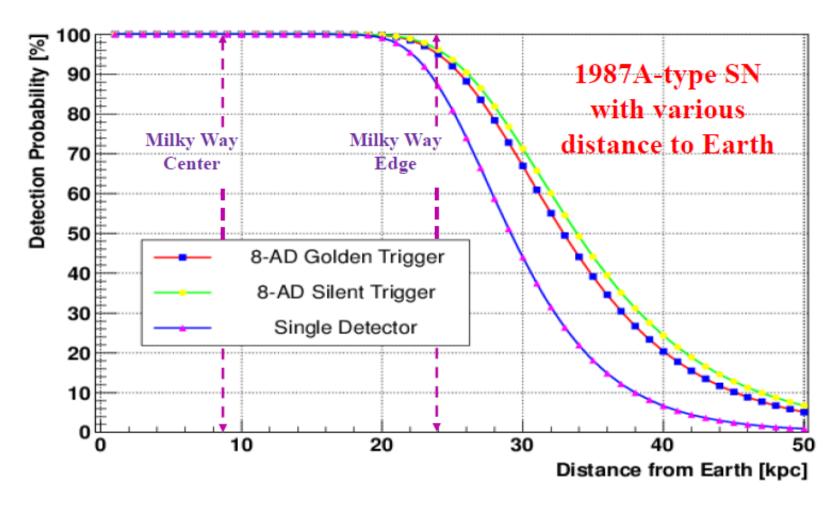
- CC cross section of neutrino on some heavy metals are 100 times than ν -e scattering
 - 1. ⁷Li, ³⁷Cl, ⁷¹Ga
- ▶ However, similar to Ar, the target number is much less than electrons or free protons.
- So far no realistic detector

Daya Bay, KamLAND, Borexino, and LVD

Daya Bay 8 separate detectors

Borexino 1 detector KamLAND 1 detector LVD: many small modules
Each one has 1.2 ton LS and
viewed by 3 PMT,
Poor resolution and threshold

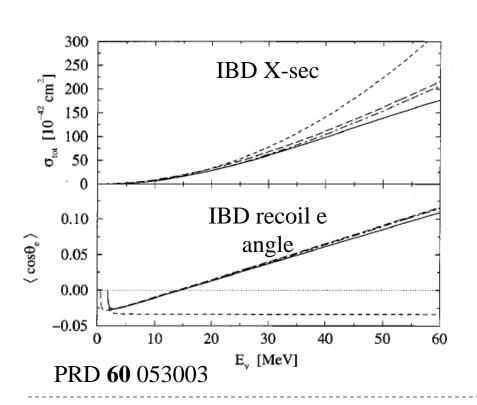
Feature of Daya Bay experiment

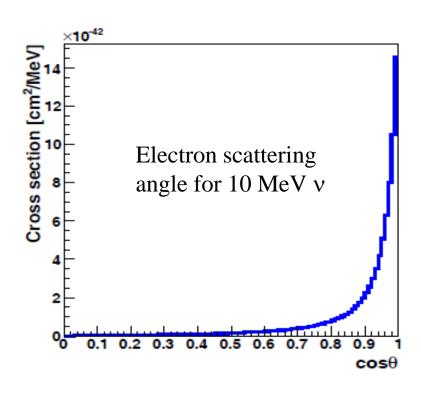


- Measure IBD process
- ▶ Offer best energy resolution: ~7%
- ▶ Offer the lowest energy threshold: ~ 0.5 MeV
- Multi-module: best muon background suppression

Detector	Туре	Location	Mass (kt)	N _{IBD}	E _{th} (MeV)
IceCube	*L.S. Ch.	Antarctic	0.6/PMT	N/A	-
Super-K	Water Ch.	Japan	32	7000	7.0
LVD	Scint.	Italy	1	300	4.0
KamLAND	Scint.	Japan	1	300	0.35
Borexino	Scint.	Italy	0.3	100	0.2
Daya Bay	†M.S. Scint.	China	0.33	110	0.7

Sensitivity of Daya Bay Experiment



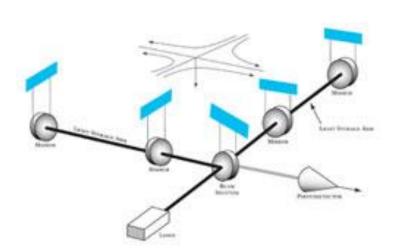


Pointing ability

- > SNEWS no direction information in the near future
- Water Cherenkov detector can
- ▶ Triangulation is very crude PRD 60, 033007

Alert to astronomical community

- ▶ Alert is sent out through SNEWS two mailing lists.
- ▶ GOLD: Sky & Telescope and Hubble Space Telescope astronomers
- ▶ SILVER: neutrino experiments only


Right ascension:	Test by Sky & Telescope	13 ^h 38 ^m
Declination:	Received over 80 responses Six of them are correct	+8.1°
Uncertainty radius:	SIX of them are correct	13°
Expected magnitude:		unknown

Please check this region of the sky as soon as possible using your naked eyes, binoculars, a telescope, or a camera. You are looking for a starlike point of light...

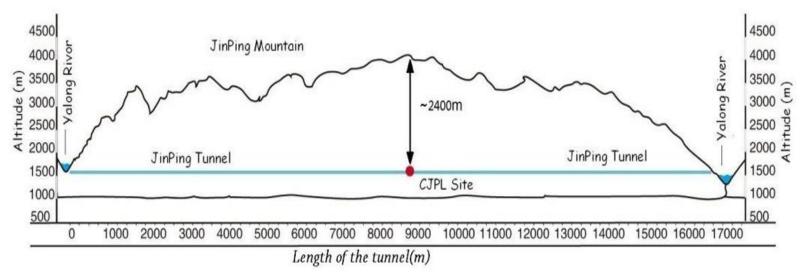
New development with SNEWS

TSING NATIONAL TRANSPORT

Gravitational wave during SN burst

May be detected by precise laser interference experiment

- LIGO experiments etc. are considering to join SNEWS
- $ightharpoonup T_0$ of neutrino signals


Summary

- ▶ SNEWS: real-time monitor and coordination of supernova neutrino alarm of individual experiment
- ▶ Within ~10 minutes, you can receive a GOLD alert
- So far no direction info is available
- Scintillator detector is necessary in all detection methods
 - energy threshold
 - 2. background
 - 3. quick time response
 - 4. resolve flavor components
- Gravitational wave detection exp. is coming soon.
- For time reason, no detail of the trigger design in each exp. is introduced.

Jinping Underground Low Energy Neutrino Experiment

- JULENE is featured by its low cosmic-ray muon background and low reactor neutrino background
- Offer precise measurement of Solar and Geo- neutrinos
- ▶ Discover Solar CNO neutrinos by $>5\sigma$
- Precise measurement of U and Th geoneutrinos and ratio
- Large potential for supernova burst and relic neutrinos

http://hep.tsinghua.edu.cn/CJPLNE/

Thank you. Welcome questions and comments.